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Resource Constrained Project Scheduling Model

Given:
activities (jobs) j = 1, . . . , n

renewable resources i = 1, . . . ,m

amount of resources available Ri

processing times pj

amount of resource used rij

precedence constraints j → k

Further generalizations

Time dependent resource profile Ri(t)
given by (tµi , R

µ
i ) where 0 = t1i < t2i < . . . < tmi

i = T
Disjunctive resource, if Rk(t) = {0, 1}; cumulative resource,
otherwise

Multiple modes for an activity j
processing time and use of resource depends on its mode m: pjm,
rjkm.
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Assignment 1

A contractor has to complete n activities.

The duration of activity j is pj

each activity requires a crew of size Wj .

The activities are not subject to precedence constraints.

The contractor has W workers at his disposal

his objective is to complete all n activities in minimum time.
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Assignment 2

Exams in a college may have different duration.

The exams have to be held in a gym with W seats.

The enrollment in course j is Wj and

all Wj students have to take the exam at the same time.

The goal is to develop a timetable that schedules all n exams in
minimum time.

Consider both the cases in which each student has to attend a single
exam as well as the situation in which a student can attend more
than one exam.
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Assignment 3

In a basic high-school timetabling problem we are given m classes
c1, . . . , cm,

h teachers a1, . . . , ah and

T teaching periods t1, . . . , tT .

Furthermore, we have lectures i = l1, . . . , ln.

Associated with each lecture is a unique teacher and a unique class.

A teacher aj may be available only in certain teaching periods.

The corresponding timetabling problem is to assign the lectures to
the teaching periods such that

each class has at most one lecture in any time period
each teacher has at most one lecture in any time period,
each teacher has only to teach in time periods where he is available.
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Assignment 4

A set of jobs J1, . . . , Jg are to be processed by auditors A1, . . . , Am.

Job Jl consists of nl tasks (l = 1, . . . , g).

There are precedence constraints i1 → i2 between tasks i1, i2 of the same job.

Each job Jl has a release time rl, a due date dl and a weight wl.

Each task must be processed by exactly one auditor. If task i is processed by
auditor Ak, then its processing time is pik.

Auditor Ak is available during disjoint time intervals [sνk, l
ν
k ] ( ν = 1, . . . ,m)

with lνk < sνk for ν = 1, . . . ,mk − 1.

Furthermore, the total working time of Ak is bounded from below by H−k and
from above by H+

k with H−k ≤ H+
k (k = 1, . . . ,m).

We have to find an assignment α(i) for each task i = 1, . . . , n :=
Pg
l=1 nl to an

auditor Aα(i) such that

each task is processed without preemption in a time window of the
assigned auditor
the total workload of Ak is bounded by H−k and Hk

k for k = 1, . . . ,m.
the precedence constraints are satisfied,
all tasks of Jl do not start before time rl, and
the total weighted tardiness

Pg
l=1 wlTl is minimized.
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Linear, Integer, Nonlinear

program = optimization problem

min f(x)
gi(x) = 0, i = 1, 2, . . . , k
hj(x) ≤ 0, j = 1, 2, . . . ,m
x ∈ Rn

general (nonlinear) program (NLP)

min cTx
Ax = a
Bx ≤ b
x ≥ 0
(x ∈ Rn)

linear program (LP)

min cTx
Ax = a
Bx ≤ b
x ≥ 0
(x ∈ Zn)
(x ∈ {0, 1}n)

integer (linear) program (IP, MIP)
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Linear Program in standard form

min c1x1 + c2x2 + . . . cnxn
s.t. a11x1 + a12x2 + . . . + a1nxn = b1

a21x1 + a22x2 + . . . + a2nxn = b2

...
a21x1 + a22x2 + . . . + a2nxn = bn
x1, x2, . . . , xn ≥ 0

min cTx
Ax = b
x ≥ 0
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1939 L. V. Kantorovitch: Foundations of linear programming (Nobel
Prize 1975)

George J. Stigler’s 1945 (Nobel Prize 1982) “Diet Problem”: “the
first linear program”
find the cheapest combination of foods that will
satisfy the daily requirements of a person
Army’s problem had 77 unknowns and 9 constraints.
http://www.mcs.anl.gov/home/otc/Guide/CaseStudies/diet/index.html

