DMP204

SCHEDULING,
TIMETABLING AND ROUTING

Lecture 27
Vehicle Routing
Heuristics

Marco Chiarandini

Construction Heuristics

Improvement Heuristics Constr. Heur. for CVRP
. Metaheuristics Constr. Heur. for VRPTW
Outline v

1. Construction Heuristics

2. Improvement Heuristics

3. Metaheuristics

4. Constraint Programming for VRP

Construction Heuristics
Improvement Heuristics
Metaheuristics

Outline o for vie

1. Construction Heuristics
Construction Heuristics for CVRP
Construction Heuristics for VRPTW

2. Improvement Heuristics
3. Metaheuristics

4. Constraint Programming for VRP

Construction Heuristics
Improvement Heuristics Constr. Heur. for CVRP
euristics Constr. Heur. for VRPTW

Construction Heuristics for CVRPV#

@ TSP based heuristics

Savings heuristics (Clarke and Wright)

Insertion heuristics

Cluster-first route-second

@ Sweep algorithm

o Generalized assignment
e Location based heuristic
o Petal algorithm

@ Route-first cluster-second

Cluster-first route-second seems to perform better
(Note: Distinction Construction Heuristic / Iterative Improvement
is often blurred)

Construction Heuristics

Construction heuristics for TSP

They can be used for route-first cluster-second or for growing multiple

tours subject to capacity constraint.

@ Heuristics that Grow Fragments
o Nearest neighborhood heuristics
e Double-Ended Nearest Neighbor heuristic
o Multiple Fragment heuristic (aka, greedy heuristic)
@ Heuristics that Grow Tours
o Nearest Addition
o Farthest Addition
e Random Addition

o Clarke-Wright savings heuristic

o Nearest Insertion
o Farthest Insertion
e Random Insertion

@ Heuristics based on Trees

e Minimum spanning tree heuristic
o Christofides’ heuristics

Constr. Heur. for CVRP

(But recall! Concorde: http://www.tsp.gatech.edu/)

Construction Heuristics

Constr. Heur. for CVRP

[Bentley, 1992]

'
~, % i i
e
ST
3 *3‘; e o B

’I\ ‘.o;"._:_' Ve g

Figwe 5. The Multiple Fragment heuristic.

Add the cheapest edge provided it does not create a cycle.

Construction Heuristics

Constr. Heur. for CVRP

[Bentley, 1992]

E‘:\ . -. :.. . . . :.. . .
. . . - bl .. - i l.
RS L v
L1 ‘. 9 o op o
. [[.o 3 [e 3
3’ '. .) o. . : c. .
* : _‘. Y e o * .L ' * o* *
Agure 1. The Nearest Neighbor heuristic.

NN (Flood, 1956)

1. Randomly select a starting node

2. Add to the last node the closest node until no more node is available

3. Connect the last node with the first node
Running time O(N?)

Construction Heuristics

Constr. Heur. for CVRP

[Bentley, 1992]

. '.. ot
-..._ N
%
L LI] *
(Y Tad !
.o
. e
e T * o 4
e v e e 0 .
oo “eo . se "¢ N
« % S o 4 [%) Y o o *

Figure 8. The Nearest Addition heuristic.

NA

1. Select a node and its closest node and build a tour of two nodes

2. Insert in the tour the closest node v until no more node is available

Running time O(N3)

Construction Heuristics Construction Heuristics
Constr. Heur. for CVRP Constr. Heur. for CVRP

[Bentley, 1992]

[Bentley, 1992]

Y e e

Figure 11. The Farthest Addition heuristic.

FA
1. Select a node and its farthest and build a tour of two nodes Hgure 14. The Random Addition heuristic.

2. Insert in the tour the farthest node v until no more node is available

FA is more effective than NA because the first few farthest points sketch
a broad outline of the tour that is refined after.

Running time O(N?3)
10 11

Construction Heuristics Construction Heuristics
Constr. Heur. for CVRP Constr. Heur. for CVRP

[Bentley, 1992] [Bentley, 1992]

] >] / j._:\'
, T

SR
| N

L9

p Agurg 19. Christofides’ heuristic.

