DMP204
SCHEDULING,

TIMETABLING AND ROUTING

Lecture 3
 RCPSP and Mixed Integer Programming

Marco Chiarandini

1. Scheduling CPM/PERT
Resource Constrained Project Scheduling Model
2. Mathematical Programming Introduction Solution Algorithms

Outline

Scheduling Math Progra

 SchedulingMath Programming

CPM/PERT
RCPSP

1. Scheduling

CPM/PERT
Resource Constrained Project Scheduling Model
2. Mathematical Programming

Introduction
Solution Algorithms

Resource Constrained Project Scheduling Model
2. Mathematical Programming

Introduction
Solution Algorithms

Milwaukee General Hospital Project

Activity	Description	Immediate Predecessor	Duration
A	Build internal components	-	2
B	Modify yoof and floor	-	3
C	Construct collection stack	A	2
D	Pour concrete and install frame	A,B	4
E	Build high-temperature burner	C	4
F	Install pollution control system	C	3
G	Install air pollution device	D,E	5
H	Inspect and test	F,G	2

Scheduling
Math Programming
CPM/PERT
RCPSP

Project Planning

5
Project Planning Sthent

1. Scheduling

CPM/PERT
Resource Constrained Project Scheduling Model
2. Mathematical Programming

Introduction
Solution Algorithms

RCPSP

CPM/PERT
RCPSP

Resource Constrained Project Scheduling Model

Given:

- activities (jobs) $j=1, \ldots, n$
- renewable resources $i=1, \ldots, m$
- amount of resources available R_{i}
- processing times p_{j}
- amount of resource used $r_{i j}$
- precedence constraints $j \rightarrow k$

Further generalizations

- Time dependent resource profile $R_{i}(t)$ given by $\left(t_{i}^{\mu}, R_{i}^{\mu}\right)$ where $0=t_{i}^{1}<t_{i}^{2}<\ldots<t_{i}^{m_{i}}=T$ Disjunctive resource, if $R_{k}(t)=\{0,1\}$; cumulative resource, otherwise

RCPSP

Resource Constrained Project Scheduling Model

Given:

- activities (jobs) $j=1, \ldots, n$
- renewable resources $i=1, \ldots, m$
- amount of resources available R_{i}
- processing times p_{j}
- amount of resource used $r_{i j}$
- precedence constraints $j \rightarrow k$

RCPSP

Resource Constrained Project Scheduling Model

Given:

- activities (jobs) $j=1, \ldots, n$
- renewable resources $i=1, \ldots, m$
- amount of resources available R_{i}
- processing times p_{j}
- amount of resource used $r_{i j}$
- precedence constraints $j \rightarrow k$

Further generalizations

- Time dependent resource profile $R_{i}(t)$ given by $\left(t_{i}^{\mu}, R_{i}^{\mu}\right)$ where $0=t_{i}^{1}<t_{i}^{2}<\ldots<t_{i}^{m_{i}}=T$
Disjunctive resource, if $R_{k}(t)=\{0,1\}$; cumulative resource, otherwise
- Multiple modes for an activity j processing time and use of resource depends on its mode m : $p_{j m}$, $r_{j k m}$

Assignment 1

- A contractor has to complete n activities.
- The duration of activity j is p_{j}
- each activity requires a crew of size W_{j}.
- The activities are not subject to precedence constraints.
- The contractor has W workers at his disposal
- his objective is to complete all n activities in minimum time.

Assignment 2

- Exams in a college may have different duration.
- The exams have to be held in a gym with W seats.
- The enrollment in course j is W_{j} and
- all W_{j} students have to take the exam at the same time.
- The goal is to develop a timetable that schedules all n exams in minimum time.
- Consider both the cases in which each student has to attend a single exam as well as the situation in which a student can attend more than one exam

Assignment 3

- In a basic high-school timetabling problem we are given m classes c_{1}, \ldots, c_{m},
- h teachers a_{1}, \ldots, a_{h} and
- T teaching periods t_{1}, \ldots, t_{T}.
- Furthermore, we have lectures $i=l_{1}, \ldots, l_{n}$.
- Associated with each lecture is a unique teacher and a unique class.
- A teacher a_{j} may be available only in certain teaching periods.
- The corresponding timetabling problem is to assign the lectures to the teaching periods such that
- each class has at most one lecture in any time period
- each teacher has at most one lecture in any time period,
- each teacher has only to teach in time periods where he is available.

