DMP204

SCHEDULING,
TIMETABLING AND ROUTING

Lecture 3

RCPSP and Mixed Integer Programming

Marco Chiarandini

Scheduling CPM/PERT

Outline Math Programming RCPSP

1. Scheduling

2. Mathematical Programming

Scheduling

Outline Scheduling - ming

1. Scheduling
CPM/PERT
Resource Constrained Project Scheduling Model

2. Mathematical Programming
Introduction
Solution Algorithms

Scheduling

Outline Scheduling - ming

1. Scheduling
CPM/PERT

CPM/PERT
RCPSP



Project Planning

Scheduling CPM/PERT
Math Programming

Milwaukee General Hospital Project

Immediate
Activity Description Predecessor  purarion
A Build internal compeonents - 2
B Modify roof and floor - 3
C Construct collection stack A 2
D Pour concrete and install frame AB 4
E Build high-temperature burner C 4
F Install pollution control system & 3
G Install air pollution device D.E 5
H Inspect and test F.G 2
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Gantt Chart

Activity

B Expected Duration

[] slack

Time Period
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Milwaukee General Hospital Project
Immediate
Activity Description Predecessor  puration EST EFT LST LFT Slack
A Build internal components - 2 o] 2 0 2 o]
B Modify roof and floor - 2 o] 3 1 4 1
C Construct collection stack A 2 2 4 2 4 o]
D Pour concrete and install frame AB 4 3 7 5 10 3
E Build high-temperature burner [} 4 4 8 6 10 2,
F Install pollution control system C 3 4 7 10 13 6
G Install air pollution device D.E 5 8 13 8 13 o]
H Inspect and test (EH ) 2 13 15 13 15 0
Expected project duration 15
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= . i Expecte i Activit:
Milwaukee General Hospital Projec =% i i
Immediate
Activity Description Predecessor rnygmibjt  EST EFT LST LFT Slack _a m b f(tb-a)e)~2
A Build internal components - 2 0 2 [o] 2 o] RN 0.1111
B Modify roof and floor - 3 0 3 1 4 1 2 3 4 01111
€ Construct collection stack A 2 2 4 2 4 o] (O 0.1111
D ‘our concrete and install frame AB 4 3 7 4 8 1 2 4 6 0.4444
E 3uild high-temperature burne C 4 4 8 4 8 0 1 4 7 1.0000
F nstall pollution control systemr € 3 4 7l 10 13 [} (SN 1.7778
G Install air pollution device DE 5 8 13 8 13; o] 3 AT 1.7778
H Inspect and test F.G 2 13 15 13 15 0 1 2 3 o011l
Expected project duration 5 Variance of project duration 3.1111
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Resource Constrained Project Scheduling Model
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Math Programming
Resource Constrained Project Scheduling Model

Given:
@ activities (jobs) j=1,...,n
@ renewable resources i =1,...,m

amount of resources available R;
@ processing times p;
@ amount of resource used r;;

@ precedence constraints j — k

Further generalizations

e Time dependent resource profile R;(t)
given by (t/, Rl') where 0 =t} <2 < ... <t =T

RCPSP

RCPSP

Disjunctive resource, if Ry (t) = {0,1}; cumulative resource,

otherwise

R C P S P Scheduling

Math Programming
Resource Constrained Project Scheduling Model

Given:
@ activities (jobs) j=1,...,n
@ renewable resources i =1,...,m

@ amount of resources available R;
@ processing times p;
@ amount of resource used r;;
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Resource Constrained Project Scheduling Model
Given:

@ activities (jobs) j=1,...,n

@ renewable resources i =1,...,m

@ amount of resources available R;

@ processing times p;

@ amount of resource used r;;

@ precedence constraints j — k

Further generalizations

e Time dependent resource profile R;(t)
given by (¢, Rl') where 0=t} <2 < ... <t =T

RCPSP

RCPSP

Disjunctive resource, if Ry (t) = {0,1}; cumulative resource,

otherwise

@ Multiple modes for an activity j

processing time and use of resource depends on its mode m: pjn,,

Tjkm-
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Assignment 2

Assignment 1 @ Exams in a college may have different duration.
@ A contractor has to complete n activities. @ The exams have to be held in a gym with W seats.
@ The duration of activity j is p; @ The enrollment in course j is W; and
@ each activity requires a crew of size 1. e all W, students have to take the exam at the same time.
@ The activities are not subject to precedence constraints. @ The goal is to develop a timetable that schedules all n exams in
@ The contractor has W workers at his disposal minimum time.
o his objective is to complete all 7 activities in minimum time. @ Consider both the cases in which each student has to attend a single

/ exam as well as the situation in which a student can attend more
than one exam.

