
DMP204
SCHEDULING,

TIMETABLING AND ROUTING

Lecture 9
Heuristics

Marco Chiarandini

Construction Heuristics
Local Search
Software Tools

Outline
1. Construction Heuristics

General Principles
Metaheuristics

A∗ search
Rollout
Beam Search
Iterated Greedy
GRASP

2. Local Search
Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search

Efficiency vs Effectiveness
Application Examples

Metaheuristics
Tabu Search
Iterated Local Search

3. Software Tools
The Code Delivered
Practical Exercise

2

Construction Heuristics
Local Search
Software Tools

Introduction

Heuristic methods make use of two search paradigms:

construction rules (extends partial solutions)

local search (modifies complete solutions)

These components are problem specific and implement informed search.

They can be improved by use of metaheuristics which are general-purpose
guidance criteria for underlying problem specific components.

Final heuristic algorithms are often hybridization of several components.

3

Construction Heuristics
Local Search
Software Tools

General Principles
Metaheuristics

Outline
1. Construction Heuristics

General Principles
Metaheuristics

A∗ search
Rollout
Beam Search
Iterated Greedy
GRASP

2. Local Search
Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search

Efficiency vs Effectiveness
Application Examples

Metaheuristics
Tabu Search
Iterated Local Search

3. Software Tools
The Code Delivered
Practical Exercise

4

Construction Heuristics
Local Search
Software Tools

General Principles
Metaheuristics

Construction Heuristics

Heuristic: a common-sense rule (or set of rules) intended to increase the
probability of solving some problem

Construction heuristics

(aka, single pass heuristics, dispatching rules, in scheduling)
They are closely related to tree search techniques but correspond to a single
path from root to leaf

search space = partial candidate solutions

search step = extension with one or more solution components

Construction Heuristic (CH):
s := ∅
while s is not a complete solution do

choose a solution component c
add the solution component to s

6

Construction Heuristics
Local Search
Software Tools

General Principles
Metaheuristics

Greedy best-first search

7

Construction Heuristics
Local Search
Software Tools

General Principles
Metaheuristics

Sometimes greedy heuristics can be proved to be optimal
(Minimum Spanning Tree, Single Source Shortest Path,
1||PwjCj , 1||Lmax)

Other times an approximation ratio can be prooved

8

Construction Heuristics
Local Search
Software Tools

General Principles
Metaheuristics

Designing heuristics

Same idea of (variable, value) selection in CP without backtracking

Variable

* INT_VAR_NONE: First unassigned

* INT_VAR_MIN_MIN: With smallest min
* INT_VAR_MIN_MAX: With largest min
* INT_VAR_MAX_MIN: With smallest max
* INT_VAR_MAX_MAX: With largest max

* INT_VAR_SIZE_MIN: With smallest domain size
* INT_VAR_SIZE_MAX: With largest domain size

* INT_VAR_DEGREE_MIN: With smallest degree The degree of a variable is defined as the number of dependant
propagators. In case of ties, choose the variable with smallest domain.

* INT_VAR_DEGREE_MAX: With largest degree The degree of a variable is defined as the number of dependant
propagators. In case of ties, choose the variable with smallest domain.

* INT_VAR_SIZE_DEGREE_MIN: With smallest domain size divided by degree
* INT_VAR_SIZE_DEGREE_MAX: With largest domain size divided by degree

* INT_VAR_REGRET_MIN_MIN: With smallest min-regret The min-regret of a variable is the difference between
the smallest and second-smallest value still in the domain.

* INT_VAR_REGRET_MIN_MAX: With largest min-regret The min-regret of a variable is the difference between
the smallest and second-smallest value still in the domain.

* INT_VAR_REGRET_MAX_MIN: With smallest max-regret The max-regret of a variable is the difference between
the largest and second-largest value still in the domain.

* INT_VAR_REGRET_MAX_MAX: With largest max-regret The max-regret of a variable is the difference between
the largest and second-largest

value still in the domain.

Static vs Dynamic (è quality time tradeoff)

9

Construction Heuristics
Local Search
Software Tools

General Principles
Metaheuristics

Designing heuristics

Same idea of (variable, value) selection in CP without backtracking

Value

* INT_VAL_MIN: Select smallest value
* INT_VAL_MED: Select median value
* INT_VAL_MAX: Select maximal value

* INT_VAL_SPLIT_MIN: Select lower half of domain
* INT_VAL_SPLIT_MAX: Select upper half of domain

Static vs Dynamic (è quality time tradeoff)
9

Construction Heuristics
Local Search
Software Tools

General Principles
Metaheuristics

Dispatching Rules in Scheduling

RULE DATA OBJECTIVES
Rules Dependent ERD rj Variance in Throughput Times
on Release Dates EDD dj Maximum Lateness
and Due Dates MS dj Maximum Lateness

LPT pj Load Balancing over Parallel Machines
Rules Dependent SPT pj Sum of Completion Times, WIP
on Processing WSPT pj , wj Weighted Sum of Completion Times, WIP
Times CP pj , prec Makespan

LNS pj , prec Makespan
SIRO - Ease of Implementation

Miscellaneous SST sjk Makespan and Throughput
LFJ Mj Makespan and Throughput
SQNO - Machine Idleness

10

Construction Heuristics
Local Search
Software Tools

General Principles
Metaheuristics

Truncated Search

They can be seen as form of Metaheuristics

Limited Discrepancy Search (LDS)

Credit-based search

Barrier Search

12

Construction Heuristics
Local Search
Software Tools

General Principles
Metaheuristics

A∗ best-first search

The priority assigned to a node x is determined by the function

f(x) = g(x) + h(x)

g(x): cost of the path so far
h(x): heuristic estimate of the minimal cost to reach the goal from x.

