
DMP204
SCHEDULING,

TIMETABLING AND ROUTING

Lecture 6

MIP Modelling
and

Constraint Programming

Marco Chiarandini

Math Programming
Constraint ProgrammingOutline

1. Math Programming
Scheduling Models
Further issues

2. Constraint Programming
Introduction
Refinements: Modeling
Refinements: Search
Refinements: Constraints

2

Math Programming
Constraint Programming

Scheduling Models
Further issuesOutline

1. Math Programming
Scheduling Models
Further issues

2. Constraint Programming
Introduction
Refinements: Modeling
Refinements: Search
Refinements: Constraints

3

Math Programming
Constraint Programming

Scheduling Models
Further issuesPosition variables

Qm | pj = 1 | P
hj(Cj), hj non decreasing function

model as a transportation problem

xijk ≥ 0 ∀i = 1, . . . , m, j, k = 1, . . . , n

Variables indicate if j is
scheduled as the kth job
on the machine i.
No need to declare them
binary

mX
i=1

nX
k=1

xijk = 1 ∀j = 1, . . . , n Every job assigned to
one only position

nX
j=1

xijk ≤ 1 ∀i = 1, . . . , m, k = 1, . . . , n At most one job can
be processed in time

min

nX
j=1

mX
i=1

nX
k=1

cijkxijk Objective, cijk = hj(Cj) = hj(k/vi)

5



Math Programming
Constraint Programming

Scheduling Models
Further issuesTime indexed variables

1|rj |P wjCj

Discretize time in t = 0, . . . , l, where l is upper bound

xjt ∈ {0, 1} j = 1, . . . , n; t = 0, . . . , l Variables indicate if j
starts at t

lX
t=1

xjt = 1 ∀j = 1, . . . , n
Every job starts at one
point in time

nX
j=1

t−1X
s=max{t−pj ,0}

xjs ≤ 1 ∀t = 0, . . . , l At most one job can
be processed in time

xjt = 0 ∀j = 1, . . . , n, t = 0, . . . , max{rj − 1, 0}
Jobs cannot start be-
fore their release dates

min

nX
j=1

lX
t=0

wj(t + pj)xjs Objective

6

Math Programming
Constraint Programming

Scheduling Models
Further issuesSequencing variables

1|prec|P wjCj

xjk ∈ {0, 1} j, k = 1, . . . , n Variables indicate if j
precedes k

xjj = 0 ∀j = 1, . . . , n

xkj + xjk = 1 ∀j, k = 1, . . . , n, j 6= k Precedence constraints

xkj + xlk + xjl ≥ 1 j, k, l = 1, . . . , n, j 6= k, k 6= l, j 6= l

Precedence constraints

min

nX
j=1

nX
k=1

wjpkxkj +

nX
j=1

wjpj Objective

7

Math Programming
Constraint Programming

Scheduling Models
Further issuesReal Variables

Disjunctive Programming

1|prec|P wjCj

Disjunctive graph model made of conjunctive arcs A and disjunctive arcs I.
Select disjunctive arcs such that the graph does not contain a cycle.

xj ∈ R j = 1, . . . , n
Variables denote com-
pletion of job j

xk − xj ≥ pk ∀j → k ∈ A
precedence constraints
conjunctive arcs

xj ≥ pj ∀j = 1, . . . , n min processing time

xk − xj ≥ pk or xj − xk ≥ pj ∀(i, j) ∈ I disjunctive constraints

min

nX
j=1

wjxj Objective

8

Math Programming
Constraint Programming

Scheduling Models
Further issuesLinearizations

How to linearize these non linear functions?

Disjunctive constraints

min |a− b|

min{max(a, b)}

min maxi=1,...,m(cT
i x + di) piecewise-linear functions

10



Math Programming
Constraint Programming

Scheduling Models
Further issuesConstraint types

x binary, y general integer, z a continuous variable.
a and b integer numbers; p, q, r, s real numbers

Specific domain propagation, preprocessing and cut generation exist
for some of these constraints.
[Achterberg, T. Constraint Integer Programming Department of
Mathematics, Phd Thesis, Technical University of Berlin, Germany, 2007] 11

Math Programming
Constraint Programming

Introduction
Refinements: Modeling
Refinements: Search
Refinements: ConstraintsOutline

1. Math Programming
Scheduling Models
Further issues

2. Constraint Programming
Introduction
Refinements: Modeling
Refinements: Search
Refinements: Constraints

12

Math Programming
Constraint Programming

Introduction
Refinements: Modeling
Refinements: Search
Refinements: ConstraintsConstraint Programming

Constraint Programming is about a formulation of the problem
as a constraint satisfaction problem and about solving it by
means of general or domain specific methods.

