
DMP204
SCHEDULING,

TIMETABLING AND ROUTING

Lecture 7

Constraint Programming (2)

Marco Chiarandini

Refinements on CP
Language and Systems

Outline

1. Refinements on CP
Refinements: Modeling
Refinements: Search
Refinements: Constraints
Symmetry Breaking
Reification

2. Language and Systems

2

Refinements on CP
Language and Systems

Refinements: Modeling
Refinements: Search
Refinements: Constraints
Symmetry Breaking
ReificationOutline

1. Refinements on CP
Refinements: Modeling
Refinements: Search
Refinements: Constraints
Symmetry Breaking
Reification

2. Language and Systems

3

Refinements on CP
Language and Systems

Refinements: Modeling
Refinements: Search
Refinements: Constraints
Symmetry Breaking
ReificationA Puzzle Example

SEND +
MORE =
MONEY

Two representations

The first yields initially a weaker constraint propagation. The tree
has 23 nodes and the unique solution is found after visiting 19 nodes

The second representation has a tree with 29 nodes and the unique
solution is found after visiting 23 nodes

However for the puzzle GERALD + DONALD = ROBERT the situation is
reverse. The first has 16651 nodes and 13795 visits while the second has
869 nodes and 791 visits

 Finding the best model is an empirical science
5



Refinements on CP
Language and Systems

Refinements: Modeling
Refinements: Search
Refinements: Constraints
Symmetry Breaking
ReificationGuidelines

Rules of thumbs for modelling (to take with a grain of salt):

use representations that involve less variables and simpler constraints
for which constraint propagators are readily available

use constraint propagation techniques that require less preprocessing
(ie, the introduction of auxiliary variables) since they reduce the
search space better.
Disjunctive constraints may lead to an inefficient representation
since they can generate a large search space.

use global constraints (see below)

6

Refinements on CP
Language and Systems

Refinements: Modeling
Refinements: Search
Refinements: Constraints
Symmetry Breaking
ReificationRandomization in Search Tree

Dynamical selection of solution components
in construction or choice points in backtracking.

Randomization of construction method or
selection of choice points in backtracking
while still maintaining the method complete
 randomized systematic search.

Randomization can also be used in incomplete search

8

Refinements on CP
Language and Systems

Refinements: Modeling
Refinements: Search
Refinements: Constraints
Symmetry Breaking
ReificationIncomplete Search

http:
//4c.ucc.ie/~hsimonis/visualization/techniques/partial_search/main.htm

9

Refinements on CP
Language and Systems

Refinements: Modeling
Refinements: Search
Refinements: Constraints
Symmetry Breaking
ReificationIncomplete Search

Credit-based search

Key idea: important decisions
are at the top of the tree

Credit = backtracking steps

Credit distribution: one half at
the best child the other divided
among the other children.

When credits run out follow
deterministic best-search

In addition: allow limited
backtracking steps (eg, 5) at
the bottom

Control parameters: initial
credit, distribution of credit
among the children, amount of
local backtracking at bottom.

10



Refinements on CP
Language and Systems

Refinements: Modeling
Refinements: Search
Refinements: Constraints
Symmetry Breaking
ReificationIncomplete Search

Limited Discrepancy Search (LDS)

Key observation that often the
heuristic used in the search is
nearly always correct with just a
few exceptions.

Explore the tree in increasing
number of discrepancies,
modifications from the heuristic
choice.

Eg: count one discrepancy if
second best is chosen
count two discrepancies either
if third best is chosen or twice
the second best is chosen

Control parameter: the number
of discrepancies

11

Refinements on CP
Language and Systems

Refinements: Modeling
Refinements: Search
Refinements: Constraints
Symmetry Breaking
ReificationIncomplete Search

Barrier Search

Extension of LDS

Key idea: we may encounter
several, independent problems
in our heuristic choice. Each of
these problems can be
overcome locally with a limited
amount of backtracking.

At each barrier start LDS-based
backtracking

12

Refinements on CP
Language and Systems

Refinements: Modeling
Refinements: Search
Refinements: Constraints
Symmetry Breaking
ReificationLocal Search for CSP

Uses a complete-state formulation: a value assigned to each variable
(randomly)

Changes the value of one variable at a time

Min-conflicts heuristic is effective particularly when given a good
initial state.

Run-time independent from problem size

Possible use in online settings in personal assignment: repair the
schedule with a minimum number of changes

13

Refinements on CP
Language and Systems

Refinements: Modeling
Refinements: Search
Refinements: Constraints
Symmetry Breaking
ReificationHandling special constraints

Higher order constraints

Definition
Global constraints are complex constraints that are taken care of by
means of a special purpose algorithm.

Modelling by means of global constraints is more efficient than relying on
the general purpose constraint propagator.

Examples:
alldiff

for m variables and n values cannot be satisfied if m > n,
consider first singleton variables
propagation based on bipartite matching considerations

15



Refinements on CP
Language and Systems

Refinements: Modeling
Refinements: Search
Refinements: Constraints
Symmetry Breaking
Reification

cumulative for RCPSP [Aggoun and Beldiceanu, 1993]

Sj starting times of jobs

Pj duration of job

Rj resource consumption

R limit not to be exceeded at any point in time

cumulative([Sj ], [Pj ], [Rj ], R) :=

{([sj ], [pj ], [rj ]R) | ∀t
∑

i | si≤t≤si+pi

ri ≤ R}

The special purpose algorithm employes the edge-finding technique
(enforce precedences)