It is optimal if h(x) is an
admissible heuristic: never overestimates the cost to reach the goal
consistent: h(n) ≤ c(n, a, n′) + h(n′)

13

Construction Heuristics
Local Search
Software Tools

General Principles
Metaheuristics

A∗ best-first search

14

Construction Heuristics
Local Search
Software Tools

General Principles
Metaheuristics

A∗ best-first search

Possible choices for admissible heuristic functions

optimal solution to an easily solvable relaxed problem
optimal solution to an easily solvable subproblem
preferred heuristics functions with higher values (provided they do not
overestimate)

if several heuristics available h1, h2, . . . , hm and not clear which is the best
then:

h(x) = max{h1(x), . . . , hm(x)}

15

Construction Heuristics
Local Search
Software Tools

General Principles
Metaheuristics

A∗ best-first search

Drawbacks

Time complexity: In the worst case, the number of nodes expanded is
exponential, but it is polynomial when the heuristic function h meets the
following condition:

|h(x)− h∗(x)| ≤ O(log h∗(x))

h∗ is the optimal heuristic, the exact cost of getting from x to the goal.

Memory usage: In the worst case, it must remember an exponential
number of nodes.
Several variants: including iterative deepening A∗ (IDA∗),
memory-bounded A∗ (MA∗) and simplified memory bounded A∗ (SMA∗)
and recursive best-first search (RBFS)

16

Construction Heuristics
Local Search
Software Tools

General Principles
Metaheuristics

Rollout Method

(aka, pilot method) [Bertsekas, Tsitsiklis, Cynara, JoH, 1997]
Derived from A∗

Each candidate solution is a collection of m components
S = (s1, s2, . . . , sm).

Master process adds components sequentially to a partial solution
Sk = (s1, s2, . . . sk)

At the k-th iteration the master process evaluates seemly feasible
components to add based on a look-ahead strategy based on heuristic
algorithms.

The evaluation function H(Sk+1) is determined by sub-heuristics that
complete the solution starting from Sk
Sub-heuristics are combined in H(Sk+1) by

weighted sum
minimal value

17

Construction Heuristics
Local Search
Software Tools

General Principles
Metaheuristics

Rollout Method

Speed-ups:

halt whenever cost of current partial solution exceeds current upper bound

evaluate only a fraction of possible components

18

Construction Heuristics
Local Search
Software Tools

General Principles
Metaheuristics

Beam Search

[Lowerre, Complex System, 1976]
Derived from A∗ and branch and bound

maintains a set B of bw (beam width) partial candidate solutions

at each iteration extend each solution from B in fw (filter width) possible
ways

rank each bw × fw candidate solutions and take the best bw partial
solutions

complete candidate solutions obtained by B are maintained in Bf

Stop when no partial solution in B is to be extended

19

Construction Heuristics
Local Search
Software Tools

General Principles
Metaheuristics

Iterated Greedy

Key idea: use greedy construction

alternation of Construction and Deconstruction phases

an acceptance criterion decides whether the search continues from the new
or from the old solution.

Iterated Greedy (IG):
determine initial candidate solution s
while termination criterion is not satisfied do

r := s
greedily destruct part of s
greedily reconstruct the missing part of s
based on acceptance criterion,

keep s or revert to s := r

20

Construction Heuristics
Local Search
Software Tools

General Principles
Metaheuristics

GRASP

Greedy Randomized Adaptive Search Procedure (GRASP) []

Key Idea: Combine randomized constructive search with subsequent
perturbative search.

Motivation:

Candidate solutions obtained from construction heuristics can often be
substantially improved by perturbative search.

Perturbative search methods typically often require substantially fewer
steps to reach high-quality solutions
when initialized using greedy constructive search rather than
random picking.

By iterating cycles of constructive + perturbative search, further
performance improvements can be achieved.

22

Construction Heuristics
Local Search
Software Tools

General Principles
Metaheuristics

Greedy Randomized “Adaptive” Search Procedure (GRASP):
While termination criterion is not satisfied:
|| generate candidate solution s using
|| subsidiary greedy randomized constructive search
||b perform subsidiary perturbative search on s

Note:

Randomization in constructive search ensures that a large number of good
starting points for subsidiary perturbative search is obtained.
Constructive search in GRASP is ‘adaptive’ (or dynamic):
Heuristic value of solution component to be added to
given partial candidate solution r may depend on
solution components present in r.
Variants of GRASP without perturbative search phase
(aka semi-greedy heuristics) typically do not reach
the performance of GRASP with perturbative search.

23

Construction Heuristics
Local Search
Software Tools

General Principles
Metaheuristics

Restricted candidate lists (RCLs)

Each step of constructive search adds a solution component selected
uniformly at random from a restricted candidate list (RCL).

RCLs are constructed in each step using a heuristic function h.

RCLs based on cardinality restriction comprise the k best-ranked solution
components. (k is a parameter of the algorithm.)

RCLs based on value restriction comprise all solution components l for
which h(l) ≤ hmin + α · (hmax − hmin),
where hmin = minimal value of h and hmax = maximal value
of h for any l. (α is a parameter of the algorithm.)

