Outline

DMP204
SCHEDULING,
TIMETABLING AND ROUTING

Lecture 15
Flow Shop and Job Shop Models

Marco Chiarandini

1. Job Shop

Modelling
Exact Methods
Local Search Methods
Shifting Bottleneck Heuristic

Outline \quad Job Shop | Modelling |
| :--- |
| Exact Methods |
| E.cal Search Methods |
| Shifting Bottleneck Heuris |

1. Job Shop

Modelling
Exact Methods
Local Search Methods
Shifting Bottleneck Heuristic

Modelling

Job Shop

- $J=\{1, \ldots, N\}$ set of jobs; $M=\{1,2, \ldots, m\}$ set of machines
- $J_{j}=\left\{O_{i j} \mid i=1, \ldots, n_{j}\right\}$ set of operations for each job
- $p_{i j}$ processing times of operations $O_{i j}$
- $\mu_{i j} \subseteq M$ machine eligibilities for each operation
- precedence constraints among the operations
- one job processed per machine at a time, one machine processing each job at a time
- C_{j} completion time of job j
\Rightarrow Find feasible schedule that minimize some regular function of C_{j} Job shop
- $\mu_{i j}=l, l=1, \ldots, n_{j}$ and $\mu_{i j} \neq \mu_{i+1, j}$ (one machine per operation)
- $O_{1 j} \rightarrow O_{2 j} \rightarrow \ldots \rightarrow O_{n_{j}, j}$ precedences (without loss of generality)
- without repetition and with unlimited buffers

Task:

- Find a schedule $S=\left(S_{i j}\right)$, indicating the starting times of $O_{i j}$, such that:
it is feasible, that is,
- $S_{i j}+p_{i j} \leq S_{i+1, j}$ for all $O_{i j} \rightarrow O_{i+1, j}$
- $S_{i j}+p_{i j} \leq S_{u v}$ or $S_{u v}+p_{u v} \leq S_{i j}$ for all operations with $\mu_{i j}=\mu_{u v}$.
and has minimum makespan: $\min \left\{\max _{j \in J}\left(S_{n_{j}, j}+p_{n_{j}, j}\right)\right\}$.

A schedule can also be represented by an m-tuple $\pi=\left(\pi^{1}, \pi^{2}, \ldots, \pi^{m}\right)$ where π^{i} defines the processing order on machine i.

There is always an optimal schedule that is semi-active.
(semi-active schedule: for each machine, start each operation at the earliest feasible time.)

Modelling
 -ocal Search Methods
Shifting Bottleneck Heuris

- Often simplified notation: $N=\{1, \ldots, n\}$ denotes the set of operations
- Disjunctive graph representation: $G=(N, A, E)$
- vertices N : operations with two dummy operations 0 and $n+1$ denoting "start" and "finish".
- directed arcs A, conjunctions
- undirected arcs E, disjunctions
- length of (i, j) in A is p_{i}

- A complete selection corresponds to choosing one direction for each arc of E.
- A complete selection that makes D acyclic corresponds to a feasible schedule and is called consistent.
- Complete, consistent selection \Leftrightarrow semi-active schedule (feasible earliest start schedule).
- Length of longest path $0-(n+1)$ in D corresponds to the makespan

Longest path computation
In an acyclic digraph:

- construct topological ordering ($i<j$ for all $i \rightarrow j \in A$)
- recursion:

$$
\begin{aligned}
r_{0} & =0 \\
r_{l} & =\max _{\{j \mid j \rightarrow l \in A\}}\left\{r_{j}+p_{j}\right\} \quad \text { forl }=1, \ldots, n+1
\end{aligned}
$$

Exact methods

- Disjunctive programming

$$
\begin{array}{cll}
\min & C_{m a x} & \\
s . t . & x_{i j}+p_{i j} \leq C_{\max } & \forall O_{i j} \in N \\
& x_{i j}+p_{i j} \leq x_{l j} & \forall\left(O_{i j}, O_{l j}\right) \in A \\
& x_{i j}+p_{i j} \leq x_{i k} \vee x_{i j}+p_{i j} \leq x_{i k} & \forall\left(O_{i j}, O_{i k}\right) \in E \\
& x_{i j} \leq 0 & \forall i=1, \ldots, m j=1, \ldots, N
\end{array}
$$

- Constraint Programming
- Branch and Bound [Carlier and Pinson, 1983]

Typically unable to schedule optimally more than 10 jobs on 10 machines. Best result is around 250 operations

- A block is a maximal sequence of adjacent critical operations processed on the same machine.
- In the Fig. below: $B_{1}=\{4,1,8\}$ and $B_{2}=\{9,3\}$

- Any operation, u, has two immediate predecessors and successors:
- its job predecessor $J P(u)$ and successor $J S(u)$
- its machine predecessor $M P(u)$ and successor $M S(u)$

Branch and Bound [Carlier and Pinson, 1983] [B2, p. 179]
Let Ω contain the first operation of each job; Let $r_{i j}=0$ for all $O_{i j} \in \Omega$
Machine Selection Compute for the current partial schedule

$$
t(\Omega)=\min _{i j \in \Omega}\left\{r_{i j}+p_{i j}\right\}
$$

and let i^{*} denote the machine on which the minimum is achieved
Branching Let Ω^{\prime} denote the set of all operations $O_{i^{*} j}$ on machine i^{*} such that

$$
\left.r_{i^{*} j}<t(\Omega) \quad \text { (i.e. eliminate } r_{i^{*} j} \geq t(\Omega)\right)
$$

For each operation in Ω^{\prime}, consider an (extended)partial schedule with that operation as the next one on machine i^{*}.
For each such (extended) partial schedule, delete the operations from Ω, include its immediate follower in Ω and return to Machine Selection.