1. Find the minimum spanning tree T. O(N?)

ﬁg;-n 18. The Minimum Spanm'r:g Tree heuristic. 2. Find nf)des ir? T with odd degree and fin.d .the cheapest perfect
matching M in the complete graph consisting of these nodes only.
Let G be the multigraph all nodes and edges in T and M. O(N?3)

3. Find an Eulerian walk (each node appears at least once and each
edge exactly once) on G and an embedded tour. O(N)

Running time O(N?) A = MST(I)/OPT(I) < 2 Running time O(N?3) A = CH(I)/OPT(I) <3/2

12

1. Find a minimum spanning tree O(N?)

2. Append the nodes in the tour in a depth-first, inorder traversal

13

Construction Heuristics

Construction Heuristics
Improvement Heuristics Constr. Heur. for CVRP

Improvement Heuristics Constr. Heur. for CVRP
Metaheuristics Metaheuristics
CP for VRP CP for VRP

Construction Heuristics Specific for VRP Construction Heuristics Specific for VRP

IQ
o e

,._*4

3 i 4
e f© NOs astmiven fiof she
W LY Wt

| P4 AR E

%€

| 70

Clarke-Wright Saving Heuristic (1964) Clarke-Wright Saving Heuristic (1964)
1. Start with an initial allocation of one vehicle to each customer (0 is 1. Start with an initial allocation of one vehicle to each customer (0 is
the depot for VRP or any chosen city for TSP) the depot for VRP or any chosen city for TSP)
Sequential: Parallel:
2. consider in turn route (0,1,...,j,0) determine sy; and sj; 2. Calculate saving sij = coi + Coj — cij and order the saving in non-
3. merge with (k,0) or (0,1) increasing order
3. scan syj

merge routes if i) 1 and j are not in the same tour ii) neither 1 and j
are interior to an existing route iii) vehicle and time capacity are not

14 exceeded 1
Construction Heuristics Construction Heuristics
Improvement Heuristics Constr. Heur. for CVRP Improvement Heuristics Constr. Heur. for CVRP
Metaheuristics Metaheuristics
CP for VRP

CP for VRP

Matching Based Saving Heuristic
1. Start with an initial allocation of one vehicle to each customer (0 is
the depot for VRP or any chosen city for TSP)

2. Compute spq = t(Sp) +t(Sq) — t(Sp USqy) where t(-) is the TSP
solution

3. Solve a max weighted matching on the Sy with weights s, on
edges. A connection between a route p and g exists only if the
merging is feasible.

(Fiala 1978)

15 16

Construction Heuristics

Construction Heuristics
Improvement Heuristics Constr. Heur. for CVRP Improvement Heuristics Constr. Heur. for CVRP
Metaheuristics Constr. Heur. for VRPTW Metaheuristics Constr. Heur. for VRPTW
CP for VRP CP for VRP

Insertion Heuristic
(i, k,j) = cix + cxi — Acyj

B(lvk)” = HUCox — (X(l,k,])
1. construct emerging route (0, k,0)

2. compute for all k unrouted the feasible insertion cost:

o* (i, k, jx) = min{a(i,, k, 1 .
(her ¥,) P teip p1)) Cluster-first route-second: Sweep algorithm [Wren & Holliday (1971)]

if no feasible insertion go to 1 otherwise choose k* such that 1. Choose i* and set 8(i*) = 0 for the rotating ray
2. Compute and rank the polar coordinates (0, p) of each point

3. Assign customers to vehicles until capacity not exceeded. If needed
start a new route. Repeat until all customers scheduled.

B*(llta k*)]]t) = mkaX{B(ik) k’ajk}

17 18

Construction Heuristics

Construction Heuristics
Improvement Heuristics Constr. Heur. for CVRP Improvement Heuristics Constr. Heur. for CVRP
Metaheuristics Constr. Heur. for VRPTW Metaheuristics Constr. Heur. for VRPTW
CP for VRP CP for VRP

Cluster-first route-second: Generalized-assignment-based algorithm

% [Fisher & Jaikumur (1981)]

1. Choose a jx at random for each route k

2. For each point compute

; dix = min{co i + ¢ij, + Cj,,0,C05, + Cjy,i + Ci,0} — (Co,j, + €5y 0)