Scheduling Scheduling
Math Programming RCPSP Math Programming RCPSP

Assignment 4

Assignment 3 @ A set of jobs Jy,...,Jg are to be processed by auditors Aq,..., An.
@ In a basic high-school timetabling problem we are given m classes ® Job J; consists of n; tasks (I =1,...,9).
Cly- s Crm @ There are precedence constraints i1 — i2 between tasks i1,42 of the same job.
o h teachers ai,...,an and @ Each job J; has a release time r;, a due date d; and a weight w;.
. . @ Each task must be processed by exactly one auditor. If task i is processed by
e T teaching periods ty,...,t7. auditor Ay, then its processing time is p;j.
@ Furthermore, we have lectures : = Y @ Auditor Ay, is available during disjoint time intervals [s},17] (v =1,...,m)
. . . . . with I} < sy forv=1,...,my — 1.
@ Associated with each lecture is a unique teacher and a unique class. o . _
@ Furthermore, the total working time of Ay is bounded from below by H,~ and
@ A teacher a; may be available only in certain teaching periods. from above by H;t with H < Hj (k=1,...,m).
@ The corresponding timetabling problem is to assign the lectures to @ We have to find an assignment (i) for each task i = 1,...,n:=37_ n; to an
the teaching periods such that auditor A, ;) such that
e each class has at most one lecture in any time period @ each task is processed without preemption in a time window of the
e each teacher has at most one lecture in any time period, assigned auditor .
e each teacher has only to teach in time periods where he is available. the total workload of Ay is bounded by Hy" and Hy for k =1,...,m.

.

the precedence constraints are satisfied,
all tasks of J; do not start before time r;, and

the total weighted tardiness Zle w; Ty is minimized.

10
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Mathematical Programming

Linear, Integer, Nonlinear

program = optimization problem
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Mathematical Programming

Linear, Integer, Nonlinear

program = optimization problem

min  f(x)
gi(x) =0, i=1,2,... )k
hi(z) <0, j=1,2,....m
reR"”

general (nonlinear) program (NLP)
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Math Programming

Mathematical Programming

Linear, Integer, Nonlinear

program = optimization problem

min  f(x)
gi(x) =0, i=1,2,... )k
hj(x) <0, j=1,2,...,m
zeR"

general (nonlinear) program (NLP)

min c’x min ¢'@
Ar—a Ax =a
Bz <b Bz <b
N >6 x>0
(ac_e R"™) (w€2")
(z € {0,1}")

linear program (LP) integer (linear) program (IP, MIP)

14
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Historic Roots

@ 1939 L. V. Kantorovitch: Foundations of linear programming (Nobel
Prize 1975)

o George J. Stigler's 1945 (Nobel Prize 1982) “Diet Problem™: “the
first linear program”
find the cheapest combination of foods that will
satisfy the daily requirements of a person
Army'’s problem had 77 unknowns and 9 constraints.
http://www.mcs.anl.gov/home/otc/Guide/CaseStudies/diet/index.html

o 1947 G.B. Dantzig: Invention of the simplex algorithm

e Founding fathers:

e 1950s Dantzig: Linear Programming 1954, the Beginning of IP
G. Dantzig, D.R. Fulkerson, S. Johnson TSP with 49 cities
e 1960s Gomory: Integer Programming

16
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Linear Programming

Linear Program in standard form

min c1x1 4 coxs + ...CpTy,

s.t. a11T1 +aiexs + ...+ apTy = b1 min CTJ,‘

a21%1 + age®2 + ... + agpn = bo Ar =b
: x>0
a21T1 + a2 + ...+ QopTy = bn
T1,L2y++.,Tn Z 0
15
Scheduling Introduction
L P Theory Math Programming

e Max-Flow Min-Cut Theorem
The maximal (s,t)-flow in a capaciatetd network is equal to the
minimal capacity of an (s,t)-cut

@ The Duality Theorem of Linear Programming

max clz min  y7b
Az <b yTA>c"
x>0 y >0

If feasible solutions to both the primal and the dual problem in a
pair of dual LP problems exist, then there is an optimum solution to
both systems and the optimal values are equal.