Lower Bounding:

- longest path in partially selected disjunctive digraph
- solve $1\left|r_{i j}\right| L_{\max }$ on each machine i like if all other machines could process at the same time (see later shifting bottleneck heuristic) + ongest path.
[Novicki, Smutnicki]
Swap Neighborhood
Reverse one oriented disjunctive arc (i, j) on some critical path.

Theorem
All neighbors are consistent selections.

Note: If the neighborhood is empty then there are no disjunctive arcs, nothing can be improved and the schedule is already optimal

Theorem

The swap neighborhood is connected.

Solution representation
m-tuple $\pi=\left(\pi^{1}, \pi^{2}, \ldots, \pi^{m}\right) \Longleftrightarrow$ oriented digraph $D_{\pi}=\left(N, A, E_{\pi}\right)$
Neighborhoods
Change the orientation of certain disjunctive arcs of the current complete selection

Issues:

1. Can it be decided easily if the new digraph $D_{\pi^{\prime}}$ is acyclic?
2. Can the neighborhood selection S^{\prime} improve the makespan?
3. Is the neighborhood connected?
[Balas, Vazacopoulos, 1998]
For some nodes u, v in the critical path:

- move u right after v (forward insert)
- move v right before u (backward insert)

Theorem: If a critical path containing u and v also contains $J S(v)$ and

$$
L(v, n) \geq L(J S(u), n)
$$

then a forward insert of u after v yields an acyclic complete selection.
Theorem: If a critical path containing u and v also contains $J S(v)$ and

$$
L(0, u)+p_{u} \geq L(0, J P(v))+p_{J P(v)}
$$

then a backward insert of v before v yields an acyclic complete selection.

Theorem: (Elimination criterion) If $C_{\max }\left(S^{\prime}\right)<C_{\max }(S)$ then at least one operation of a machine block B on the critical path has to be processed before the first or after the last operation of B.

- Swap neighborhood can be restricted to first and last operations in the block
- Insert neighborhood can be restricted to moves similar to those saw for the flow shop. [Grabowski, Wodecki]

Modelling Exact Method
 Exact Methods Local Search Methods Shifting Bottleneck Heur

Shifting Bottleneck Heuristic

Modelling
Exact Methods Shifting Bottleneck Heuris

Tabu Search requires a best improvement strategy hence the neighborhood must be search very fast.

Neighbor evaluation:

- exact recomputation of the makespan $O(n)$
- approximate evaluation (rather involved procedure but much faster and effective in practice)

The implementation of Tabu Search follows the one saw for flow shop.

- A complete selection is made by the union of selections S_{k} for each clique E_{k} that corresponds to machines.
- Idea: use a priority rule for ordering the machines. chose each time the bottleneck machine and schedule jobs on that machine.
- Measure bottleneck quality of a machine k by finding optimal schedule to a certain single machine problem.
- Critical machine, if at least one of its arcs is on the critical path.
- $M_{0} \subset M$ set of machines already sequenced.
- $k \in M \backslash M_{0}$
- $P\left(k, M_{0}\right)$ is problem $1\left|r_{j}\right| L_{\max }$ obtained by:
- the selections in M_{0}
- removing any disjunctive arc in $p \in M \backslash M_{0}$
- $v\left(k, M_{0}\right)$ is the optimum of $P\left(k, M_{0}\right)$
- bottleneck $m=\arg \max _{k \in M \backslash M_{0}}\left\{v\left(k, M_{0}\right)\right\}$
- $M_{0}=\emptyset$

Step 1: Identify bottleneck m among $k \in M \backslash M_{0}$ and sequence it optimally. Set $M_{0} \leftarrow M_{0} \cup\{m\}$
Step 2: Reoptimize the sequence of each critical machine $k \in M_{0}$ in turn: set $M_{o}^{\prime}=M_{0}-\{k\}$ and solve $P\left(k, M_{0}^{\prime}\right)$. Stop if $M_{0}=M$ otherwise Step 1 .

- Local Reoptimization Procedure

Construction of $P\left(k, M_{0}\right)$

$1\left|r_{j}\right| L_{\max }$:

- $r_{j}=L(0, j)$
- $d_{j}=L(0, n)-L(j, n)+p_{j}$
$L(i, j)$ length of longest path in G : Computable in $O(n)$
An acyclic complete directed graph is the transitive closure of its unique directed Hamilton path.
Hence, only predecessors and successor are to be checked.
The graph is not constructed explicitly, but by maintaining a list of jobs per machines and a list machines per jobs.
$1\left|r_{j}\right| L_{\text {max }}$ can be solved optimally very efficiently.
Results reported up to 1000 jobs
$1\left|r_{j}\right| L_{\text {max }}$
From Lecture 9
[Maximum lateness with release dates]
- Strongly NP-hard (reduction from 3-partition)
- might have optimal schedule which is not non-delay
- Branch and bound algorithm (valid also for $1 \mid r_{j}$, prec $\mid L_{\max }$)

- Branching:

schedule from the beginning (level $k, n!/(k-1)$! nodes)
elimination criterion: do not consider job j_{k} if:

$$
r_{j}>\min _{l \in J}\left\{\max \left(t, r_{l}\right)+p_{l}\right\} \quad J \text { jobs to schedule, } t \text { current time }
$$

- Lower bounding: relaxation to preemptive case for which EDD is optimal