3. Solve GAP with dii, Q and g3

19 20

2. Assign customers to closest seed

Route-first cluster-second [Beasley, 1983]

1. Construct a TSP tour over all customers

(not very competitive)

Construction Heuristics

Improvement Heuristics

Metaheuristics
CP for VRP

(better performance than insertion and saving heuristics)

Construction Heuristics
Improvement Heuristics
Metaheuristics

CP for VRP

2. Choose an arbitrary orientation of the TSP;
partition the tour according to capacity constraint;
repeat for several orientations and select the best
Alternatively, solve a shortest path in an acyclic digraph with cots on
arcs: dij = Coi + coj + lij where 1y is the cost of traveling from 1 to
j in the TSP tour.

Constr. Heur. for CVRP

Cluster-first route-second: Location based heuristic [Bramel & Simchi-Levi

1. Determine seeds by solving a capacited location problem (k-median)

21

Constr. Heur. for CVRP

23

Cluster-first route-second: Petal Algorithm

1. Construct a subset of feasible routes

2. Solve a set partitioning problem

Exercise

Construction Heuristics
Improvement Heuristics
Metaheuristics

CP for VRP

Construction Heuristics
Improvement Heuristics
Metaheuristics

CP for VRP

Which heuristics can be used to minimize K
and which ones need to have K fixed a priori?

Constr. Heur. for CVRP

22

Constr. Heur. for CVRP

24

Construction Heuristics Construction Heuristics

Improvement Heuristics Constr. Heur Ffor CVRP Improh\lcment Heuristics Constr. Heur Ffor CVRP
0 . . rjstics Constr. Heur. for VRPTW Metaheuristics Constr. Heur. for VRPTW
Construction Heuristics for VRFF P for VP
Extensions of those for CVRP [Solomon (1987)] Time-Oriented Nearest-Neighbor

@ Add the unrouted node “closest” to the depot or the last node added

@ Savings heuristics (Clarke and Wright) without violating feasibility
@ Time-oriented nearest neighbors @ Metric for “closest’
@ Insertion heuristics dij geographical distance

cij = 81 di; + 52Tij + 53Vij Ti; time distance

@ Time-oriented sweep heuristic Vij urgency to serve j

26 27
Construction Heuristics Construction Heuristics
Improvement Heuristics Constr. Heur. for CVRP Improvement Heuristics Constr. Heur. for CVRP
Metaheuristics Constr. Heur. for VRPTW Metaheuristics Constr. Heur. for VRPTW
CP for VRP CP for VRP
Insertion Heuristics @ Let's assume waiting is allowed and s; indicates service times

Step 1: Compute for each unrouted costumer u the best feasible

position in the route: e b; = max{ei, bj + sj + tji} begin of service
cr (i), u,j(u)) = p;}%.}?)m{ﬁ (tp—1,u,1p)) e insertion of w: (ip,i1,...,1p, W, ip41,...,1im)
(c1 is a composition of increased time and increase route o PFi,,, =bl'" —by, , >0 push forward
. . P
length due to the insertion of)
(use push forward rule to check feasibility efficiently) e PFy, , =max{0,PF, —wy, 1, p<r<m-—1
Step 2: Compute for each unrouted customer u which can be
Theorem

feasibly inserted:
The insertion is feasible if and only if:
c2(i(u™),u”,j(u")) = max{Adou — c1(i(u), u,j(u))}

" by, <l, and PF, +b; <l Vp<r<m

(max the benefit of servicing a node on a partial route

. . < < .
rather than on a direct route) Check vertices k, u < k < m sequentially.

@ if by + PF > 1 then stop: the insertion is infeasible

) @ if PFi = 0 then stop: the insertion is feasible
28 29

Step 3: Insert the customer u* from Step 2

Construction Heuristics
Improvement Heuristics
Metaheuristics

CP for VRP

Outline

1. Construction Heuristics

2. Improvement Heuristics
3. Metaheuristics

4. Constraint Programming for VRP

30

Construction Heuristics
Improvement Heuristics
Metaheuristics

CP for VRP

Intra-route Neighborhoods

2-opt
{Li+ 1, +1 — &+ 1,5+ 1)

