
Department of Mathematics and Computer Science
University of Southern Denmark, Odense

December 27, 2009
Marco Chiarandini

DM533 - Introduction to Artificial Intelligence

Exercise Collection, Fall 2009

Exercise: Naive Bayesian Networks

1. Suppose that we collected the data in Table 1 concerning customers that buy or not
a computer. The data samples are described by attributes age, income, student, and
credit. The class label attribute, buy, that tells whether the person buys a computer,
has two distinct values, yes and no. Considering these data as a training set for a
naive Baysian classifier, classify the sample

X = (age = youth, income = medium, student = yes, credit = f air)

Solution

We need to maximize Pr(X|Ci) Pr(Ci), for i = 1, 2. Pr(Ci), the a priori probability of each
class, can be estimated based on the training samples:

Pr(buy = yes) = 9/14

Pr(buy = no) = 5/14

To compute Pr(X|Ci), for i = 1, 2, we recall that

Pr(X|Ci) ≈
n

∏
k=1

Pr(xk|Ci)

1

DM533 – Fall 2009 Exercise Collection

we compute the following conditional probabilities:

Pr(age = youth|buy = yes) = 2/9

Pr(age = youth|buy = no) = 3/5

Pr(income = medium|buy = yes) = 4/9

Pr(income = medium|buy = no) = 2/5

Pr(student = yes|buy = yes) = 6/9

Pr(student = yes|buy = no) = 1/5

Pr(credit = f air|buy = yes) = 6/9

Pr(credit = f air|buy = no) = 2/5

Using the above probabilities, we obtain

Pr(X|buy = yes) = Pr(age = youth|buy = yes)
Pr(income = medium|buy = yes)
Pr(student = yes|buy = yes)
Pr(credit = f air|buy = yes)
= 2

9
4
9

6
9

6
9 = 0.044.

Similarly,

Pr(X|buy = no) =
3
5

2
5

1
5

2
5

= 0.019

To find the class that maximizes

Pr(X|Ci) Pr(Ci),

we compute
Pr(X|buy = yes) Pr(buy = yes) = 0.028

Pr(X|buy = no) Pr(buy = no) = 0.007

Thus the naive Bayesian classifier predicts buy = yes for sample X.

2

1 Decision Trees

f
1

1 2

1

2

-1

-2

-1-2

–

–

– + +

f
2

Data points are: Negative: (-1, 0) (2, 1) (2, -2) Positive: (0, 0) (1, 0)
Construct a decision tree using the algorithm described in the notes for the data above.

1. Show the tree you constructed in the diagram below. The diagram is more than big
enough, leave any parts that you don’t need blank.

2. Draw the decision boundaries on the graph at the top of the page.

2

3. Explain how you chose the top-level test in the tree. The following table may be useful.

x y -(x/y)*lg(x/y) x y -(x/y)*lg(x/y)
1 2 0.50 1 5 0.46
1 3 0.53 2 5 0.53
2 3 0.39 3 5 0.44
1 4 0.50 4 5 0.26
3 4 0.31

4. What class does the decision tree predict for the new point: (1, -1.01)

3

2 Nearest Neighbors

f
1

1 2

1

2

-1

-2

-1-2

–

–

– + +

f
2

Data points are: Negative: (-1, 0) (2, 1) (2, -2) Positive: (0, 0) (1, 0)

1. Draw the decision boundaries for 1-Nearest Neighbors on the graph above. Your draw-
ing should be accurate enough so that we can tell whether the integer-valued coordinate
points in the diagram are on the boundary or, if not, which region they are in.

2. What class does 1-NN predict for the new point: (1, -1.01) Explain why.

3. What class does 3-NN predict for the new point: (1, -1.01) Explain why.

4

6 Learning algorithms

For each of the learning situations below, say what learning algorithm would be best to use,
and why.

1. You have about 1 million training examples in a 6-dimensional feature space. You only
expect to be asked to classify 100 test examples.

2. You are going to develop a classifier to recommend which children should be assigned
to special education classes in kindergarten. The classifier has to be justified to the
board of education before it is implemented.