14

Math Programming
Constraint Programming

Introduction
Refinements: Modeling
Refinements: Search
Refinements: ConstraintsConstraint Satisfaction Problem

Input:

a set of variables X1, X2, . . . , Xn

each variable has a non-empty domain Di of possible values

a set of constraints. Each constraint Ci involves some subset of the
variables and specifies the allowed combination of values for that
subset.
[A constraint C on variables Xi and Xj , C(Xi, Xj), defines the
subset of the Cartesian product of variable domains Di ×Dj of the
consistent assignments of values to variables. A constraint C on
variables Xi, Xj is satisfied by a pair of values vi, vj if
(vi, vj) ∈ C(Xi, Xj).]

Task:

find an assignment of values to all the variables
{Xi = vi, Xj = vj , . . .}
such that it is consistent, that is, it does not violate any constraint

If assignments are not all equally good, but some are preferable this is
reflected in an objective function.

15



Math Programming
Constraint Programming

Introduction
Refinements: Modeling
Refinements: Search
Refinements: ConstraintsSolution Process

Standard search problem:
initial state: the empty assignment {} in which all variables are
unassigned
successor function: a value can be assigned to any unassigned
variable, provided that it does not conflict with previous assignments
goal test: the current assignment is complete
path cost: a constant cost for every step.

Two fundamental issues:

exploration of search tree

constraint propagation (filtering)
at every node of the search tree, remove domain values that do not
belong to a solution
Repeat until nothing can be removed anymore

 The search may be both complete and incomplete.
16

Math Programming
Constraint Programming

Introduction
Refinements: Modeling
Refinements: Search
Refinements: ConstraintsTypes of Variables and Values

Discrete variables with finite domain:
complete enumeration is O(dn)

Discrete variables with infinite domains:
Impossible by complete enumeration.
Instead a constraint language (constraint logic programming and
constraint reasoning)
Eg, project planning.

Sj + pj ≤ Sk

NB: if only linear constraints, then integer linear programming

Variables with continuous domains
NB: if only linear constraints or convex functions then mathematical
programming

17

Math Programming
Constraint Programming

Introduction
Refinements: Modeling
Refinements: Search
Refinements: ConstraintsConstraint Propagation

Definition
A constraint C on the variables x1, . . . , xk is called domain consistent if
for each variable xi and each value di ∈ D(xi) (i = 1, . . . , k), there exist
a value dj ∈ D(xj) for all j 6= i such that (d1, . . . , dk) ∈ C.

domain consistency = hyper-arc consistency or generalized-arc
consistency

Establishing domain consistency for binary constraints is inexpensive.

For higher arity constraints the naive approach requires time that is
exponential in the number of variables.

Exploiting underlying structure of a constraint can sometimes lead
to establish domain consistency much more efficiently.

18

Math Programming
Constraint Programming

Introduction
Refinements: Modeling
Refinements: Search
Refinements: ConstraintsTypes of constraints

Unary constraints

Binary constraints (constraint graph)

Higher order (constraint hypergraph)
Eg, alldiff(), among(), etc.
Every higher order constraint can be reconduced to binary
(you may need auxiliary constraints)

Preference constraints
cost on individual variable assignments

20



Math Programming
Constraint Programming

Introduction
Refinements: Modeling
Refinements: Search
Refinements: ConstraintsGeneral Purpose Algorithms

Search algorithms

organize and explore the search tree

Search tree with branching factor at the top level nd and at the next
level (n− 1)d. The tree has n! · dn leaves even if only dn possible
complete assignments.

Insight: CSP is commutative in the order of application of any given
set of action (the order of the assignment does not influence)

Hence we can consider search algs that generate successors by
considering possible assignments for only a single variable at each
node in the search tree.
The tree has dn leaves.

Backtracking search

depth first search that chooses one variable at a time and backtracks
when a variable has no legal values left to assign.

21

Math Programming
Constraint Programming

Introduction
Refinements: Modeling
Refinements: Search
Refinements: ConstraintsBacktrack Search

22

Math Programming
Constraint Programming

Introduction
Refinements: Modeling
Refinements: Search
Refinements: ConstraintsBacktrack Search

No need to copy solutions all the times but rather extensions and
undo extensions

Since CSP is standard then the alg is also standard and can use
general purpose algorithms for initial state, successor function and
goal test.

Backtracking is uninformed and complete. Other search algorithms
may use information in form of heuristics

23

Math Programming
Constraint Programming

Introduction
Refinements: Modeling
Refinements: Search
Refinements: ConstraintsGeneral Purpose Backtracking

Implementation Refinements

1) Which variable should we assign next, and in what order should its
values be tried?

