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General Shop Scheduling:
J = {1, . . . , N} set of jobs; M = {1, 2, . . . ,m} set of machines

Jj = {Oij | i = 1, . . . , nj} set of operations for each job

pij processing times of operations Oij
µij ⊆M machine eligibilities for each operation

precedence constraints among the operations

one job processed per machine at a time,
one machine processing each job at a time

Cj completion time of job j

è Find feasible schedule that minimize some regular function of Cj
Job shop

µij = l, l = 1, . . . , nj and µij 6= µi+1,j (one machine per operation)

O1j → O2j → . . .→ Onj ,j precedences (without loss of generality)

without repetition and with unlimited buffers
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Task:

Find a schedule S = (Sij), indicating the starting times of Oij ,
such that:

it is feasible, that is,
Sij + pij ≤ Si+1,j for all Oij → Oi+1,j

Sij + pij ≤ Suv or Suv + puv ≤ Sij for all operations with µij = µuv.

and has minimum makespan: min{maxj∈J(Snj ,j + pnj ,j)}.

A schedule can also be represented by an m-tuple π = (π1, π2, . . . , πm)
where πi defines the processing order on machine i.

There is always an optimal schedule that is semi-active.

(semi-active schedule: for each machine, start each operation at the
earliest feasible time.)
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Often simplified notation: N = {1, . . . , n} denotes the set of
operations

Disjunctive graph representation: G = (N,A,E)
vertices N : operations with two dummy operations 0 and n+ 1
denoting “start” and “finish”.

directed arcs A, conjunctions

undirected arcs E, disjunctions

length of (i, j) in A is pi
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A complete selection corresponds to choosing one direction for each
arc of E.

A complete selection that makes D acyclic corresponds to a feasible
schedule and is called consistent.

Complete, consistent selection ⇔ semi-active schedule (feasible
earliest start schedule).

Length of longest path 0–(n+ 1) in D corresponds to the makespan
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Longest path computation

In an acyclic digraph:

construct topological ordering (i < j for all i→ j ∈ A)

recursion:

r0 = 0
rl = max

{j | j→l∈A}
{rj + pj} forl = 1, . . . , n+ 1
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A block is a maximal sequence of adjacent critical operations
processed on the same machine.

In the Fig. below: B1 = {4, 1, 8} and B2 = {9, 3}

Any operation, u, has two immediate predecessors and successors:
its job predecessor JP (u) and successor JS(u)

its machine predecessor MP (u) and successor MS(u)
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Disjunctive programming

min Cmax
s.t. xij + pij ≤ Cmax ∀Oij ∈ N

xij + pij ≤ xlj ∀ (Oij , Olj) ∈ A
xij + pij ≤ xik ∨ xij + pij ≤ xik ∀ (Oij , Oik) ∈ E
xij ≤ 0 ∀ i = 1, . . . ,m j = 1, . . . , N

Constraint Programming

Branch and Bound [Carlier and Pinson, 1983]

Typically unable to schedule optimally more than 10 jobs on 10 machines.
Best result is around 250 operations.
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Branch and Bound [Carlier and Pinson, 1983] [B2, p. 179]

Let Ω contain the first operation of each job;
Let rij = 0 for all Oij ∈ Ω

Machine Selection Compute for the current partial schedule

t(Ω) = min
ij∈Ω
{rij + pij}

and let i∗ denote the machine on which the minimum is
achieved

Branching Let Ω′ denote the set of all operations Oi∗j on machine i∗

such that

ri∗j < t(Ω) (i.e. eliminate ri∗j ≥ t(Ω))

For each operation in Ω′, consider an (extended)partial
schedule with that operation as the next one on
machine i∗.
For each such (extended) partial schedule, delete the
operations from Ω, include its immediate follower in Ω and
return to Machine Selection.
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Lower Bounding:

longest path in partially selected disjunctive digraph

solve 1|rij |Lmax on each machine i like if all other machines could
process at the same time (see later shifting bottleneck heuristic) +
longest path.
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Solution representation:
m-tuple π = (π1, π2, . . . , πm) ⇐⇒ oriented digraph Dπ = (N,A,Eπ)

Neighborhoods
Change the orientation of certain disjunctive arcs of the current complete
selection

Issues:

1. Can it be decided easily if the new digraph Dπ′ is acyclic?

2. Can the neighborhood selection S′ improve the makespan?

3. Is the neighborhood connected?
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Swap Neighborhood [Novicki, Smutnicki]
Reverse one oriented disjunctive arc (i, j) on some critical path.

