DMP204
SCHEDULING,
TIMETABLING AND ROUTING

Lecture 13
Parallel Machine Models

Marco Chiarandini

Outline

1. Parallel Machine Models
$P m\left|\mid C_{m a x}\right.$
$P m\left|\mid C_{\max }\right.$ LPT heuristic, approximation ratio: $\frac{4}{3}-\frac{1}{3 m}$
$P \infty \mid$ prec $\mid C_{\max }$ CPM
Pm \mid prec $\mid C_{\text {max }}$ strongly NP-hard, LNS heuristic (non optimal)
$\operatorname{Pm}\left|p_{j}=1, M_{j}\right| C_{\max }$ LFJ-LFM (optimal if M_{j} are nested)

Pm $|p r m p| C_{m a x}$

Not NP-hard

- Linear Programming (exercise)
- Construction based on $L W B=\max \left\{p_{1}, \sum_{j=1}^{n} \frac{p_{j}}{m}\right\}$
- Dispatching rule: longest remaining processing time (LRPT) optimal in discrete time

Decomposition

If model has "block" structure
$\max c^{1} x^{1}+c^{2} x^{2}+\ldots+c^{K} x^{K}$
s.t. $\quad A^{1} x^{1}+A^{2} x^{2}+\ldots+A^{K} x^{K}=b$

$D^{1} x^{1}$	+		$\leq d_{1}$
	$+D^{2} x^{2}$		$\leq d_{2}$
		\ldots	$\leq:$

$$
\begin{array}{llll}
& \ldots & & D^{K} x^{K} \\
x^{1} \in \mathbb{Z}_{+}^{n_{1}} & x^{2} \in \mathbb{Z}_{+}^{n_{2}} & \ldots & x^{K} \in \mathbb{Z}_{+}^{n_{K}}
\end{array}
$$

Lagrangian relaxation

Objective becomes

$$
\begin{aligned}
& c^{1} x^{1}+c^{2} x^{2}+\ldots+c^{K} x^{K} \\
& -\lambda\left(A^{1} x^{1}+A^{2} x^{2}+\ldots+A^{K} x^{K}-b\right)
\end{aligned}
$$

Decomposed into
$\max c^{1} x^{1}-\lambda A^{1} x^{1}+c^{2} x^{2}-\lambda A^{2} x^{2}+\ldots+c^{K} x^{K}-\lambda A^{K} x^{K}+b$

s.t.	$D^{1} x^{1}$	+
	$+D^{2} x^{2}$	$\leq d_{1}$
		$\leq d_{1}$

$$
\begin{aligned}
& \leq d_{1} \\
& \leq d_{2} \\
& \leq:
\end{aligned}
$$

$$
\begin{array}{ccccc}
& \cdots & D^{K} x^{K} & \dot{\prime} \\
x^{1} \in \mathbb{Z}_{+}^{n_{1}} & x^{2} \in \mathbb{Z}_{+}^{n_{2}} & \cdots & x^{K} \in \mathbb{Z}_{+}^{n_{K}} &
\end{array}
$$

Model is separable

Dantzig-Wolfe decomposition

If model has "block" structure

$$
\begin{array}{llllll}
\max & c^{1} x^{1} & +c^{2} x^{2} & +\ldots+c^{K} x^{K} & \\
\text { s.t. } & A^{1} x^{1} & +A^{2} x^{2} & +\ldots+ & A^{K} x^{K} & =b \\
& D^{1} x^{1} & + & & & \\
& & & & & \\
& & d_{1} x_{1} x^{2} & & & \\
& & & & & \\
& & & d_{2} \\
& x^{1} \in \mathbb{Z}_{+}^{n_{1}} & x^{2} \in \mathbb{Z}_{+}^{n_{2}} & \ldots & x^{K} \in x^{K} & \leq \mathbb{Z}_{+}^{n_{K}}
\end{array}
$$

Substituting each set $X^{k}, k=1, \ldots, K$ in original model getting Master Problem
$\max c^{1}\left(\sum_{t \in T_{1}} \lambda_{1, t} t^{1, t}\right)+c^{2}\left(\sum_{t \in T_{2}} \lambda_{2, t} t^{2, t}\right)+\ldots+c^{K}\left(\sum_{t \in T_{K}} \lambda_{K, t} t^{K, t}\right)$
s.t. $A^{1}\left(\sum_{t \in T_{1}} \lambda_{1, t} x^{1, t}\right)+A^{2}\left(\sum_{t \in T_{2}} \lambda_{2, t} x^{2, t}\right)+\ldots+A^{K}\left(\sum_{t \in T_{K}} \lambda_{K, t} x^{K, t}\right)=b$

$$
\sum_{k T} \lambda_{k, t}=1 \quad k=1, \ldots, K
$$

Strength of linear master model

Solving LP-relaxation of master problem, is equivalent to (Wolsey Prop 11.1)

