DMP204
SCHEDULING,
TIMETABLING AND ROUTING

Lecture 26

Vehicle Routing

Mathematical Programming

1. Integer Programming

Marco Chiarandini

Integer Programming

Outline

1. Integer Programming

VRPTW

Integer Programming

$$
\begin{aligned}
& \min \sum_{k \in K} \sum_{(i, j) \in A} c_{i j} x_{i j k} \\
& \text { s.t. } \sum_{k \in K} \sum_{(i, j) \in \mathcal{\delta}^{+}(i)} x_{i j k}=1 \\
& \begin{array}{lr}
\sum_{(i, j) \in \mathcal{S}^{+}(0)} x_{i j k}=\sum_{(i, j) \in \mathcal{S}^{-}(0)} x_{i j k}=1 & \forall k \in K(3) \\
\sum_{(i, j) \in \mathcal{S}^{-}(i)} x_{j i k}-\sum_{(i, j) \in \mathcal{S}^{+}(i)} x_{i j k}=0 & i \in V, k \in K(4) \\
\sum_{(i, j) \in A} d_{i} x_{i j k} \leq C & \forall k \in K(5) \\
x_{i j k}\left(w_{i k}+t_{i j}\right) \leq w_{j k} & \forall k \in K,(i, j) \in A(6)
\end{array} \\
& \begin{array}{lr}
\sum_{(i, j) \in \mathcal{S}^{+}(0)} x_{i j k}=\sum_{(i, j) \in \mathcal{S}^{-}(0)} x_{i j k}=1 & \forall k \in K(3) \\
\sum_{(i, j) \in \mathcal{S}^{-}(i)} x_{j i k}-\sum_{(i, j) \in \mathcal{\delta}^{+}(i)} x_{i j k}=0 & i \in V, k \in K(4) \\
\sum_{(i, j) \in A} d_{i} x_{i j k} \leq C & \forall k \in K(5) \\
x_{i j k}\left(w_{i k}+t_{i j}\right) \leq w_{j k} & \forall k \in K,(i, j) \in A(6)
\end{array} \\
& \begin{array}{lr}
\sum_{(i, j) \in \delta^{+}(0)} x_{i j k}=\sum_{(i, j) \in \mathcal{S}^{-}(0)} x_{i j k}=1 & \forall k \in K(3) \\
\sum_{(i, j) \in \mathcal{S}^{-}(i)} x_{j i k}-\sum_{(i, j) \in \mathcal{\delta}^{+}(i)} x_{i j k}=0 & i \in V, k \in K(4) \\
\sum_{(i, j) \in A} d_{i} x_{i j k} \leq C & \forall k \in K(5) \\
x_{i j k}\left(w_{i k}+t_{i j}\right) \leq w_{j k} & \forall k \in K,(i, j) \in A(6)
\end{array} \\
& a_{i} \leq w_{i k} \leq b_{i} \\
& x_{i j k} \in\{0,1\} \\
& \forall k \in K, i \in V(7) \\
& \text { (8) }
\end{aligned}
$$

- Time windows reduction:

- Iterate over the following rules until no one applies anymore:

1) Minimal arrival time from predecessors:

$$
a_{l}=\max \left\{a_{l}, \min \left\{b_{l}, \min _{(i, l)}\left\{a_{i}+t_{i l}\right\}\right\}\right\} .
$$

2) Minimal arrival time to successors:

$$
a_{l}=\max \left\{a_{l}, \min \left\{b_{l}, \min _{(l, j)}\left\{a_{j}-t_{l j}\right\}\right\}\right\} .
$$

3) Maximal departure time from predecessors:

$$
b_{l}=\min \left\{b_{l}, \max \left\{a_{l}, \max _{(i, l)}\left\{b_{i}+t_{i l}\right\}\right\}\right\} .
$$

4) Maximal departure time to successors:

$$
b_{l}=\min \left\{b_{l}, \max \left\{a_{l}, \max _{(l, j)}\left\{b_{j}-t_{l j}\right\}\right\}\right\} .
$$

Lower Bounds

- Combinatorial relaxation
reduce to network flow problem
- Lagrangian relaxation
not very good because easy to not satisfy the capacity and time windows constraints

Dantzig Wolfe Decomposition "nesese Progemming

The VRPTW has the structure:

$$
\begin{array}{lll}
\min & c^{k} x^{k} & \\
& \sum_{k \in K} A^{k} x^{k} \leq b & \\
& D^{k} x^{k} \leq d^{k} & \forall k \in K \\
& x^{k} \in \mathbb{Z} & \forall k \in K
\end{array}
$$