24

Construction Heuristics
Local Search
Software Tools

General Principles
Metaheuristics

Example: GRASP for SAT [Resende and Feo, 1996]

Given: CNF formula F over variables x1, . . . , xn

Subsidiary constructive search:

start from empty variable assignment

in each step, add one atomic assignment (i.e., assignment of
a truth value to a currently unassigned variable)

heuristic function h(i, v) := number of clauses that
become satisfied as a consequence of assigning xi := v

RCLs based on cardinality restriction (contain fixed number k
of atomic assignments with largest heuristic values)

Subsidiary perturbative search:

iterative best improvement using 1-flip neighborhood

terminates when model has been found or given number of
steps has been exceeded 25

Construction Heuristics
Local Search
Software Tools

General Principles
Metaheuristics

GRASP has been applied to many combinatorial problems, including:

SAT, MAX-SAT

various scheduling problems

Extensions and improvements of GRASP:

reactive GRASP (e.g., dynamic adaptation of α
during search)

26

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
MetaheuristicsOutline

1. Construction Heuristics
General Principles
Metaheuristics

A∗ search
Rollout
Beam Search
Iterated Greedy
GRASP

2. Local Search
Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search

Efficiency vs Effectiveness
Application Examples

Metaheuristics
Tabu Search
Iterated Local Search

3. Software Tools
The Code Delivered
Practical Exercise

27

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
MetaheuristicsLocal Search Paradigm

search space = complete candidate solutions

search step = modification of one or more solution components

iteratively generate and evaluate candidate solutions
decision problems: evaluation = test if solution
optimization problems: evaluation = check objective function value

evaluating candidate solutions is typically computationally much cheaper
than finding (optimal) solutions

Iterative Improvement (II):
determine initial candidate solution s
while s has better neighbors do

choose a neighbor s′ of s such that f(s′) < f(s)
s := s′

28

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
MetaheuristicsLocal Search Algorithm (1)

Given a (combinatorial) optimization problem Π and one of its instances π:

search space S(π)
specified by candidate solution representation:
discrete structures: sequences, permutations, graphs, partitions
(e.g., for SAT: array (sequence of all truth assignments
to propositional variables)

Note: solution set S′(π) ⊆ S(π)
(e.g., for SAT: models of given formula)

evaluation function f(π) : S(π) 7→ R
(e.g., for SAT: number of false clauses)

neighborhood function, N (π) : S 7→ 2S(π)

(e.g., for SAT: neighboring variable assignments differ
in the truth value of exactly one variable)

29

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
MetaheuristicsLocal Search Algorithm (2)

set of memory states M(π)
(may consist of a single state, for LS algorithms that
do not use memory)

initialization function init : ∅ 7→ P(S(π)×M(π))
(specifies probability distribution over initial search positions and memory
states)

step function step : S(π)×M(π) 7→ P(S(π)×M(π))
(maps each search position and memory state onto
probability distribution over subsequent, neighboring
search positions and memory states)

termination predicate terminate : S(π)×M(π) 7→ P({>,⊥})
(determines the termination probability for each
search position and memory state)

30

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
MetaheuristicsLocal Search Algorithm

For given problem instance π:

search space (solution representation) S(π)

neighborhood relation N (π) ⊆ S(π)× S(π)

evaluation function f(π) : S 7→ R

set of memory states M(π)

initialization function init : ∅ 7→ P(S(π)×M(π))

step function step : S(π)×M(π) 7→ P(S(π)×M(π))

termination predicate terminate : S(π)×M(π) 7→ P({>,⊥})

31

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
MetaheuristicsLS Algorithm Components

Search Space

Defined by the solution representation:

permutations
linear (scheduling)
circular (TSP)

arrays (assignment problems: GCP)

sets or lists (partition problems: Knapsack)

32

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
MetaheuristicsLS Algorithm Components

Neighborhood function N (π) : S(π) 7→ 2S(π)

Also defined as: N : S × S → {T, F} or N ⊆ S × S

neighborhood (set) of candidate solution s: N(s) := {s′ ∈ S | N (s, s′)}
neighborhood size is |N(s)|
neighborhood is symmetric if: s′ ∈ N(s)⇒ s ∈ N(s′)

neighborhood graph of (S,N, π) is a directed vertex-weighted graph:
GN (π) := (V,A) with V = S(π) and (uv) ∈ A⇔ v ∈ N(u)
(if symmetric neighborhood ⇒ undirected graph)

Note on notation: N when set, N when collection of sets or function

33

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
Metaheuristics

A neighborhood function is also defined by means of an operator.

An operator ∆ is a collection of operator functions δ : S → S such that

s′ ∈ N(s) ⇐⇒ ∃ δ ∈ ∆, δ(s) = s′

Definition

k-exchange neighborhood: candidate solutions s, s′ are neighbors iff s differs
from s′ in at most k solution components

Examples:

1-exchange (flip) neighborhood for SAT
(solution components = single variable assignments)

2-exchange neighborhood for TSP
(solution components = edges in given graph)

34

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
MetaheuristicsLS Algorithm Components

Note:

Local search implements a walk through the neighborhood graph

Procedural versions of init, step and terminate implement sampling
from respective probability distributions.

Memory state m can consist of multiple independent attributes, i.e.,
M(π) := M1 ×M2 × . . .×Ml(π).

Local search algorithms are Markov processes:
behavior in any search state {s,m} depends only
on current position s and (limited) memory m.

35

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
MetaheuristicsLS Algorithm Components

Search step (or move):
pair of search positions s, s′ for which
s′ can be reached from s in one step, i.e., N (s, s′) and
step({s,m}, {s′,m′}) > 0 for some memory states m,m′ ∈M .