Strength of Lagrangian relaxation

- $z^{L P M}$ be LP-solution value of master problem
- $z^{L D}$ be solution value of lagrangian dual problem

Theorem 11.2)

$$
z^{L P M}=z^{L D}
$$

$$
\lambda_{k, t} \in\{0,1\}, \quad t \in T_{k} k=1, \ldots, K
$$

Delayed column generation, linear master

(minimization problem)

Run Simplex algorithm as if complete master problem was known

- Start with a basis solution
- Solve
and find dual variables
$x_{B}=A_{B}^{-1} b$

$$
y=c_{B} A_{B}^{-1}
$$

- When choosing entering variable solve pricing prob lem which minimizes reduced costs

$$
c_{j}^{r}=c_{j}-y A_{j}
$$

- If $c_{j}^{r}<0$ add corresponding column A_{j} to model and repeat
- If $c_{j}^{r} \geq 0$ stop

Terminolog

- Master Problem
- Restricted Master Problem
- Subproblem or Pricing Problem
- Branch and cut:

Branch-and-bound algorithm using cuts to strengthen bounds.

- Branch and price:

Branch-and-bound algorithm using column generation to derive bounds.

- One says that discarded columns are "priced out"

Cutting Stock Problem

(minimization problem)

$a_{i j}$ is number of pieces of type i cut from pattern j
Master problem,

$$
\begin{array}{ll}
\min & \sum_{j=1}^{n} u_{j} \\
\text { s.t. } & \sum_{j=1}^{n} a_{i j} u_{j} \geq b_{i} i=1, \ldots, m, j=1, \ldots, n \\
& x_{i j} \in \mathbb{Z}_{+}
\end{array}
$$

Solving linear master through delayed column generation

- Start with patterns which only contain one type i
- Solve restricted master
- Dual variables y_{i} say how "attractive" a type i is
- Pricing problem

$$
\begin{aligned}
z^{S}=\min & 1-\sum_{i=1}^{m} y_{i} x_{i} \\
\text { s.t. } & \sum_{i=1}^{m} w_{i} x_{i} \leq L \\
& x \geq 0, \text { integer }
\end{aligned}
$$

- stop if $z^{S} \geq 0$

Branch-and-price

- LP-solution of master problem may have fractional solutions
- Branch-and-bound for getting IP-solution
- In each node solve LP-relaxation of maste
- Subproblem may change when we add constraints to master problem
- Branching strategy should make subproblem easy to solve

Branch-and-price, example

The matrix A contains all different cutting patterns

$$
A=\left(\begin{array}{lllll}
4 & 0 & 1 & 2 & 3 \\
0 & 7 & 5 & 4 & 2
\end{array}\right)
$$

Problem
minimize $\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{4}+\lambda_{5}$
subject to $4 \lambda_{1}+0 \lambda_{2}+1 \lambda_{3}+2 \lambda_{4}+3 \lambda_{5} \geq 7$ $0 \lambda_{1}+7 \lambda_{2}+5 \lambda_{3}+4 \lambda_{4}+2 \lambda_{5} \geq 3$ $\lambda_{j} \in \mathbb{Z}_{+}$
LP-solution $\lambda_{1}=1.375, \lambda_{4}=0.75$

Branch on $\lambda_{1}=0, \lambda_{1}=1, \lambda_{1}=2$

- Column generation may not generate pattern $(4,0)$
- Pricing problem is knapsack problem with pattern forbidden

Tailing off effect

Column generation may converge slowly in the end

- We do not need exact solution, just lower bound
- Solving master problem for subset of columns does not give valid lower bound (why?)
- Instead we may use Lagrangian relaxation of joint constraint
- "guess" lagrangian multipliers equal to dual variables from master problem

Heuristic solution

- Restricted master problem will only contain a subset of the columns
-We may solve restricted master problem to IP-optimality
Restricted master is a "set-covering-like" problem which is not too difficult to solve