$$
\begin{array}{ll}
\text { Scheduling } & \text { CPM/PERT } \\
\text { Math Programming } & \text { RCPSP }
\end{array}
$$

Assignment 4

- A set of jobs J_{1}, \ldots, J_{g} are to be processed by auditors A_{1}, \ldots, A_{m}.
- Job J_{l} consists of n_{l} tasks $(l=1, \ldots, g)$.
- There are precedence constraints $i_{1} \rightarrow i_{2}$ between tasks i_{1}, i_{2} of the same job.
- Each job J_{l} has a release time r_{l}, a due date d_{l} and a weight w_{l}.
- Each task must be processed by exactly one auditor. If task i is processed by auditor A_{k}, then its processing time is $p_{i k}$.
- Auditor A_{k} is available during disjoint time intervals $\left[s_{k}^{\nu}, l_{k}^{\nu}\right](\nu=1, \ldots, m)$ with $l_{k}^{\nu}<s_{k}^{\nu}$ for $\nu=1, \ldots, m_{k}-1$
- Furthermore, the total working time of A_{k} is bounded from below by H_{k}^{-}and from above by H_{k}^{+}with $H_{k}^{-} \leq H_{k}^{+}(k=1, \ldots, m)$.
We have to find an assignment $\alpha(i)$ for each task $i=1, \ldots, n:=\sum_{l=1}^{g} n_{l}$ to an auditor $A_{\alpha(i)}$ such that
- each task is processed without preemption in a time window of the assigned auditor
the total workload of A_{k} is bounded by H_{k}^{-}and H_{k}^{k} for $k=1, \ldots, m$.
the precedence constraints are satisfied,
all tasks of J_{l} do not start before time r_{l}, and
- the total weighted tardiness $\sum_{l=1}^{g} w_{l} T_{l}$ is minimized
\square

1. Scheduling

CPM/PERT
Resource Constrained Project Scheduling Model
2. Mathematical Programming

Introduction
Solution Algorithms

Mathematical Programming shatatine Intometion

 Linear, Integer, Nonlinearprogram $=$ optimization problem

12

1. Scheduling

CPM/PER ${ }^{\top}$
Resource Constrained Project Scheduling Model
2. Mathematical Programming Introduction
Solution Algorithms

Mathematical Programming
Scheduling
troduction Linear, Integer, Nonlinear
program $=$ optimization problem

$$
\begin{array}{ll}
\min & f(x) \\
& g_{i}(x)=0, \quad i=1,2, \ldots, k \\
& h_{j}(x) \leq 0, \quad j=1,2, \ldots, m \\
& x \in \mathbf{R}^{n} \\
& \\
\text { general (nonlinear) program (NLP) }
\end{array}
$$

Mathematical Programming

\qquad
Linear, Integer, Nonlinear
program $=$ optimization problem

$$
\begin{array}{ll}
\min & f(x) \\
& g_{i}(x)=0, \quad i=1,2, \ldots, k \\
& h_{j}(x) \leq 0, \quad j=1,2, \ldots, m \\
& x \in \mathbf{R}^{n} \\
& \\
\text { general (nonlinear) program (NLP) }
\end{array}
$$

$\min c^{T} x$

$$
A x=a
$$

$$
B x \leq b
$$

$$
x \geq \overline{0}
$$

$$
\left(x \in \mathbf{R}^{n}\right)
$$

linear program (LP)

$\min \quad c^{T} x$

$A x=a$
$B x \leq b$
$x \geq 0$
$\left(x \in \mathbf{Z}^{n}\right)$
$\left(x \in\{0,1\}^{n}\right)$
integer (linear) program (IP, MIP)

Linear Program in standard form

$$
\begin{array}{clll}
\min & c_{1} x_{1}+c_{2} x_{2}+\ldots c_{n} x_{n} & & \\
\text { s.t. } & a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=b_{1} & \min & c^{T} x \\
& a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=b_{2} & & A x=b \\
& \vdots & & x \geq 0
\end{array}
$$

$a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=b_{n}$

$$
x_{1}, x_{2}, \ldots, x_{n} \geq 0
$$

- 1939 L. V. Kantorovitch: Foundations of linear programming (Nobel Prize 1975)
- George J. Stigler's 1945 (Nobel Prize 1982) "Diet Problem": "the first linear program"
find the cheapest combination of foods that will satisfy the daily requirements of a person
Army's problem had 77 unknowns and 9 constraints. http://www.mcs.anl.gov/home/otc/Guide/CaseStudies/diet/index.html
- 1947 G.B. Dantzig: Invention of the simplex algorithm
- Founding fathers:
- 1950s Dantzig: Linear Programming 1954, the Beginning of IP
G. Dantzig, D.R. Fulkerson, S. Johnson TSP with 49 cities
- 1960s Gomory: Integer Programming
- Max-Flow Min-Cut Theorem