17



Scheduling

L P T h eory Math Programming

@ Max-Flow Min-Cut Theorem
does not hold if several source-sink relations are given
(multicommodity flow)

@ The Duality Theorem of Integer Programming

Introduction

max clx min yTb
Ax <b yTA > T
x>0 < y >0
r e yeZr
°1: Schedulin Introduction
I P Solva blllty Math Proiramming
@ Theorem

Integer, 0/1, and mixed integer programming are NP-hard.

o Consequence
e special cases
e special purposes
o heuristics

18
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LP Solvability

@ Linear programs can be solved in polynomial time with
the Ellipsoid Method (Khachiyan, 1979)
Interior Point Methods (Karmarkar, 1984, and others)

@ Open: is there a strongly polynomial time algorithm for the solution
of LPs?

@ Certain variants of the Simplex Algorithm run - under certain
conditions - in expected polynomial time (Borgwardt, 1977...)

@ Open: Is there a polynomial time variant of the Simplex Algorithm?

19
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2. Mathematical Programming

Solution Algorithms

21



Solution Algorithms

Linear programming

Scheduling

Algorithms for the solution of nonlinear programs
Algorithms for the solution of linear programs

e 1) Fourier-Motzkin Elimination (hopeless)

2) The Simplex Method (good, above all with duality)
3) The Ellipsoid Method (total failure)

4) Interior-Point/Barrier Methods (good)

Algorithms for the solution of integer programs

e 1) Branch & Bound
e 2) Cutting Planes

Scheduling

The Simplex Method

Dantzig, 1947: primal Simplex Method
Lemke, 1954; Beale, 1954: dual Simplex Method
Dantzig, 1953: revised Simplex Method

Underlying Idea: Find a vertex of the set of feasible LP solutions
(polyhedron) and move to a better neighbouring vertex, if possible.

Math Programming Solution Algorithms

Math Programming Solution Algorithms

Nonlinear programming

22
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Math Programming Solution Algorithms

Iterative methods that solve the equation and inequality systems
representing the necessary local optimality conditions.

Steepest descent (Kuhn-Tucker sufficient conditions)

Newton method

Subgradient method

23
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min/max + x1 + 3x2 =
~
- x2 <=0
- x1 - x2 <=-1
- x1 + x2 <= 3 ~
+ x1 <= 3 & (5)
+ x1 + 2x2 <= 9 \
4)
&
1€
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The simplex method
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min/max + x1 + 3x2 =~

~
(1) - x2 <=0
(2) - x1 - x2 <=-1 \L
(3) - x1 + =x2 <= 3 ~
(4) + x1 <= 3 \g? (5)
(5) + x1 + 2x2 <= 9

4)
&,
()

~ ;

Integer Programming (easy)

25
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special ,simple" combinatorial optimization problems Finding a:

minimum spanning tree

shortest path

maximum matching

maximal flow through a network

cost-minimal flow

solvable in polynomial time by special purpose algorithms

27
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The Si m plex method Math Programming Solution Algorithms

Hirsch Conjecture
If P is a polytope of dimension n with m facets then every vertex of P can
be reached from any other vertex of P on a path of length at most m-n.

In the example before: m=5, n=2 and m-n=3, conjecture is true.

At present, not even a polynomial bound on the path length is known.
Best upper bound: Kalai, Kleitman (1992): The diameter of the graph of
an n-dimensional polyhedron with m facets is at most m(log n+1).

Lower bound: Holt, Klee (1997): at least m-n (m, n large enough).

26
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I n tege r P rog ra m m i n g ( h a rd ) Math Programming Solution Algorithms

special ,hard" combinatorial optimization problems
traveling salesman problem

location and routing

set-packing, partitioning, -covering

max-cut

linear ordering

scheduling (with a few exceptions)

node and edge colouring

NP-hard (in the sense of complexity theory)
The most successful solution techniques employ linear programming.

28
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e 1) Branch & Bound
e 2) Cutting Planes

Branch & cut, Branch & Price (column generation), Branch & Cut &
Price

Scheduling

S u m m a ry Math Programming Solution Algorithms

@ We can solve today explicit LPs with
e up to 500,000 of variables and
e up to 5,000,000 of constraints routinely
in relatively short running times.

@ We can solve today structured implicit LPs (employing column
generation and cutting plane techniques) in special cases with
hundreds of million (and more) variables and almost infinitely many
constraints in acceptable running times. (Examples: TSP, bus
circulation in Berlin)

[Martin Grotschel, Block Course at TU Berlin,
"Combinatorial Optimization at Work", 2005
http://co-at-work.zib.de/berlin/|
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