Search trajectory: finite sequence of search positions < s0, s1, . . . , sk >
such that (si−1, si) is a search step for any i ∈ {1, . . . , k}
and the probability of initializing the search at s0

is greater zero, i.e., init({s0,m}) > 0 for some memory state m ∈M .

Search strategy: specified by init and step function;
to some extent independent of problem instance and
other components of LS algorithm.

random
based on evaluation function
based on memory

36

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
Metaheuristics

Uninformed Random Picking

N := S × S
does not use memory and evaluation function

init, step: uniform random choice from S,
i.e., for all s, s′ ∈ S, init(s) := step({s}, {s′}) := 1/|S|

Uninformed Random Walk

does not use memory and evaluation function

init: uniform random choice from S

step: uniform random choice from current neighborhood,

i.e., for all s, s′ ∈ S, step({s}, {s′}) :=

(
1/|N(s)| if s′ ∈ N(s)

0 otherwise

Note: These uninformed LS strategies are quite ineffective,
but play a role in combination with more directed search strategies.

37

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
MetaheuristicsLS Algorithm Components

Evaluation (or cost) function:

function f(π) : S(π) 7→ R that maps candidate solutions of
a given problem instance π onto real numbers,
such that global optima correspond to solutions of π;

used for ranking or assessing neighbors of current
search position to provide guidance to search process.

Evaluation vs objective functions:

Evaluation function: part of LS algorithm.

Objective function: integral part of optimization problem.

Some LS methods use evaluation functions different from given objective
function (e.g., dynamic local search).

38

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
Metaheuristics

Iterative Improvement

does not use memory

init: uniform random choice from S

step: uniform random choice from improving neighbors,
i.e., step({s}, {s′}) := 1/|I(s)| if s′ ∈ I(s), and 0 otherwise,
where I(s) := {s′ ∈ S | N (s, s′) and f(s′) < f(s)}

terminates when no improving neighbor available
(to be revisited later)

different variants through modifications of step function
(to be revisited later)

Note: II is also known as iterative descent or hill-climbing.

39

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
Metaheuristics

Example: Iterative Improvement for SAT

search space S: set of all truth assignments to variables
in given formula F
(solution set S′: set of all models of F)

neighborhood function N : 1-flip neighborhood
(as in Uninformed Random Walk for SAT)

memory: not used, i.e., M := {0}
initialization: uniform random choice from S, i.e., init(∅, {a′}) := 1/|S|
for all assignments a′

evaluation function: f(a) := number of clauses in F
that are unsatisfied under assignment a
(Note: f(a) = 0 iff a is a model of F .)

step function: uniform random choice from improving neighbors, i.e.,
step(a, a′) := 1/#I(a) if s′ ∈ I(a),
and 0 otherwise, where I(a) := {a′ | N (a, a′) ∧ f(a′) < f(a)}
termination: when no improving neighbor is available
i.e., terminate(a,>) := 1 if I(a) = ∅, and 0 otherwise.

40

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
Metaheuristics

Definition:

Local minimum: search position without improving neighbors w.r.t. given
evaluation function f and neighborhood N ,
i.e., position s ∈ S such that f(s) ≤ f(s′) for all s′ ∈ N(s).

Strict local minimum: search position s ∈ S such that
f(s) < f(s′) for all s′ ∈ N(s).

Local maxima and strict local maxima: defined analogously.

41

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
Metaheuristics

There might be more than one neighbor that have better cost.

Pivoting rule decides which to choose:

Best Improvement (aka gradient descent, steepest descent, greedy
hill-climbing): Choose maximally improving neighbor,
i.e., randomly select from I∗(s) := {s′ ∈ N(s) | f(s′) = f∗},
where f∗ := min{f(s′) | s′ ∈ N(s)}.

Note: Requires evaluation of all neighbors in each step.

First Improvement: Evaluate neighbors in fixed order,
choose first improving step encountered.

Note: Can be much more efficient than Best Improvement; order of
evaluation can have significant impact on performance.

42

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
Metaheuristics

Example: Iterative Improvement for TSP (2-opt)

procedure TSP-2opt-first(s)
input: an initial candidate tour s ∈ S(∈)
output: a local optimum s ∈ S(π)

∆ = 0;
do

Improvement=FALSE;
for i = 1 to n− 2 do
if i = 1 then n′ = n− 1 elsen′ = n

for j = i+ 2 to n′ do
∆ij = d(ci, cj) + d(ci+1, cj+1)− d(ci, ci+1)− d(cj , cj+1)
if ∆ij < 0 then

UpdateTour(s,i,j);
Improvement=TRUE;

end
end

until Improvement==FALSE;
end TSP-2opt-first

ä Are we in a local optimum when it terminates?
43

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
MetaheuristicsA note on terminology

Heuristic Methods ≡ Metaheuristics ≡ Local Search Methods ≡ Stochastic
Local Search Methods ≡ Hybrid Metaheuristics

Method 6= Algorithm

Stochastic Local Search (SLS) algorithms allude to:

Local Search: informed search based on local or incomplete knowledge as
opposed to systematic search

Stochastic: use randomized choices in generating and modifying candidate
solutions. They are introduced whenever it is unknown which deterministic
rules are profitable for all the instances of interest.

44

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
MetaheuristicsEscaping from Local Optima

Enlarge the neighborhood

Restart: re-initialize search whenever a local optimum
is encountered.
(Often rather ineffective due to cost of initialization.)