The maximal (s, t)-flow in a capaciatetd network is equal to the minimal capacity of an (s, t)-cut

- The Duality Theorem of Linear Programming

$$
\begin{array}{llrl}
\max & c^{T} x & \min & y^{T} b \\
& A x \leq b & & y^{T} A \geq c^{T} \\
& x \geq 0 & & y \geq 0
\end{array}
$$

If feasible solutions to both the primal and the dual problem in a pair of dual LP problems exist, then there is an optimum solution to both systems and the optimal values are equal.

- Max-Flow Min-Cut Theorem
does not hold if several source-sink relations are given (multicommodity flow)
- The Duality Theorem of Integer Programming
$\max c^{T} x$
$A x \leq b$
$x \geq 0$
$x \in \mathbf{Z}^{n}$
$\min y^{T} b$
$y^{T} A \geq c^{T}$
$y \geq 0$
$y \in \mathbf{Z}^{n}$
- Linear programs can be solved in polynomial time with the Ellipsoid Method (Khachiyan, 1979) Interior Point Methods (Karmarkar, 1984, and others)
- Open: is there a strongly polynomial time algorithm for the solution of LPs?
- Certain variants of the Simplex Algorithm run - under certain conditions - in expected polynomial time (Borgwardt, 1977...)
- Open: Is there a polynomial time variant of the Simplex Algorithm?

Scheduling Introduction
 Scheduling Math Progran

 IntroductionSolution Algorithms

Scheduling
Math Progran
Introduction
Solution Algorithms

- Theorem

Integer, 0/1, and mixed integer programming are NP-hard

- Consequence
- special cases
- special purposes
- heuristics
- Algorithms for the solution of nonlinear programs
- Algorithms for the solution of linear programs
- 1) Fourier-Motzkin Elimination (hopeless)
- 2) The Simplex Method (good, above all with duality)
- 3) The Ellipsoid Method (total failure)
- 4) Interior-Point/Barrier Methods (good)
- Algorithms for the solution of integer programs
- 1) Branch \& Bound
- 2) Cutting Planes
- Iterative methods that solve the equation and inequality systems representing the necessary local optimality conditions.
- Steepest descent (Kuhn-Tucker sufficient conditions)
- Newton method
- Subgradient method

Linear programming
Scheduling
Math Programmi
Introduction
Solution Algorithms

The simplex method
Scheduling
Math Programmin
Introduction
Solution Algorithms

Hirsch Conjecture

If P is a polytope of dimension n with m facets then every vertex of P can be reached from any other vertex of P on a path of length at most m - n.

In the example before: $m=5, n=2$ and $m-n=3$, conjecture is true.

At present, not even a polynomial bound on the path length is known.
Best upper bound: Kalai, Kleitman (1992): The diameter of the graph of an n-dimensional polyhedron with m facest is at most $m(\log n+1)$.
Lower bound: Holt, Klee (1997): at least m-n (m, n large enough).

special ,,simple" combinatorial optimization problems Finding a:

- minimum spanning tree
- shortest path
- maximum matching
- maximal flow through a network
- cost-minimal flow
- ...
solvable in polynomial time by special purpose algorithms

$$
\begin{aligned}
& \text { Scheduling } \\
& \text { Math Programming }
\end{aligned}
$$

\qquad

special „hard" combinatorial optimization problems

- traveling salesman problem
- location and routing
- set-packing, partitioning, -covering
- max-cut
- linear ordering
- scheduling (with a few exceptions)
- node and edge colouring
- ...

NP-hard (in the sense of complexity theory)
The most successful solution techniques employ linear programming.

- We can solve today explicit LPs with
- up to 500,000 of variables and
- up to $5,000,000$ of constraints routinely
in relatively short running times.
- We can solve today structured implicit LPs (employing column generation and cutting plane techniques) in special cases with hundreds of million (and more) variables and almost infinitely many constraints in acceptable running times. (Examples: TSP, bus circulation in Berlin)
[Martin Grötschel, Block Course at TU Berlin,
"Combinatorial Optimization at Work", 2005 http://co-at-work.zib.de/berlin/]