1947 G.B. Dantzig: Invention of the simplex algorithm

Founding fathers:
1950s Dantzig: Linear Programming 1954, the Beginning of IP
G. Dantzig, D.R. Fulkerson, S. Johnson TSP with 49 cities
1960s Gomory: Integer Programming
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Max-Flow Min-Cut Theorem
The maximal (s,t)-flow in a capaciatetd network is equal to the
minimal capacity of an (s,t)-cut

The Duality Theorem of Linear Programming

max cTx
Ax ≤ b
x ≥ 0

min yT b
yTA ≥ cT

y ≥ 0

If feasible solutions to both the primal and the dual problem in a
pair of dual LP problems exist, then there is an optimum solution to
both systems and the optimal values are equal.
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Max-Flow Min-Cut Theorem
does not hold if several source-sink relations are given
(multicommodity flow)

The Duality Theorem of Integer Programming

max cTx
Ax ≤ b
x ≥ 0
x ∈ Zn

≤

min yT b
yTA ≥ cT

y ≥ 0
y ∈ Zn

18

Scheduling
Math Programming

Introduction
Solution AlgorithmsLP Solvability

Linear programs can be solved in polynomial time with
the Ellipsoid Method (Khachiyan, 1979)
Interior Point Methods (Karmarkar, 1984, and others)

Open: is there a strongly polynomial time algorithm for the solution
of LPs?

Certain variants of the Simplex Algorithm run - under certain
conditions - in expected polynomial time (Borgwardt, 1977...)

Open: Is there a polynomial time variant of the Simplex Algorithm?
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Theorem
Integer, 0/1, and mixed integer programming are NP-hard.
Consequence

special cases
special purposes
heuristics
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Algorithms for the solution of nonlinear programs
Algorithms for the solution of linear programs

1) Fourier-Motzkin Elimination (hopeless)
2) The Simplex Method (good, above all with duality)
3) The Ellipsoid Method (total failure)
4) Interior-Point/Barrier Methods (good)

Algorithms for the solution of integer programs
1) Branch & Bound
2) Cutting Planes
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Iterative methods that solve the equation and inequality systems
representing the necessary local optimality conditions.

Steepest descent (Kuhn-Tucker sufficient conditions)

Newton method

Subgradient method
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The Simplex Method

Dantzig, 1947: primal Simplex Method
Lemke, 1954; Beale, 1954: dual Simplex Method
Dantzig, 1953: revised Simplex Method
....
Underlying Idea: Find a vertex of the set of feasible LP solutions
(polyhedron) and move to a better neighbouring vertex, if possible.
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Hirsch Conjecture
If P is a polytope of dimension n with m facets then every vertex of P can
be reached from any other vertex of P on a path of length at most m-n.

In the example before: m=5, n=2 and m-n=3, conjecture is true.

At present, not even a polynomial bound on the path length is known.
Best upper bound: Kalai, Kleitman (1992): The diameter of the graph of
an n-dimensional polyhedron with m facets is at most m(log n+1).
Lower bound: Holt, Klee (1997): at least m-n (m, n large enough).
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special „simple" combinatorial optimization problems Finding a:

minimum spanning tree
shortest path
maximum matching
maximal flow through a network
cost-minimal flow
...

solvable in polynomial time by special purpose algorithms
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special „hard" combinatorial optimization problems

traveling salesman problem
location and routing
set-packing, partitioning, -covering
max-cut
linear ordering
scheduling (with a few exceptions)
node and edge colouring
...

NP-hard (in the sense of complexity theory)
The most successful solution techniques employ linear programming.
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1) Branch & Bound
2) Cutting Planes

Branch & cut, Branch & Price (column generation), Branch & Cut &
Price
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We can solve today explicit LPs with
up to 500,000 of variables and
up to 5,000,000 of constraints routinely

in relatively short running times.
We can solve today structured implicit LPs (employing column
generation and cutting plane techniques) in special cases with
hundreds of million (and more) variables and almost infinitely many
constraints in acceptable running times. (Examples: TSP, bus
circulation in Berlin)

[Martin Grötschel, Block Course at TU Berlin,
“Combinatorial Optimization at Work”, 2005

http://co-at-work.zib.de/berlin/]
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