Non-improving steps: in local optima, allow selection of
candidate solutions with equal or worse evaluation function value, e.g.,
using minimally worsening steps.
(Can lead to long walks in plateaus, i.e., regions of
search positions with identical evaluation function.)

Note: None of these mechanisms is guaranteed to always
escape effectively from local optima.

46

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
Metaheuristics

Diversification vs Intensification

Goal-directed and randomized components of LS strategy need to be
balanced carefully.

Intensification: aims to greedily increase solution quality or probability,
e.g., by exploiting the evaluation function.

Diversification: aim to prevent search stagnation by preventing search
process from getting trapped in confined regions.

Examples:

Iterative Improvement (II): intensification strategy.

Uninformed Random Walk/Picking (URW/P): diversification strategy.

Balanced combination of intensification and diversification mechanisms forms
the basis for advanced LS methods.

47

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
MetaheuristicsLearning goals of this section

Review basic theoretical concepts

Learn about techniques and goals of experimental search space analysis.

Develop intuition on which features of local search are adequate to
contrast a specific situation.

49

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
MetaheuristicsDefinitions

Search space S

Neighborhood function N : S ⊆ 2S

Evaluation function f(π) : S 7→ R

Problem instance π

Definition:

The search landscape L is the vertex-labeled neighborhood graph given by the
triplet L = (S(π), N(π), f(π)).

50

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
MetaheuristicsFundamental Search Space Properties

The behavior and performance of an LS algorithm on a given problem instance
crucially depends on properties of the respective search space.

Simple properties of search space S:

search space size |S|
reachability: solution j is reachable from solution i if neighborhood graph
has a path from i to j.

strongly connected neighborhood graph

weakly optimally connected neighborhood graph

search space diameter diam(GN)
(= maximal distance between any two candidate solutions)
Note: Diameter of GN = worst-case lower bound for number of search
steps required for reaching (optimal) solutions.
Maximal shortest path between any two vertices in the neighborhood
graph.

51

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
MetaheuristicsSolution Representations and Neighborhoods

Three different types of solution representations:
Permutation

linear permutation: Single Machine Total Weighted Tardiness Problem
circular permutation: Traveling Salesman Problem

Assignment: Graph Coloring Problem, SAT, CSP

Set, Partition: Knapsack, Max Independent Set

A neighborhood function N : S → S × S is also defined through an operator.
An operator ∆ is a collection of operator functions δ : S → S such that

s′ ∈ N(s) ⇐⇒ ∃δ ∈ ∆ | δ(s) = s′

53

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
MetaheuristicsPermutations

Π(n) indicates the set all permutations of the numbers {1, 2, . . . , n}

(1, 2 . . . , n) is the identity permutation ι.

If π ∈ Π(n) and 1 ≤ i ≤ n then:

πi is the element at position i

posπ(i) is the position of element i

Alternatively, a permutation is a bijective function π(i) = πi

the permutation product π · π′ is the composition (π · π′)i = π′(π(i))

For each π there exists a permutation such that π−1 · π = ι

∆N ⊂ Π

54

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
MetaheuristicsNeighborhood Operators for Linear Permutations

Swap operator
∆S = {δiS |1 ≤ i ≤ n}

δiS(π1 . . . πiπi+1 . . . πn) = (π1 . . . πi+1πi . . . πn)

Interchange operator
∆X = {δijX |1 ≤ i < j ≤ n}

δijX(π) = (π1 . . . πi−1πjπi+1 . . . πj−1πiπj+1 . . . πn)

(≡ set of all transpositions)

Insert operator
∆I = {δijI |1 ≤ i ≤ n, 1 ≤ j ≤ n, j 6= i}

δijI (π) =


(π1 . . . πi−1πi+1 . . . πjπiπj+1 . . . πn) i < j
(π1 . . . πjπiπj+1 . . . πi−1πi+1 . . . πn) i > j

55

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
MetaheuristicsNeighborhood Operators for Circular Permutations

Reversal (2-edge-exchange)

∆R = {δijR |1 ≤ i < j ≤ n}
δijR (π) = (π1 . . . πi−1πj . . . πiπj+1 . . . πn)

Block moves (3-edge-exchange)

∆B = {δijkB |1 ≤ i < j < k ≤ n}
δijB (π) = (π1 . . . πi−1πj . . . πkπi . . . πj−1πk+1 . . . πn)

Short block move (Or-edge-exchange)

∆SB = {δijSB |1 ≤ i < j ≤ n}
δijSB(π) = (π1 . . . πi−1πjπj+1πj+2πi . . . πj−1πj+3 . . . πn)

56

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
MetaheuristicsNeighborhood Operators for Assignments

An assignment can be represented as a mapping
σ : {X1 . . . Xn} → {v : v ∈ D, |D| = k}:

σ = {Xi = vi, Xj = vj , . . .}
One-exchange operator

∆1E = {δil1E |1 ≤ i ≤ n, 1 ≤ l ≤ k}

δil1E
`
σ) =

˘
σ : σ′(Xi) = vl and σ′(Xj) = σ(Xj) ∀j 6= i

¯
Two-exchange operator

∆2E = {δij2E |1 ≤ i < j ≤ n}

δij2E
˘
σ : σ′(Xi) = σ(Xj), σ

′(Xj) = σ(Xi) and σ′(Xl) = σ(Xl) ∀l 6= i, j
¯

57

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
MetaheuristicsNeighborhood Operators for Partitions or Sets

