Outline

DMP204 SCHEDULING, TIMETABLING AND ROUTING

Lecture 24 Vehicle Routing

Marco Chiarandini

1. Vehicle Routing

2. Integer Programming

Outline

Vehicle Routing Integer Programming

1. Vehicle Routing

2. Integer Programming

Problem Definition

Vehicle Routing Integer Programming 2

4

Vehicle Routing: distribution of goods between depots and customers.

Delivery, collection, transportation.

Examples: solid waste collection, street cleaning, school bus routing, dial-a-ride systems, transportation of handicapped persons, routing of salespeople and maintenance unit.

Vehicle Routing Problems

Input: Vehicles, depots, road network, costs and customers requirements. **Output:** Set of routes such that:

- requirement of customers are fulfilled,
- operational constraints are satisfied and
- a global transportation cost is minimized.

Road Network

- represented by a (directed or undirected) complete graph
- travel costs and travel times on the arcs obtained by shortest paths

Customers

- vertices of the graph
- collection or delivery demands
- time windows for service
- service time
- subset of vehicles that can serve them
- priority (if not obligatory visit)

Objectives

5

7

- minimization of global transportation cost (variable + fixed costs)
- minimization of the number of vehicles
- balancing of the routes
- minimization of penalties for un-served customers

History:

Dantzig, Ramser "The truck dispatching problem", Management Science, 1959

Clark, Wright, "Scheduling of vehicles from a central depot to a number of delivery points". Operation Research. 1964

8

Vehicles

capacity

- types of goods
- subsets of arcs traversable
- fix costs associated to the use of a vehicle
- distance dependent costs
- a-priori partition of customers
- home depot in multi-depot systems
- drivers with union contracts

Operational Constraints

- vehicle capacity
- delivery or collection
- time windows
- working periods of the vehicle drivers
- precedence constraints on the customers

Vehicle Routing Problems

- Capacited (and Distance Constrained) VRP (CVRP and DCVRP)
- VRP with Time Windows (VRPTW)
- VRP with Backhauls (VRPB)
- VRP with Pickup and Delivery (VRPPD)
- Periodic VRP (PVRP)
- Multiple Depot VRP (MDVRP)
- Split Delivery VRP (SDVRP)
- VRP with Satellite Facilities (VRPSF)
- Site Dependent VRP
- Open VRP
- Stochastic VRP (SVRP)
- ...

Capacited Vehicle Routing (CVR)

Input: (common to all VRPs)

- (di)graph (strongly connected, typically complete) G(V,A), where $V=\{0,\ldots,n\}$ is a vertex set:
 - $\bullet \ 0$ is the depot.
 - $V'=V\backslash\{0\}$ is the set of n customers
 - $A = \{(i, j) : i, j \in V\}$ is a set of arcs
- C a matrix of non-negative costs or distances c_{ij} between customers i and j (shortest path or Euclidean distance) $(c_{ik} + c_{kj} \ge c_{ij} \quad \forall i, j \in V)$
- a non-negative vector of costumer demands d_i
- a set of K (identical!) vehicles with capacity Q, $d_i \leq Q$

Vehicle Routing Integer Programming

- A feasible solution is composed of:
 - a partition R_1, \ldots, R_m of V;
 - a permutation π^i of $R_i \bigcup 0$ specifying the order of the customers on route i.

A route R_i is feasible if $\sum_{i=\pi_1}^{\pi_m} d_i \leq Q$.

The cost of a given route (R_i) is given by: $F(R_i) = \sum_{i=\pi_0^i}^{\pi_m^i} c_{i,i+1}$

The cost of the problem solution is: $F_{VRP} = \sum_{i=1}^m F(R_i)$.

Vehicle Routing Integer Programming

Vehicle Routing

Integer Program

Task:

Find collection of K circuits with minimum cost, defined as the sum of the costs of the arcs of the circuits and such that:

- each circuit visits the depot vertex
- each customer vertex is visited by exactly one circuit; and
- $\bullet\,$ the sum of the demands of the vertices visited by a circuit does not exceed the vehicle capacity Q.

Note: lower bound on K

- $\lceil d(V')/Q \rceil$
- number of bins in the associated Bin Packing Problem

9

10

Relation with TSP

- VRP with K = 1, no limits, no (any) depot, customers with no demand → TSP
- VRP is a generalization of the Traveling Salesman Problem (TSP)
 → is NP-Hard.
- VRP with a depot, K vehicles with no limits, customers with no demand → Multiple TSP = one origin and K salesman
- Multiple TSP is transformable in a TSP by adding K identical copies of the origin and making costs between copies infinite.

Variants of CVRP:

- minimize number of vehicles
- different vehicles Q_k , $k = 1, \ldots, K$
- Distance-Constrained VRP: length t_{ij} on arcs and total duration of a route cannot exceed T associated with each vehicle Generally $c_{ij} = t_{ij}$ (Service times s_i can be added to the travel times of the arcs: $t'_{ij} = t_{ij} + s_i/2 + s_j/2$)
- Distance constrained CVRP

13

Vehicle Routing with Time Windows (VRPTW)

Further Input:

- each vertex is also associated with a time interval $[a_i, b_j]$.
- each arc is associated with a travel time t_{ij}
- each vertex is associated with a service time s_i

Task:

Find a collection of K simple circuits with minimum cost, such that:

- each circuit visit the depot vertex
- each customer vertex is visited by exactly one circuit; and
- the sum of the demands of the vertices visited by a circuit does not exceed the vehicle capacity Q.
- for each customer i, the service starts within the time windows $[a_i, b_i]$ (it is allowed to wait until a_i if early arrive)

Time windows induce an orientation of the routes.

14

Vehicle Routing

Integer Programming

Variants

- Minimize number of routes
- Minimize hierarchical objective function
- Makespan VRP with Time Windows (MPTW) minimizing the completion time
- Delivery Man Problem with Time Windows (DMPTW) minimizing the sum of customers waiting times

- Integer Programming
- Construction Heuristics
- Local Search
- Metaheuristics

Basic Models

• Hybridization with Constraint Programming

17

Vehicle Routing Integer Programming

• vehicle flow formulation

integer variables on the edges counting the number of time it is traversed two or three index variables

• commodity flow formulation

additional integer variables representing the flow of commodities along the paths traveled bu the vehicles

• set partitioning formulation

Outline

1. Vehicle Routing

2. Integer Programming

19

18