(OO0

O(n?) possible exchanges
One path is reversed

32

Construction Heuristics
Improvement Heuristics

Local Search for CVRP and VRP-TW

@ Neighborhoods structures:

o Intra-route: 2-opt, 3-opt, Lin-Kernighan (not very well suited)
2H-opt, Or-opt

e Inter-routes: A-interchange, relocate, exchange, cross, 2-opt™,
ejection chains, GENI

@ Solution representation and data structures

e They depend on the neighborhood.

e It can be advantageous to change them from one stage to another of
the heuristic

v

31

Construction Heuristics
Improvement Heuristics
Metaheuristics

CP for VRP

Intra-route Neighborhoods

3-opt
i+, + 1k k+1}— ...

RIS

O(n?) possible exchanges
Paths can be reversed

33

Construction Heuristics
Improvement Heuristics
Metaheuristics

CP for VRP

Intra-route Neighborhoods

Or-opt [Or (1976)]
Fﬁ - L+ 15, + 1 — {1 = 1,2+ 15, L iz, i + 1}

D CO

sequences of one, two, three consecutive vertices relocated
O(n?) possible exchanges — No paths reversed

34
Construction Heuristics
Metaconorice et
Inter-route Neighborhoods <P for VRP
[Savelsbergh, ORSA (1992)]
(=) () () (=)
O, 0
) 0, D 0
Figure 5. The relocate neighborhood.

36

Construction Heuristics
Improvement Heuristics
Metaheuristics

CP for VRP

Inter-route Neighborhoods

[Savelsbergh, ORSA (1992)]

(=) ()
GO (D
) @ €)

Figure 6. The exchange neighborhood.

(=) ()

Construction Heuristics
Improvement Heuristics
Metaheuristics

CP for VRP

Inter-route Neighborhoods

[Savelsbergh, ORSA (1992)]

e ()) ()

Figure 7. The cross neighborhood.

37

35

GENI: generalized insertion [Gendreau, Hertz, Laporte, Oper. Res. (1992)]

@ select the insertion restricted to the neighborhood of the vertex to
be added (not necessarily between consecutive vertices)

@ perform the best 3- or 4-opt restricted to reconnecting arc links that
are close to one another.

Figure 1. Type I insertion of vertex v
between v, and v,.

Y

Figure 2. Type Il insertion of vertex v
between v, and v,.

Construction Heuristics
Improvement Heuristics
Metaheuristics

CP for VRP

Search Strategy

@ Lexicographic search, for 2-exchange:
e i=1,2,...,1—2 (outer loop)
e j=1i4+2,1+3,...,n (inner loop)

{1,2}{3,4}->{1,3}{2,4} {1,2}{4,5}->{1,4}{2,5}

Previous path is expanded by the edge {j — 1, j}

40

Construction Heuristics

.- . . Improvement Heuristics
Efficient Implementation peteheuitic
Intra-route

Time windows: Feasibility check

In TSP verifying k-optimality requires O(1n*) time
In TSPTW feasibility has to be tested then O(n**1) time

(Savelsbergh 1985) shows how to verify constraints in constant time
Search strategy + Global variables

L
O(nX*) for k-optimality in TSPTW

39

Construction Heuristics
Improvement Heuristics
Metaheuristics

CP for VRP

Global variables (auxiliary data structure)

@ Maintain auxiliary data such that it is possible to:

e handle single move in constant time

e update their values in constant time

Ex.: in case of time windows:

@ total travel time of a path
o earliest departure time of a path

o latest arrival time of a path

41

Construction Heuristics
Improvement Heuristics
Metaheuristics

Outline < v

1. Construction Heuristics

2. Improvement Heuristics

3. Metaheuristics

4. Constraint Programming for VRP

Construction Heuristics
Improvement Heuristics
Metaheuristics

CP for VRP

Basic Variable Neighborhood Descent (BVND)

Procedure VND
input : Ny, k=1,2,...,Kmax, and an initial solution s
output: a local optimum s for My, k=1,2,... , Kmax
k1
repeat
s’ « FindBestNeighbor(s,Ny)
if g(s’) < g(s) then
s« s’
(k1)
else
L ke—k+1

until K = Kmax ;