An assignment can be represented as a partition of objects selected and not
selected s : {X} → {C,C}
(it can also be represented by a bit string)

One-addition operator
∆1E = {δv1E |v ∈ C}

δv1E
`
s) =

˘
s : C′ = C ∪ v and C

′
= C \ v}

One-deletion operator
∆1E = {δv1E |v ∈ C}

δv1E
`
s) =

˘
s : C′ = C \ v and C

′
= C ∪ v}

Swap operator
∆1E = {δv1E |v ∈ C, u ∈ C}

δv1E
`
s) =

˘
s : C′ = C ∪ u \ v and C

′
= C ∪ v \ u}

58

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
MetaheuristicsDistances

Set of paths in GN with s, s′ ∈ S:
Φ(s, s′) = {(s1, . . . , sh)|s1 = s, sh = s′ ∀i : 1 ≤ i ≤ h− 1, 〈si, si+1〉 ∈ EN}

If φ = (s1, . . . , sh) ∈ Φ(s, s′) let |φ| = h be the length of the path; then the
distance between any two solutions s, s′ is the length of shortest path between
s and s′ in GN :

dN (s, s′) = min
φ∈Φ(s,s′)

|Φ|

diam(GN) = max{dN (s, s′) | s, s′ ∈ S}

Note: with permutations it is easy to see that:

dN (π, π′) = dN (π−1 · π′, ι)

60

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
Metaheuristics

Distances for Linear Permutation Representations

Swap neighborhood operator
computable in O(n2) by the precedence based distance metric:
dS(π, π′) = #{〈i, j〉|1 ≤ i < j ≤ n, posπ′(πj) < posπ′(πi)}.
diam(GN) = n(n− 1)/2

Interchange neighborhood operator
Computable in O(n) +O(n) since
dX(π, π′) = dX(π−1 · π′, ι) = n− c(π−1 · π′)
where c(π) is the number of disjoint cycles that decompose a permutation.
diam(GNX) = n− 1

Insert neighborhood operator
Computable in O(n) +O(n log(n)) since
dI(π, π

′) = dI(π
−1 · π′, ι) = n− |lis(π−1 · π′)| where lis(π) denotes the

length of the longest increasing subsequence.
diam(GNI) = n− 1

61

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
Metaheuristics

Distances for Circular Permutation Representations

Reversal neighborhood operator
sorting by reversal is known to be NP-hard
surrogate in TSP: bond distance

Block moves neighborhood operator
unknown whether it is NP-hard but there does not exist a proved
polynomial-time algorithm

62

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
Metaheuristics

Distances for Assignment Representations

Hamming Distance

An assignment can be seen as a partition of n in k mutually exclusive
non-empty subsets

One-exchange neighborhood operator
The partition-distance d1E(P,P ′) between two partitions P and P ′ is the
minimum number of elements that must be moved between subsets in P
so that the resulting partition equals P ′.
The partition-distance can be computed in polynomial time by solving an
assignment problem. Given the assignment matrix M where in each cell
(i, j) it is |Si ∩ S′j | with Si ∈ P and S′j ∈ P ′ and defined A(P,P ′) the
assignment of maximal sum then it is d1E(P,P ′) = n−A(P,P ′)

63

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
Metaheuristics

Example: Search space size and diameter for the TSP

Search space size = (n− 1)!/2

Insert neighborhood
size = (n− 3)n
diameter = n− 2

2-exchange neighborhood
size =

`
n
2

´
= n · (n− 1)/2

diameter in [n/2, n− 2]

3-exchange neighborhood
size =

`
n
3

´
= n · (n− 1) · (n− 2)/6

diameter in [n/3, n− 1]

64

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
Metaheuristics

Example: Search space size and diameter for SAT

SAT instance with n variables, 1-flip neighborhood:
GN = n-dimensional hypercube; diameter of GN = n.

65

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
Metaheuristics

Let N1 and N2 be two different neighborhood functions for the same instance
(S, f, π) of a combinatorial optimization problem.

If for all solutions s ∈ S we have N1(s) ⊆ N2(s′) then we say that N2

dominates N1

Example:

In TSP, 1-insert is domnated by 3-exchange.
(1-insert corresponds to 3-exchange and there are 3-exchnages that are not
1-insert)

66

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
MetaheuristicsEfficiency vs Effectiveness

The performance of local search is determined by:

1. quality of local optima (effectiveness)

2. time to reach local optima (efficiency):

A. time to move from one solution to the next

B. number of solutions to reach local optima

68

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
Metaheuristics

Note:

Local minima depend on g and neighborhood function N .
Larger neighborhoods N induce

neighborhood graphs with smaller diameter;
fewer local minima.

Ideal case: exact neighborhood, i.e., neighborhood function
for which any local optimum is also guaranteed to be
a global optimum.

Typically, exact neighborhoods are too large to be searched effectively
(exponential in size of problem instance).

But: exceptions exist, e.g., polynomially searchable neighborhood in
Simplex Algorithm for linear programming.

69

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
Metaheuristics

Trade-off (to be assessed experimentally):

Using larger neighborhoods
can improve performance of II (and other LS methods).

But: time required for determining improving search steps
increases with neighborhood size.

Speedups Techniques for Efficient Neighborhood Search

1) Incremental updates

2) Neighborhood pruning

70

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
MetaheuristicsSpeedups in Neighborhood Examination

1) Incremental updates (aka delta evaluations)

Key idea: calculate effects of differences between
current search position s and neighbors s′ on
evaluation function value.