Theorem
All neighbors are consistent selections.

Note: If the neighborhood is empty then there are no disjunctive arcs,
nothing can be improved and the schedule is already optimal.

Theorem
The swap neighborhood is connected.
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Insertion Neighborhood [Balas, Vazacopoulos, 1998]

For some nodes u, v in the critical path:
move u right after v (forward insert)

move v right before u (backward insert)

Theorem: If a critical path containing u and v also contains JS(v) and

L(v, n) ≥ L(JS(u), n)

then a forward insert of u after v yields an acyclic complete selection.

Theorem: If a critical path containing u and v also contains JS(v) and

L(0, u) + pu ≥ L(0, JP (v)) + pJP (v)

then a backward insert of v before v yields an acyclic complete selection.
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Theorem: (Elimination criterion) If Cmax(S′) < Cmax(S) then at
least one operation of a machine block B on the critical path has to be
processed before the first or after the last operation of B.

Swap neighborhood can be restricted to first and last operations in
the block

Insert neighborhood can be restricted to moves similar to those saw
for the flow shop. [Grabowski, Wodecki]
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Tabu Search requires a best improvement strategy hence the
neighborhood must be search very fast.

Neighbor evaluation:

exact recomputation of the makespan O(n)

approximate evaluation (rather involved procedure but much faster
and effective in practice)

The implementation of Tabu Search follows the one saw for flow shop.
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A complete selection is made by the union of selections Sk for each
clique Ek that corresponds to machines.

Idea: use a priority rule for ordering the machines.
chose each time the bottleneck machine and schedule jobs on that
machine.

Measure bottleneck quality of a machine k by finding optimal
schedule to a certain single machine problem.

Critical machine, if at least one of its arcs is on the critical path.
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– M0 ⊂M set of machines already sequenced.

– k ∈M \M0

– P (k,M0) is problem 1 | rj | Lmax obtained by:
the selections in M0

removing any disjunctive arc in p ∈M \M0

– v(k,M0) is the optimum of P (k,M0)

– bottleneck m = arg max
k∈M\M0

{v(k,M0)}

– M0 = ∅
Step 1: Identify bottleneck m among k ∈M \M0 and sequence it

optimally. Set M0 ←M0 ∪ {m}
Step 2: Reoptimize the sequence of each critical machine k ∈M0

in turn: set M ′o = M0 − {k} and solve P (k,M ′0).
Stop if M0 = M otherwise Step 1.

– Local Reoptimization Procedure
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Construction of P (k,M0)

1 | rj | Lmax:
rj = L(0, j)

dj = L(0, n)− L(j, n) + pj

L(i, j) length of longest path in G: Computable in O(n)

An acyclic complete directed graph is the transitive closure of its unique
directed Hamilton path.

Hence, only predecessors and successor are to be checked.
The graph is not constructed explicitly, but by maintaining a list of jobs
per machines and a list machines per jobs.

1 | rj | Lmax can be solved optimally very efficiently.
Results reported up to 1000 jobs.
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1 | rj | Lmax1 | rj | Lmax1 | rj | Lmax From Lecture 9

[Maximum lateness with release dates]

Strongly NP-hard (reduction from 3-partition)

might have optimal schedule which is not non-delay

Branch and bound algorithm (valid also for 1 | rj , prec | Lmax)
Branching:
schedule from the beginning (level k, n!/(k − 1)! nodes)
elimination criterion: do not consider job jk if:

rj > min
l∈J
{max (t, rl) + pl} J jobs to schedule, t current time

Lower bounding: relaxation to preemptive case for which EDD is
optimal
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