3. You are working for Am*z*n as it tries to take over the retailing world. You are trying
to predict whether customer X will like a particular book, as a function of the input
which is a vector of 1 million bits specifying whether each of Am*z*n’s other customers
liked the book. You will train a classifier on a very large data set of books, where
the inputs are everyone else’s preferences for that book, and the output is customer
X’s preference for that book. The classifier will have to be updated frequently and
efficiently as new data comes in.

10

4. You are trying to predict the average rainfall in California as a function of the measured
currents and tides in the Pacific ocean in the previous six months.

11

4 Machine Learning — Continuous Features (20 points)

In all the parts of this problem we will be dealing with one-dimensional data, that is, a set
of points (xi) with only one feature (called simply x). The points are in two classes given
by the value of yi. We will show you the points on the x axis, labeled by their class values;
we also give you a table of values.

4.1 Nearest Neighbors

i xi yi

1 1 0
2 2 1
3 3 1
4 4 0
5 6 1
6 7 1
7 10 0
8 11 1

1. In the figure below, draw the output of a 1-Nearest-Neighbor classifier over the range
indicated in the figure.

11

2. In the figure below, draw the output of a 5-Nearest-Neighbor classifier over the range
indicated in the figure.

12

4.2 Decision Trees

Answer this problem using the same data as in the Nearest Neighbor problem above.

Which of the following three tests would be chosen as the top node in a decision tree?

x ≤ 1.5 x ≤ 5 x ≤ 10.5

Justify your answer.

You may find this table useful.
x y -(x/y)*lg(x/y) x y -(x/y)*lg(x/y)
1 2 0.50 1 8 0.38
1 3 0.53 3 8 0.53
2 3 0.39 5 8 0.42
1 4 0.50 7 8 0.17
3 4 0.31 1 9 0.35
1 5 0.46 2 9 0.48
2 5 0.53 4 9 0.52
3 5 0.44 5 9 0.47
4 5 0.26 7 9 0.28
1 6 0.43 8 9 0.15
2 6 0.53 1 10 0.33
5 6 0.22 3 10 0.52
1 7 0.40 7 10 0.36
2 7 0.52 9 10 0.14
3 7 0.52
4 7 0.46
5 7 0.35
6 7 0.19

13

6 Pruning Trees (20 points)

Following are some different strategies for pruning decision trees. We assume that we grow
the decision tree until there is one or a small number of elements in each leaf. Then, we
prune by deleting individual leaves of the tree until the score of the tree starts to get worse.
The question is how to score each possible pruning of the tree.

For each possible definition of the score below, explain whether or not it would be a good
idea and give a reason why or why not.

1. The score is the percentage correct of the tree on the training set.

2. The score is the percentage correct of the tree on a separate validation set.

3. The score is the percentage correct of the tree, computed using cross validation.

19

4. The score is the percentage correct of the tree, computed on the training set, minus a
constant C times the number of nodes in the tree.

C is chosen in advance by running this algorithm (grow a large tree then prune in order
to maximize percent correct minus C times number of nodes) for many different values
of C, and choosing the value of C that minimizes training-set error.

5. The score is the percentage correct of the tree, computed on the training set, minus a
constant C times the number of nodes in the tree.

C is chosen in advance by running cross-validation trials of this algorithm (grow a
large tree then prune in order to maximize percent correct minus C times number of
nodes) for many different values of C, and choosing the value of C that minimizes
cross-validation error.

20

!"#$%&'()*((+&,"-.-/(012(3#.-456((
!

!,"4(7*(02(!#.-456!
!

"#$%&!'(&!%)*'!)+!,*#$-!.!$&./&*'!$&#-(0)/!%1.**#+#&/!-/)2*!2#'(!'(&!*#3&!)+!'(&!'/.#$#$-!

&'4!)5&'#5&*!)$&!'/#&*!')!&1#5#$.'&!/&6,$6.$'!7)#$'*!+/)5!'(&!'/.#$#$-!*&'8!!9(&*&!./&!

7)#$'*!2()*&!/&5):.1!6)&*!$)'!.++&%'!'(&!0&(.:#)/!)+!'(&!%1.**#+#&/!+)/!.$;!7)**#01&!$&2!