Evaluation function values often consist of
independent contributions of solution components;
hence, f(s) can be efficiently calculated from f(s′) by differences between
s and s′ in terms of solution components.

Typically crucial for the efficient implementation of
II algorithms (and other LS techniques).

71

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
Metaheuristics

Example: Incremental updates for TSP

solution components = edges of given graph G

standard 2-exchange neighborhood, i.e., neighboring
round trips p, p′ differ in two edges

w(p′) := w(p) − edges in p but not in p′

+ edges in p′ but not in p

Note: Constant time (4 arithmetic operations), compared to
linear time (n arithmetic operations for graph with n vertices)
for computing w(p′) from scratch.

72

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
Metaheuristics

2) Neighborhood Pruning

Idea: Reduce size of neighborhoods by excluding neighbors that are likely
(or guaranteed) not to yield improvements in f .

Note: Crucial for large neighborhoods, but can be also very useful for
small neighborhoods (e.g., linear in instance size).

Example: Heuristic candidate lists for the TSP

Intuition: High-quality solutions likely include short edges.

Candidate list of vertex v: list of v’s nearest neighbors (limited number),
sorted according to increasing edge weights.

Search steps (e.g., 2-exchange moves) always involve edges to elements of
candidate lists.

Significant impact on performance of LS algorithms
for the TSP.

73

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
MetaheuristicsOverview

Delta evaluations and neighborhood examinations in:

Permutations
TSP
SMTWTP

Assignments
SAT

Sets
Max Independent Set

74

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
MetaheuristicsLocal Search for TSP

k-exchange heuristics
2-opt
2.5-opt
Or-opt
3-opt

complex neighborhoods
Lin-Kernighan
Helsgaun’s Lin-Kernighan
Dynasearch
ejection chains approach

Implementations exploit speed-up techniques

1 neighborhood pruning: fixed radius nearest neighborhood search

2 neighborhood lists: restrict exchanges to most interesting candidates

3 don’t look bits: focus perturbative search to “interesting” part

4 sophisticated data structures

75

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
Metaheuristics

TSP data structures

Tour representation:

determine pos of v in π

determine succ and prec

check whether uk is visited between ui and uj
execute a k-exchange (reversal)

Possible choices:

|V | < 1.000 array for π and π−1

|V | < 1.000.000 two level tree

|V | > 1.000.000 splay tree

Moreover static data structure:

priority lists

k-d trees

76

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
Metaheuristics

SMTWTP

Interchange: size
`
n
2

´
and O(|i− j|) evaluation each

first-improvement: πj , πk
pπj ≤ pπk for improvements, wjTj +wkTk must decrease because jobs

in πj , . . . , πk can only increase their tardiness.
pπj ≥ pπk possible use of auxiliary data structure to speed up the com-

putation
first-improvement: πj , πk
pπj ≤ pπk for improvements, wjTj + wkTk must decrease at least as

the best interchange found so far because jobs in πj , . . . , πk
can only increase their tardiness.

pπj ≥ pπk possible use of auxiliary data structure to speed up the com-
putation

Swap: size n− 1 and O(1) evaluation each

Insert: size (n− 1)2 and O(|i− j|) evaluation each
But possible to speed up with systematic examination by means of swaps:
an interchange is equivalent to |i− j| swaps hence overall examination
takes O(n2)

77

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
MetaheuristicsLS for GCP

search space S: set of all k-colorings of G

solution set S′: set of all proper k-coloring of F

neighborhood function N : 1-exchange neighborhood
(as in Uninformed Random Walk)

memory: not used, i.e., M := {0}
initialization: uniform random choice from S, i.e., init{∅, ϕ′} := 1/|S|
for all colorings ϕ′

step function:
evaluation function: g(ϕ) := number of edges in G
whose ending vertices are assigned the same color under assignment ϕ
(Note: g(ϕ) = 0 iff ϕ is a proper coloring of G.)
move mechanism: uniform random choice from improving neighbors, i.e.,
step{ϕ,ϕ′} := 1/|I(ϕ)| if s′ ∈ I(ϕ),
and 0 otherwise, where I(ϕ) := {ϕ′ | N (ϕ,ϕ′) ∧ g(ϕ′) < g(ϕ)}

termination: when no improving neighbor is available
i.e., terminate{ϕ,>} := 1 if I(ϕ) = ∅, and 0 otherwise.

78

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
MetaheuristicsTabu Search

Key idea: Use aspects of search history (memory) to escape from local minima.

Associate tabu attributes with candidate solutions or
solution components.

Forbid steps to search positions recently visited by
underlying iterative best improvement procedure based on
tabu attributes.

Tabu Search (TS):
determine initial candidate solution s
While termination criterion is not satisfied:
|| determine set N ′ of non-tabu neighbors of s
|| choose a best improving candidate solution s′ in N ′
|||| update tabu attributes based on s′
b s := s′

80

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
Metaheuristics

Note:

Non-tabu search positions in N(s) are called
admissible neighbors of s.

After a search step, the current search position
or the solution components just added/removed from it
are declared tabu for a fixed number of subsequent
search steps (tabu tenure).

Often, an additional aspiration criterion is used: this specifies
conditions under which tabu status may be overridden (e.g., if
considered step leads to improvement in incumbent solution).

Crucial for efficient implementation:
keep time complexity of search steps minimal
by using special data structures, incremental updating
and caching mechanism for evaluation function values;
efficient determination of tabu status:
store for each variable x the number of the search step
when its value was last changed itx; x is tabu if
it− itx < tt, where it = current search step number.

