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Integer Programming

Pre-processing

@ Arc elimination
e ai + tij > bj =» arc (1,j) cannot exist
e di +d; > C = arcs (i,j) and (j, 1) cannot exist

@ Time windows reduction
o [ai,bi] « [max{ao + toi, ai}, min{bni1 —ti ny1,bi}] why?

Integer Programming

Lower Bounds

o Combinatorial relaxation
reduce to network flow problem

o Lagrangian relaxation
not very good because easy to not satisfy the capacity and time
windows constraints

Integer Programming

@ Time windows reduction:

o Iterate over the following rules until no one applies anymore:

Dantzig Wolfe Decomposition

1) Minimal arrival time from predecessors:

a; = max {a;, min {bg, I[lr;ilr)l{a;- + tﬁ}}}.
T

1

2} Minimal arrival time to successors:

a; = max {a;, min {bg, 1(“511%1{aj — t;j}}}.
J

3) Maximal departure time from predecessors:

b = min {b;, max {a;, r(ria?l,i‘:{b3 + tﬂ}}}.

4) Maximal departure time to successors:

b; = min {bi,maX {at, max{b; — tij}} }
(G)]

Integer Programming

The VRPTW has the structure:
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Dantzig Wolfe Decomposition

[llustrated with matrix blocks

Original problem
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Master problem
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[illustration by Simon Spoorendonk, DIKU]
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[illustration by Simon Spoorendonk
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Linking constraint in VRPTW is } | -« Z(i,j)

description of the block D*x* < d¥ is all the
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€5+ (1) Xijk = 1, Vi. The
rest:
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where we omitted the index k because, by the assumption of

homogeneous fleet, all blocks are equal.

Master problem
A Set Partitioning Problem

min Z Cij ocijp?\p
peEP
S OF aphecl
PEP (i,j)€dt (1)

Ap ={0,1}

where P is the set of valid paths and o, =
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{o if (1,7) € p

1 otherwise

Subproblem

Elementary Shortest Path Problem with Resource Constraints (ESPPRC)

@ arcs modified with duals (possible negative costs), NP-hard

@/X/Q/@O
O
o find shortest path without violating resource limits
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Subproblem
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Branch and Bound
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Cuts in the original three index problem formulation (before DWD)

Original problem

Linking constraints e

Restricted master problem

Block
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[illustration by Simon Spoorendonk, DIKU]
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Subproblem

Solution Approach:

@ branch on } | xyjx
choose a candidate not close to 0 or 1
max cCij min{xijk, 1— Xijk)

branch on time windows
split time windows s.t. at least one route becomes infeasible
compute [lT, ul] (earliest latest) for the current fractional flow

fract. routes 1

fract. routes r
if Ly > U; = at least two routes have disjoint feasibility intervals

Integer Programming

@ Solved by dynamic programming. Algorithms maintain labels at
vertices and remove dominated labels. Domination rules are crucial.

@ relaxing and allowing cycles the problem can be sovled in
pseudo-polynomial time.
Negative cycles are however limited by the resource constraints

@ optimal solution has only elementary routes if triangle inequality

Otherwise post-process by cycle elimination procedures

For details see chp. 2 of [B11]
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