7)#$'8!

!

<8!=$!'(&!+#-,/&!0&1)24!*>&'%(!'(&!6&%#*#)$!0),$6./;!+)/!.!<?$&./&*'?$&#-(0)/!/,1&!.$6!

%#/%1&!'(&!/&6,$6.$'!7)#$'*8!

!

8 9 9

8 9(
8 9

8
8(

8
8 8 8

9

9(9(9
9 9(

@8!A(.'!#*!'(&!-&$&/.1!%)$6#'#)$B*C!/&D,#/&6!+)/!.!7)#$'!')!0&!6&%1./&6!/&6,$6.$'!+)/!.!<?

$&./&*'?$&#-()/!/,1&E!!F**,5&!2&!(.:&!)$1;!'2)!%1.**&*!BG4!?C8!!H&*'.'#$-!'(&!6&+#$#'#)$!

)+!/&6,$6.$'!BI/&5):#$-!#'!6)&*!$)'!%(.$-&!.$;'(#$-IC!#*!$)'!.$!.%%&7'.01&!.$*2&/8!!J#$'!

K!'(#$>!.0),'!'(&!$&#-(0)/())6!)+!/&6,$6.$'!7)#$'*8!

! <L

!"#$%&'%()%!*+,$-.!
!

!
!

/%
0 / /

/
0

0% /%
0

0 0
/"!

/% /
/ /%

#!

$%&'%!()!"!(*!#!+(,-.!/0!1*0)0**0.!23!24!&4&5&2-!31-&5!)(*!2!.0'&3&(4!6&.045&)&'25&(47!5*008!!

9,35&):!:(,*!243+0*!4,;0*&'2--:<!

!

!

!

!

!

!

!
!" #" $%!&#'()*%!&#'" " !" #" $%!&#'()*%!&#'"

+ ," -./- " + 0 -.10"

+ 1" -./1 " 1 0 -./1"

, 1" -.12 " / 0 -.3,"

+ 3" -./- " 4 0 -.+4"

1 3" -.1+ " + 2 -.1/"

+ /" -.35 " , 2 -.30"

, /" -./1 " 3 2 -./,"

1 /" -.33 " / 2 -.34"

3 /" -.,5 " 4 2 -.,0"

+ 5" -.31 " 0 2 -.+/"

, 5" -./1 " + +- -.11"

/ 5" -.,, " 1 +- -./,"

+ 4" -.3- " 4 +- -.15"

, 4" -./, " 2 +- -.+3"

1 4" -./, " " " "

3 4" -.35 " " " "

/ 4" -.1/ " " " "

5 4" -.+2 " " " "

! =>

!"#$%&'()*((+,&"-.//.01(2)3(4#.0/56(
!

"#$!%&'(!#)!*(%!+,-%$./+%0!1%&$2/23!4%*(#0+!*(&*!5%!(&.%!+*,0/%06!/20/'&*%!(#5!*(%!

4%*(#0!'#,10!#.%$)/*!*(%!*$&/2/23!0&*&!7'#2+/0%$!8#*(!9#,$!0%+/32!'(#/'%+!&+!5%11!&+!*(%!

$&/2/23:!&20!5(&!9#,!'&2!0#!*#!4/2/4/;%!*(/+!-#++/8/1/*9<!!=(%$%!4&9!8%!4#$%!*(&2!#2%!

4%'(&2/+4!)#$!#.%$)/**/236!4&>%!+,$%!*(&*!9#,!/0%2*/)9!*(%4!&11<!

!

!7"/(8*(9&7"&5/(9&.1:$#"5(2;(!#.0/56(
!?<!@#5!0#%+!/*!#.%$)/*A!

!

!

!

!

!

!

!!B<!@#5!'&2!9#,!$%0,'%!#.%$)/**/23A!

(

(

(

(

(

(

(

(

(

(

!7"/(<*(=&>.5.#0(?"&&5(2;(!#.0/56(
!?<!@#5!0#%+!/*!#.%$)/*A!

!

!

!

!

!

!