2) What are the implications of the current variable assignments for the
other unassigned variables?

3) When a path fails – that is, a state is reached in which a variable
has no legal values can the search avoid repeating this failure in
subsequent paths?

24



Math Programming
Constraint Programming

Introduction
Refinements: Modeling
Refinements: Search
Refinements: Constraints

1) Which variable should we assign next, and in what order should its
values be tried?

Select-Initial-Unassigned-Variable
degree heuristic (reduces the branching factor) also used as tied
breaker

Select-Unassigned-Variable
Most constrained variable (DSATUR) = fail-first heuristic
= Minimum remaining values (MRV) heuristic (speeds up pruning)

Order-Domain-Values
least-constraining-value heuristic (leaves maximum flexibility for
subsequent variable assignments)

NB: If we search for all the solutions or a solution does not exists, then
the ordering does not matter.

25

Math Programming
Constraint Programming

Introduction
Refinements: Modeling
Refinements: Search
Refinements: Constraints

2) What are the implications of the current variable assignments for the
other unassigned variables?

Propagating information through constraints
Implicit in Select-Unassigned-Variable

Forward checking (coupled with MRV)

Constraint propagation (filtering)
arc consistency: force all (directed) arcs uv to be consistent: ∃ a
value in D(v) : ∀ values in D(u), otherwise detects inconsistency

can be applied as preprocessing or as propagation step after each
assignment (MAC, Maintaining Arc Consistency)

Applied repeatedly

k-consistency: if for any set of k− 1 variables, and for any consistent
assignment to those variables, a consistent value can always be
assigned to any k-th variable.

determining the appropriate level of consistency checking is mostly
an empirical science.

26

Math Programming
Constraint Programming

Introduction
Refinements: Modeling
Refinements: Search
Refinements: Constraints

Example: Arc Consistency Algorithm AC-3

27

Math Programming
Constraint Programming

Introduction
Refinements: Modeling
Refinements: Search
Refinements: Constraints

3) When a path fails – that is, a state is reached in which a variable has
no legal values can the search avoid repeating this failure in subsequent
paths?

Backtracking-Search
chronological backtracking, the most recent decision point is
revisited
backjumping, backtracks to the most recent variable in the conflict
set (set of previously assigned variables connected to X by
constraints).

every branch pruned by backjumping is also pruned by forward
checking

idea remains: backtrack to reasons of failure.

28



Math Programming
Constraint Programming

Introduction
Refinements: Modeling
Refinements: Search
Refinements: ConstraintsAn Empirical Comparison

Median number of consistency checks

29

Math Programming
Constraint Programming

Introduction
Refinements: Modeling
Refinements: Search
Refinements: ConstraintsThe structure of problems

Decomposition in subproblems:
connected components in the constraint graph
O(dcn/c) vs O(dn)

Constraint graphs that are tree are solvable in poly time by reverse
arc-consistency checks.

Reduce constraint graph to tree:
removing nodes (cutset conditioning: find the smallest cycle cutset.
It is NP-hard but good approximations exist)
collapsing nodes (tree decomposition)
divide-and-conquer works well with small subproblems

30

Math Programming
Constraint Programming

Introduction
Refinements: Modeling
Refinements: Search
Refinements: ConstraintsOptimization Problems

Objective function F (X1, X2, . . . , Xn)

Solve a modified Constraint Satisfaction Problem by setting a
(lower) bound z∗ in the objective function
Dichotomic search: U upper bound, L lower bound

M =
U + L

2
Reified constraints (more later)

31

Math Programming
Constraint Programming

Introduction
Refinements: Modeling
Refinements: Search
Refinements: ConstraintsCP Systems

Programming language + Systems

The system typically includes

built-in constraint propagation for various constraints (eg, linear,
boolean, global constraints)

general purpose algorithms for constraint propagation (arc
consistency on finite domains)

built-ins for constructing various forms of search

Constraints are added to a constrain store to which various constraint
solvers are attached.
 Constraint variables are unknowns in mathematical sense.

32



Math Programming
Constraint Programming

Introduction
Refinements: Modeling
Refinements: Search
Refinements: ConstraintsLogic Programming

Logic programming is the use of mathematical logic for computer
programming.

First-order logic is used as a purely declarative representation language,
and a theorem-prover or model-generator is used as the problem-solver.