81

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
Metaheuristics

Note: Performance of Tabu Search depends crucially on
setting of tabu tenure tt:

tt too low ⇒ search stagnates due to inability to escape
from local minima;

tt too high ⇒ search becomes ineffective due to overly restricted search
path (admissible neighborhoods too small)

82

Construction Heuristics
Local Search
Software Tools

Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search
MetaheuristicsIterated Local Search

Key Idea: Use two types of LS steps:
subsidiary local search steps for reaching
local optima as efficiently as possible (intensification)

perturbation steps for effectively
escaping from local optima (diversification).

Also: Use acceptance criterion to control diversification vs intensification
behavior.

Iterated Local Search (ILS):
determine initial candidate solution s
perform subsidiary local search on s
While termination criterion is not satisfied:
|| r := s
|| perform perturbation on s
|| perform subsidiary local search on s
|||| based on acceptance criterion,
b keep s or revert to s := r

83

Construction Heuristics
Local Search
Software Tools

The Code Delivered
Practical Exercise

Outline
1. Construction Heuristics

General Principles
Metaheuristics

A∗ search
Rollout
Beam Search
Iterated Greedy
GRASP

2. Local Search
Beyond Local Optima
Search Space Properties
Neighborhood Representations
Distances
Efficient Local Search

Efficiency vs Effectiveness
Application Examples

Metaheuristics
Tabu Search
Iterated Local Search

3. Software Tools
The Code Delivered
Practical Exercise

84

Construction Heuristics
Local Search
Software Tools

The Code Delivered
Practical Exercise

Software Tools

Modeling languages
interpreted languages with a precise syntax and semantics

Software libraries
collections of subprograms used to develop software

Software frameworks
set of abstract classes and their interactions

frozen spots (remain unchanged in any instantiation of the framework)

hot spots (parts where programmers add their own code)

85

Construction Heuristics
Local Search
Software Tools

The Code Delivered
Practical Exercise

No well established software tool for Local Search:

the apparent simplicity of Local Search induces to build applications from
scratch.

crucial roles played by delta/incremental updates which is problem
dependent

the development of Local Search is in part a craft,
beside engineering and science.

lack of a unified view of Local Search.

86

Construction Heuristics
Local Search
Software Tools

The Code Delivered
Practical Exercise

Software tools for Local Search and Metaheuristics

Tool Reference Language Type
ILOG ? C++, Java, .NET LS
GAlib ? C++ GA
GAUL ? C GA
Localizer++ ? C++ Modeling
HotFrame ? C++ LS
EasyLocal++ ? C++, Java LS
HSF ? Java LS, GA
ParadisEO ? C++ EA, LS
OpenTS ? Java TS
MDF ? C++ LS
TMF ? C++ LS
SALSA ? — Language
Comet ? — Language

table prepared by L. Di Gaspero

87

Construction Heuristics
Local Search
Software Tools

The Code Delivered
Practical Exercise

Separation of Concepts in Local Search Algorithms

implemented in EasyLocal++

88

Construction Heuristics
Local Search
Software Tools

The Code Delivered
Practical Exercise

Input (util.h, util.c)

typedef struct {
long int number_jobs; /∗ number of jobs in instance ∗/
long int release_date[MAX_JOBS]; /∗there is no release date for these instances∗/
long int proc_time[MAX_JOBS];
long int weight[MAX_JOBS];
long int due_date[MAX_JOBS];

} instance_type;

instance_type instance;

void read_problem_size (char name[100])
void read_instances (char input_file_name[100])

90

Construction Heuristics
Local Search
Software Tools

The Code Delivered
Practical Exercise

State/Solution (util.h)

typedef struct {
long int job_at_pos[MAX_JOBS]; /∗ Gives the job at a certain pos ∗/
long int pos_of_job[MAX_JOBS]; /∗ Gives the position of a specific job ∗/
long int completion_time_job[MAX_JOBS]; /∗ Gives C_j of job j ∗/
long int start_time_job[MAX_JOBS]; /∗ Gives start time of job j ∗/
long int tardiness_job[MAX_JOBS]; /∗ Gives T_j of job j ∗/
long int value; /∗ Objective function value ∗/

} sol_representation;

sol_representation sequence;

Output (util.c)

void print_sequence (long int k)
void print_completion_times ()

State Manager (util.c)

void construct_sequence_random ()
void construct_sequence_canonical ()
long int evaluate ()

91

Construction Heuristics
Local Search
Software Tools

The Code Delivered
Practical Exercise

Random Generator (random.h, random.c)

void set_seed (double arg)
double MRG32k3a (void)
double ranU01 (void)
int ranUint (int i, int j)
void shuffle (int *X, int size)

Timer (timer.c)

double getCurrentTime ()

92

Your Task on 1|| ∑j wjTj1|| ∑j wjTj1|| ∑j wjTj

Implement two basic local search procedures that return a local optimum:

void ls_swap_first() {};
void ls_interchange_first() {};

Implement the other neighborhood for permutation representation
mentioned at the lecture from one of the two previous neighborhoods.
Provide computational analysis of the LS implemented. Consider:

size of the neighborhood
diameter of neighborhood
complete neighborhood examination
local optima attainment

Devise speed ups to reduce the computational complexity of the LS
implemented

Improve your heuristic in order to find solutions of better quality. (Hint:
use a construction heuristic and/or a metaheuristic)