!!B<!@#5!'&2!9#,!$%0,'%!#.%$)/**/23A!

! BC

!"#$%&'()*(+,-'./-0#"(123(,#./045((
!

"#$$%&'!()*(!+%#!,*-(!(%!.#/01!*!$2%32*4!()*(!1'('5(&!,)'()'2!*-!/-5%4/-3!'64*/0!

4'&&*3'!/&!&$*4!%2!-%(7!!8%#!1'5/1'!(%!*((*59!()/&!#&/-3!4*5)/-'!0'*2-/-37!!"%:!+%#!

5%00'5(!*!0*23'!-#4.'2!%;!(2*/-/-3!4'&&*3'&!*-1!0*.'0!()'4!*&!&$*4!%2!-%(6&$*47!!8%#!

;#2()'2!1'5/1'!()*(!+%#!,/00!#&'!()'!$2'&'-5'!%;!/-1/</1#*0!,%21&!/-!()'!.%1+!%;!()'!

4'&&*3'!*&!;'*(#2'&7!!=)*(!/&:!+%#!5%00'5(!'<'2+!,%21!;%#-1!/-!()'!(2*/-/-3!&'(!*-1!*&&/3-!

(%!'*5)!%-'!*-!/-1'>:!;2%4!?!(%!@7!!=)'-:!3/<'-!*!4'&&*3':!+%#!5%-&(2#5(!*!;'*(#2'!<'5(%2!

,/()!@!'-(2/'&!*-1!,2/('!/-!'*5)!'-(2+!*!-#4.'2!()*(!/-1/5*('&!)%,!4*-+!(/4'&!()'!,%21!

*$$'*2&!/-!()*(!4'&&*3'7!

!

!-"0(6*(17(!#./045!
!

A;!+%#!)*1!(%!5)%%&'!.'(,''-!*!@'*2'&(!@'/3).%2!/4$0'4'-(*(/%-!%2!*-!B'5/&/%-!=2''!

/4$0'4'-(*(/%-:!,)/5)!,%#01!+%#!5)%%&'C!!D#&(/;+!+%#2!*-&,'2!.2/';0+!.%()!/-!('24&!%;!

'>$'5('1!*55#2*5+!*-1!';;/5/'-5+!%;!%$'2*(/%-7!!A-1/5*('!()'!&(2'-3()!*-1!,'*9-'&&'&!%;!

'*5)!*$$2%*5)7!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! EF

3 Perceptron (7 pts)

x
1

1 2

1

2

-1

-2

-1-2

–

– +

x
2

Data points are: Negative: (-1, 0) (2, -2) Positive: (1, 0). Assume that the points are
examined in the order given here.

Recall that the perceptron algorithm uses the extended form of the data points in which
a 1 is added as the 0th component.

1. The linear separator obtained by the standard perceptron algorithm (using a step size
of 1.0 and a zero initial weight vector) is (0 1 2). Explain how this result was obtained.

2. What class does this linear classifier predict for the new point: (2.0, -1.01)

3. Imagine we apply the perceptron learning algorithm to the 5 point data set we used on
Problem 1: Negative: (-1, 0) (2, 1) (2, -2), Positive: (0, 0) (1, 0). Describe qualitatively
what the result would be.

5

6 Perceptron (8 points)

The following table shows a data set and the number of times each point is misclassified
during a run of the perceptron algorithm, starting with zero weights. What is the equation
of the separating line found by the algorithm, as a function of x1, x2, and x3? Assume that
the learning rate is 1 and the initial weights are all zero.

x1 x2 x3 y times misclassified
2 3 1 +1 12
2 4 0 +1 0
3 1 1 -1 3
1 1 0 -1 6
1 2 1 -1 11

15

!"#$%&'()*((+,&"-.//.01(2)3(4#.0/56(
!

"#$!%&'(!#)!*(%!+,-%$./+%0!1%&$2/23!4%*(#0+!*(&*!5%!(&.%!+*,0/%06!/20/'&*%!(#5!*(%!

4%*(#0!'#,10!#.%$)/*!*(%!*$&/2/23!0&*&!7'#2+/0%$!8#*(!9#,$!0%+/32!'(#/'%+!&+!5%11!&+!*(%!