Syntax – Language
Alphabet
Well-formed Expressions
E.g., 4X + 3Y = 10; 2X - Y = 0

Semantics – Meaning
Interpretation
Logical Consequence

Calculi – Derivation
Inference Rule
Transition System

 Logic programming supports the notion of logical variables

33

Math Programming
Constraint Programming

Introduction
Refinements: Modeling
Refinements: Search
Refinements: ConstraintsLogic Programming

Example: Prolog
A logic program is a set of axioms, or rules, defining
relationships between objects.

A computation of a logic program is a deduction of
consequences of the program.

A program defines a set of consequences, which is its meaning.

[Sterling and Shapiro: The Art of Prolog, Page 1]

To deal with the other constraints one has to add other constraint solvers
to the language. This led to Constraint Logic Programming

34

Math Programming
Constraint Programming

Introduction
Refinements: Modeling
Refinements: Search
Refinements: ConstraintsA Puzzle Example

SEND +
MORE =
MONEY

Two representations

The first yields initially a weaker constraint propagation. The tree
has 23 nodes and the unique solution is found after visiting 19 nodes

The second representation has a tree with 29 nodes and the unique
solution is found after visiting 23 nodes

However for the puzzle GERALD + DONALD = ROBERT the situation is
reverse. The first has 16651 nodes and 13795 visits while the second has
869 nodes and 791 visits

 Finding the best model is an empirical science
36

Math Programming
Constraint Programming

Introduction
Refinements: Modeling
Refinements: Search
Refinements: ConstraintsGuidelines

Rules of thumbs for modelling (to take with a grain of salt):

use representations that involve less variables and simpler constraints
for which constraint propagators are readily available

use constraint propagation techniques that require less preprocessing
(ie, the introduction of auxiliary variables) since they reduce the
search space better.
Disjunctive constraints may lead to an inefficient representation
since they can generate a large search space.

use global constraints (see below)

37



Math Programming
Constraint Programming

Introduction
Refinements: Modeling
Refinements: Search
Refinements: ConstraintsRandomization in Search Tree

Dynamical selection of solution components
in construction or choice points in backtracking.

Randomization of construction method or
selection of choice points in backtracking
while still maintaining the method complete
 randomized systematic search.

Randomization can also be used in incomplete search

39

Math Programming
Constraint Programming

Introduction
Refinements: Modeling
Refinements: Search
Refinements: ConstraintsIncomplete Search

http:
//4c.ucc.ie/~hsimonis/visualization/techniques/partial_search/main.htm

40

Math Programming
Constraint Programming

Introduction
Refinements: Modeling
Refinements: Search
Refinements: ConstraintsIncomplete Search

Credit-based search

Key idea: important decisions
are at the top of the tree

Credit = backtracking steps

Credit distribution: one half at
the best child the other divided
among the other children.

When credits run out follow
deterministic best-search

In addition: allow limited
backtracking steps (eg, 5) at
the bottom

Control parameters: initial
credit, the distribution of credit
among the children, and the
amount of local backtracking at
the bottom. 41

Math Programming
Constraint Programming

Introduction
Refinements: Modeling
Refinements: Search
Refinements: ConstraintsIncomplete Search

Limited Discrepancy Search (LDS)

Key observation that often the
heuristic used in the search is
nearly always correct with just a
few exceptions.

Explore the tree in increasing
number of discrepancies,
modifications from the heuristic
choice.

Eg: count one discrepancy if
second best is chosen
count two discrepancies either
if third best is chosen or twice
the second best is chosen

Control parameter: the number
of discrepancies

42



Math Programming
Constraint Programming

Introduction
Refinements: Modeling
Refinements: Search
Refinements: ConstraintsIncomplete Search

Barrier Search

Extension of LDS

Key idea: we may encounter
several, independent problems
in our heuristic choice. Each of
these problems can be
overcome locally with a limited
amount of backtracking.

At each barrier start LDS-based
backtracking

43

Math Programming
Constraint Programming

Introduction
Refinements: Modeling
Refinements: Search
Refinements: ConstraintsLocal Search for CSP

Uses a complete-state formulation: a value assigned to each variable
(randomly)

Changes the value of one variable at a time

Min-conflicts heuristic is effective particularly when given a good
initial state.

Run-time independent from problem size

Possible use in online settings in personal assignment: repair the
schedule with a minimum number of changes

44

Math Programming
Constraint Programming

Introduction
Refinements: Modeling
Refinements: Search
Refinements: ConstraintsHandling special constraints

Higher order constraints

Definition
Global constraints are complex constraints that are taken care of by
means of a special purpose algorithm.

Modelling by means of global constraints is more efficient than relying on
the general purpose constraint propagator.

Examples:
alldiff

for m variables and n values cannot be satisfied if m > n,
consider first singleton variables
propagation based on bipartite matching considerations

46