42

44

Construction Heuristics
Improvement Heuristics
Metaheuristics

Metaheuristics Cr o Ve

Many and fancy examples, but first thing to try:

@ Variable Neighborhood Search + Iterated greedy

Construction Heuristics
Improvement Heuristics
Metaheuristics

CP for VRP

Variable Neighborhood Descent (VND)

Procedure VND
input : Vi, k=1,2,... Kmax, and an initial solution s
output: a local optimum s for Ny, k=1,2,... Kmax
k1
repeat
s’ « lIterativelmprovement(s,\y)
if g(s’) < g(s) then
s« s’
(k1)
else
L ke—k+1

until K = Knax ;

43

45

Construction Heuristics
Improvement Heuristics
Metaheuristics
CP for VRP

Final solution is locally optimal w.r.t. all neighborhoods

First improvement may be applied instead of best improvement

Typically, order neighborhoods from smallest to largest

If iterative improvement algorithms Iy, k =1,... Kmax

are available as black-box procedures:

order black-boxes

]

o apply them in the given order

o possibly iterate starting from the first one

e order chosen by: solution quality and speed

Table 5.6. The effect of 3-opt on the Clarke and Wright algorithm.
. Sequential Parallel
No +3-opt 4 3-opt No + 3-opt <+ 3-opt
Problem 3-opt! P2 BP K% 3.0pf FY® BI' K*
E051-05e 62556 62420 62420 5 584.64 578.56 578.56 6
E076-10e 100525 99194 99194 10 90026 888.04 888.04 10
E101-08e 08248 98093 980.93 8 886.83 878.70 878.70 8
E101-10¢ 939.99 93078 92864 10 833.51 82442 82442 10
BE121-07c -1291.33 123290 1237.26 7 107107 104943 1048.53 7
E151-12c 1299.39 127034 127034 12 113343 112824 112824 12
. E200-17c 170800 1667.65 166974 16 139574 1386.84 1386.84 17
DO51-06¢ 670:01 663.59 663.59 6 61840 61666 616.66 6
Do76-11c 98942 988.74 98874 12 97546 97479 97479 12
D101-09¢c 105470 1046.69 104669 10 97394 968.73 968.73 9
D101-11c 95253 943.79 94379 11 87575 868.50 868.50 11
D121-1lc 1646.60 163839 1637.07 11 159672 158793 1587.93 11
D151-14c 1383.87 137415 137415 15 1287.64 1284.63 1284.63 15
D200-18c 1671.29 165258 165258 20 1538.66 152324 1521.94 19
!Sequential savings.

2Sequential savings + 3-opt and first improvement.
3Sequential savings + 3-opt and best improvement.
" Sequential savings: number of vehicles in solution,

SParallel savings.

SParallel savings + 3-opt and first improvement.
7Parallel savings + 3-opt and best improvement.
¥ Parallel savings: number of vehicles in solution.

What is best?

46

General recommendation: use a combination of 2-opt* + or-opt [Potvin,
Rousseau, (1995)]

However,

@ Designing a local search algorithm is an engineering process in which
learnings from other courses in CS might become important.

@ It is important to make such algorithms as much efficient as possible.

@ Many choices are to be taken (search strategy, order, auxiliary data
structures, etc.) and they may interact with instance features. Often
a trade-off between examination cost and solution quality must be
decided.

@ The assessment is conducted through:

o analytical analysis (computational complexity)
e experimental analysis

Construction Heuristics
Improvement Heuristics
Metaheuristics

Iterated Greedy CF or VRP

Key idea: use the VRP cosntruction heuristics

@ alternation of Construction and Deconstruction phases

@ an acceptance criterion decides whether the search continues from
the new or from the old solution.