Dantzig Wolfe Decomposition

Illustrated with matrix blocks

[illustration by Simon Spoorendonk, DIKU]

Linking constraint in VRPTW is $\sum_{k \in K} \sum_{(i, j) \in \delta^{+}(\mathfrak{i})} x_{i j k}=1, \quad \forall i$. The description of the block $D^{k} \chi^{k} \leq d^{k}$ is all the rest:

$$
\begin{align*}
& \sum_{(i, j) \in A} d_{i} x_{i j} \leq C \tag{9}\\
& \sum_{j \in V} x_{0 j}=\sum_{i \in V} x_{i, n+1}=1 \tag{10}\\
& \sum_{i \in V} x_{i h}-\sum_{j \in V} x_{h j}=0 \tag{11}\\
& w_{i}+t_{i j}-M_{i j}\left(1-x_{i j}\right) \leq w_{j} \\
& a_{i} \leq w_{i} \leq b_{i} \\
& x_{i j} \in\{0,1\} \tag{14}
\end{align*}
$$

$$
\forall(i, j) \in A(12)
$$

where we omitted the index k because, by the assumption of homogeneous fleet, all blocks are equal.

Dantzig Wolfe Decomposition

Original problem

[illustration by Simon Spoorendonk, DIKU]

Master problem

A Set Partitioning Problem
$\min \sum_{p \in \mathcal{P}} c_{i j} \alpha_{i j p} \lambda_{p}$

$$
\begin{aligned}
& \sum_{\mathfrak{p} \in \mathcal{P}} \sum_{(i, j) \in \mathcal{S}^{+}(i)} \alpha_{i j p} \lambda_{p}=1 \\
& \lambda_{p}=\{0,1\}
\end{aligned}
$$

$\forall p \in \mathcal{P}$ (17)
where \mathcal{P} is the set of valid paths and $\alpha_{i j p}= \begin{cases}0 & \text { if }(i, j) \notin p \\ 1 & \text { otherwise }\end{cases}$
Subproblem
Elementary Shortest Path Problem with Resource Constraints (ESPPRC)

- arcs modified with duals (possible negative costs), NP-hard
- find shortest path without violating resource limits

$$
\forall i \in \mathrm{~V}(13)
$$

$$
\begin{array}{ll}
\text { min } & \sum_{(i, j) \in A} \hat{c}_{i j} x_{i j} \\
\text { s.t. } & \sum_{(i, j) \in A} d_{i} x_{i j} \leq C \\
& \sum_{j \in V} x_{0 j}=\sum_{i \in V} x_{i, n+1}=1 \\
& \sum_{i \in V} x_{i h}-\sum_{j \in V} x_{h j}=0 \\
& w_{i}+t_{i j}-M_{i j}\left(1-x_{i j}\right) \leq w_{j} \\
& a_{i} \leq w_{i} \leq b_{i} \\
& x_{i j} \in\{0,1\} \tag{24}
\end{array} \quad \forall h \in V(21)
$$

Subproblem

Solution Approach:

- Solved by dynamic programming. Algorithms maintain labels at vertices and remove dominated labels. Domination rules are crucial.
- relaxing and allowing cycles the problem can be sovled in pseudo-polynomial time.
Negative cycles are however limited by the resource constraints
- optimal solution has only elementary routes if triangle inequality holds.
Otherwise post-process by cycle elimination procedures
For details see chp. 2 of [B11]

Branch and Bound

Cuts in the original three index problem formulation (before DWD)

Branching

- branch on $\sum_{k} x_{i j k}$
choose a candidate not close to 0 or 1
$\max c_{i j} \min \left\{x_{i j k}, 1-x_{i j k}\right\}$
- branch on time windows
split time windows s.t. at least one route becomes infeasible compute $\left[l_{i}^{r}, u_{i}^{r}\right]$ (earliest latest) for the current fractional flow
$L^{i}=\underset{\text { fract. routes } r}{\max }\left\{L_{i}^{r}\right\} \quad \forall i \in V$
$\mathrm{U}^{i}=\max _{\text {fract }}\left\{u_{i}^{r}\right\} \quad \forall i \in V$
if $L_{i}>\mathrm{U}_{\mathrm{i}} \Rightarrow$ at least two routes have disjoint feasibility intervals