16

Refinements on CP
Language and Systems

Refinements: Modeling
Refinements: Search
Refinements: Constraints
Symmetry Breaking
Reification

sortedness for job shop [Older, Swinkels, and van Emden, 1995]

sortedness([X1, . . . , Xn], [Y1, . . . , Y n]) :=
{([d1, . . . , dn], [e1, . . . , en])|[e1, . . . , en] is

the sorted permutation of [d1, . . . , dn]}

17

Refinements on CP
Language and Systems

Refinements: Modeling
Refinements: Search
Refinements: Constraints
Symmetry Breaking
Reification

among(x|v, l, u) at least l and at most v variables take values in the
set v.

bin− packing(x|w, u, k) pack items in k bins such that they do
not exceed capacity u

cardinality(x|v, l, u) at least lj and at most uj of the variables
take the value vj

cardinality− clause(x|k)
∑n
j=1 xj ≥ k

cardinality− conditional(x, y|k, l) if
∑n
j=1 xj ≥ k then∑m

j=1 yj ≥ l

change(x|k, rel) counts number of times a given change occur

18

Refinements on CP
Language and Systems

Refinements: Modeling
Refinements: Search
Refinements: Constraints
Symmetry Breaking
Reification

circuit(x) imposes Hamiltonian cycle on digraph.

clique(x|G, k) requires that a given graph contain a clique

conditional(D, C) between set of constrains D ⇒ C

cutset(x|G, k) requires that for the set of selected vertices V ′, the
set V \ V ′ induces a subgraph of G that contains no cycles.

cycle(x|y) select edges such that they form exactly y cycles.
directed cycles in a graph.

diffn((x1,∆x1), . . . , (xm,∆xm)) arranges a given set of
multidimensional boxes in n-space such that they do not overlap

...

19



Refinements on CP
Language and Systems

Refinements: Modeling
Refinements: Search
Refinements: Constraints
Symmetry Breaking
ReificationKinds of symmetries

Variable symmetry:
permuting variables keeps solutions invariant (eg, N-queens)
{xi → vi} ∈ sol(P )⇔ {xπ(i) → vi} ∈ sol(P )

Value symmetry:
permuting values keeps solutions invariant (eg, GCP)
{xi → vi} ∈ sol(P )⇔ {xi → π(vi)} ∈ sol(P )

Variable/value symmetry:
permute both variables and values (eg, sudoku?)
{xi → vi} ∈ sol(P )⇔ {xπ(i) → π(vi)} ∈ sol(P )

21

Refinements on CP
Language and Systems

Refinements: Modeling
Refinements: Search
Refinements: Constraints
Symmetry Breaking
ReificationSymmetry

inherent in the problem (sudoku, queens)

artefact of the model (order of groups)

How can we avoid it?

... by model reformulation (eg, use set variables,

... by adding constraints to the model
(ruling out symmetric solutions)

... during search

... by dominance detection

22

Refinements on CP
Language and Systems

Refinements: Modeling
Refinements: Search
Refinements: Constraints
Symmetry Breaking
ReificationReified constraints

Constraints are in a big conjunction

How about disjunctive constraints?

A+B = C ∨ C = 0

or soft constraints?

Solution: reify the constraints:

(A+B = C ⇔ b0) ∧
(C = 0 ⇔ b1) ∧
(b0 ∨ b1 ⇔ true)

These kind of constraints are dealt with in efficient way by the
systems

Then if optimization problem (soft constraints) ⇒ min
∑
i bi

24

Refinements on CP
Language and Systems

Outline

1. Refinements on CP
Refinements: Modeling
Refinements: Search
Refinements: Constraints
Symmetry Breaking
Reification

2. Language and Systems

25



Refinements on CP
Language and Systems

Prolog Approach

Prolog II till Prolog IV [Colmerauer, 1990]

CHIP V5 [Dincbas, 1988] http://www.cosytec.com (commercial)

CLP [Van Hentenryck, 1989]

Ciao Prolog (Free, GPL)

GNU Prolog (Free, GPL)

SICStus Prolog

ECLiPSe[Wallace, Novello, Schimpf, 1997] http://eclipse-clp.org/
(Open Source)

Mozart programming system based on Oz language (incorporates
concurrent constraint programming) http://www.mozart-oz.org/
[Smolka, 1995]

26

Refinements on CP
Language and Systems

Example
The puzzle SEND+MORE = MONEY in ECLiPSe

27

Refinements on CP
Language and Systems

Other Approaches

Modelling languages similar in concept to ZIMPL:

OPL [Van Hentenryck, 1999] ILOG CP Optimizer
www.cpoptimizer.ilog.com (ILOG, commercial)

MiniZinc [] (open source, works for various systems, ECLiPSe,
Geocode)

28

Refinements on CP
Language and Systems

MiniZinc

29



Refinements on CP
Language and Systems

Other Approaches
Libraries:
Constraints are modelled as objects and are manipulated by means of
special methods provided by the given class.

CHOCO (free) http://choco.sourceforge.net/

Kaolog (commercial) http://www.koalog.com/php/index.php

ECLiPSe (free) www.eclipse-clp.org

ILOG CP Optimizer www.cpoptimizer.ilog.com (ILOG,
commercial)

Gecode (free) www.gecode.org C++, Programming interfaces Java
and MiniZinc

G12 Project
http://www.nicta.com.au/research/projects/constraint_
programming_platform

30

Refinements on CP
Language and Systems

CP Languages

Greater expressive power than mathematical programming

constraints involving disjunction can be represented directly

constraints can be encapsulated (as predicates) and used in the
definition of further constrains

However, CP models can often be translated into MIP model by

eliminating disjunctions in favor of auxiliary Boolean variables

unfolding predicates into their definitions

31

Refinements on CP
Language and Systems

CP Languages

Fundamental difference to LP
language has structure (global constraints)

different solvers support different constraints

In its infancy

Key questions:
what level of abstraction?

solving approach independent: LP, CP, ...?

how to map to different systems?

Modelling is very difficult for CP
requires lots of knowledge and tinkering

32