Iterated Greedy (1G):
determine initial candidate solution s

while termination criterion is not satisfied do
TI=75
greedily destruct part of s
greedily reconstruct the missing part of s

apply subsidiary iterative improvement procedure (eg, VNS)

based on acceptance criterion,
keep s or revert to s ;=1

Construction Heuristics
Improvement Heuristics
Metaheuristics

CP for VRP

In the literature, the overall heuristic idea received different names:

@ Removal and reinsertion
@ Ruin and repair
o lterated greedy

@ Fix and re-optimize

50

Construction Heuristics
Improvement Heuristics
Metaheuristics

CP for VRP

Dispersion sub-problem:
choose g customers to remove with minimal 1y;

Heuristic stochastic procedure:

@ choose a pair randomly;

@ select an already removed i and find j that minimizes ry;

52

Remove

Remove some related customers

(their re-insertion is likely to change something)

Relatedness measure ri;

@ geographical
Tij = 6

@ temporal and load based

d/(u,\)) - |T i *T‘pj‘ + |Td1 7Td]| + “"L 71’]‘

@ cluster removal

@ history based: neighborhood graph removal

(@) +d'1,j+n) +d'i+nj)+d(i+n,j+n))

Construction Heuristics
Improvement Heuristics
Metaheuristics

CP for VRP

Insertion procedures:

@ Greedy (cheapest insertion)

o Max regret:

51

Construction Heuristics
Improvement Heuristics
Metaheuristics

CP for VRP

Af{ due to insert 1 into its best position in its q*™ best route

i = arg max(Af? — Af])

e Constraint Programming (max 20 costumers)

53

Advantages of removal-reinsert procedure with many side constraints:

@ the search space in local search may become disconnected

Construction Heuristics
Improvement Heuristics
Metaheuristics

CP for VRP

@ it is easier to implement feasibility checks

@ no need of computing delta functions in the objective function

Outline

1. Construction Heuristics

2. Improvement Heuristics

3. Metaheuristics

4. Constraint Programming for VRP

Construction Heuristics
Improvement Heuristics
Metaheuristics

CP for VRP

Construction Heuristics
Improvement Heuristics
Metaheuristics

CP for VRP

Further ideas

e Adaptive removal: start by removing 1 pair and increase after a
certain number of iterations

@ use of roulette wheel to decide which removal and reinsertion
heuristic to use

T e
for each heuristic i
T

PiZZ

@ SA as accepting criterion after each reconstruction

54 55

Construction Heuristics
Improvement Heuristics
Metaheuristics

Performance of exact methods <& vrr

Current limits of exact methods [Ropke, Pisinger (2007)]:

CVRP: up to 135 customers by branch and cut and price

VRPTW: 50 customers (but 1000 customers can be solved if the
instance has some structure)

CP can handle easily side constraints but hardly solve VRPs with more
than 30 customers.

56 57

Large Neighborhood Search

Other approach with CP:

Construction Heuristics
Improvement Heuristics
Metaheuristics

CP for VRP

[Shaw, 1998]

Use an over all local search scheme
Moves change a large portion of the solution
CP system is used in the exploration of such moves.

CP used to check the validity of moves and determine the values of
constrained variables

As a part of checking, constraint propagation takes place. Later,
iterative improvement can take advantage of the reduced domains to
speed up search by performing fast legality checks.

Construction Heuristics
Improvement Heuristics
Metaheuristics

CP for VRP

Insertion

by CP:

constraint propagation rules: time windows, load and bound
considerations

search heuristic most constrained variable + least constrained valued
(for each v find cheapest insertion and choose v with largest such

cost)

Complete search: ok for 15 visits (25 for VRPTW) but with heavy
tails

Limited discrepancy search

58

60

Construction Heuristics
Improvement Heuristics
Metaheuristics

CP for VRP

Solution representation:

e Handled by local search:
Next pointers: A variable n; for every customer 1 representing the
next visit performed by the same vehicle

n; € NUSUE

where S = J Sk and E = | Ex are additional visits for each vehicle
k marking the start and the end of the route for vehicle k

@ Handled by the CP system: time and capacity variables.

Construction Heuristics
Improvement Heuristics
Metaheuristics

CP for VRP

[Shaw, 1998]

Reinsert(RoutingPlan plan, VisitSet visits, integer discrep)
if |visits| = 0 then
if Cost(plan) < Cost(bestplan) then
bestplan .= plan
end if
else
Visit v := Chooselarthest Visit{visits)
integer i := 0
for p in rankedPositions(v) and i < discrep do
Store(plan) // Preserve plan on stack
InsertVisit(plan, v, p)
Reinsert(plan, visits - v, discrep - i)
Restore(plan) // Restore plan from stack
i=i41
end for
end if
end Reinsert

59

61