$&/2/23:!&20!5(&!9#,!'&2!0#!*#!4/2/4/;%!*(/+!-#++/8/1/*9<!!=(%$%!4&9!8%!4#$%!*(&2!#2%!

4%'(&2/+4!)#$!#.%$)/**/236!4&>%!+,$%!*(&*!9#,!/0%2*/)9!*(%4!&11<!

!

!7"/(8*(9&7"&5/(9&.1:$#"5(2;(!#.0/56(
!?<!@#5!0#%+!/*!#.%$)/*A!

!

!

!

!

!

!

!!B<!@#5!'&2!9#,!$%0,'%!#.%$)/**/23A!

(

(

(

(

(

(

(

(

(

(

!7"/(<*(=&>.5.#0(?"&&5(2;(!#.0/56(
!?<!@#5!0#%+!/*!#.%$)/*A!

!

!

!

!

!

!

!!B<!@#5!'&2!9#,!$%0,'%!#.%$)/**/23A!

! BC

!"#$%&'%()%!*+,$-.!
!

"##$%&!'()'!*+$!,)-'&.!'+!/&.$0&!'(&!#12&!+3!'(&!3&)'$/&!4&0'+/#!5.$/1-6!'/)1-1-6!)-.!

07)##1310)'1+-89!3+/!&)0(!+3!'(&!)::/+)0(&#!;&7+,!1-.10)'&!,(*!1'!%16('!;&!)!6++.!+/!;).!

1.&)<!

!

=<! >#&!+-7*!'(&!,+/.#!'()'!)::&)/!1-!#:)%!%&##)6&#<!
!

!

!

!

!

!

!

!

!

!

?<!!@71%1-)'&!,+/.#!'()'!)/&!4&/*!0+%%+-!1-!'(&!,(+7&!.)')!#&'<!

! AB

4 Search Problem formulation (23 points)

Consider a Mars rover that has to drive around the surface, collect rock samples, and return to the
lander. We want to construct a plan for its exploration.

• It has batteries. The batteries can be charged by stopping and unfurling the solar collectors
(pretend it’s always daylight). One hour of solar collection results in one unit of battery
charge. The batteries can hold a total of 10 units of charge.

• It can drive. It has a map at 10-meter resolution indicating how many units of battery charge
and how much time (in hours) will be required to reach a suitable rock in each square.

• It can pick up a rock. This requires one unit of battery charge. The robot has a map at
10-meter resolution that indicates the type of rock expected in that location and the expected
weight of rocks in that location. Assume only one type of rock and one size can be found in
each square.

The objective for the rover is to get one of each of 10 types of rocks, within three days, while
minimizing a combination of their total weight and the distance traveled. You are given a tradeoff
parameter α that converts units of weight to units of distance. The rover starts at the lander with
a full battery and must return to the lander.

Here is a list of variables that might be used to describe the rover’s world:

• types of rocks already collected

• current rover location (square on map)

• current lander location (square on map)

• weight of rocks at current location (square on map)

• cost to traverse the current location (square on map)

• time since last charged

• time since departure from lander

• current day

• current battery charge level

• total battery capacity

• distance to lander

• total weight of currently collected rocks

7

1. Use a set of the variables above to describe the rover’s state. Do not include extraneous
information.

2. Specify the goal test.

3. Specify the actions. Indicate how they modify the state and any preconditions for being used.

4. Specify a function that determines the cost of each action.

8

5. This can be treated as a path search problem. We would like to find a heuristic. Say whether
each of these possible heuristics would be useful in finding the optimal path or, if not, what’s
wrong with them. Let l be the number of rocks already collected.

H1: The sum of the distances (in the map) from the rover to the 10− l closest locations for
the missing types of rocks.

H2: The length of the shortest tour through the 10− l closest locations for the missing types
of rocks.

H3: The distance back to the lander.

9

5 Search traces (21 points)

Consider the graph shown in the figure below. We can search it with a variety of different algorithms,
resulting in different search trees. Each of the trees (labeled G1 though G7) was generated by
searching this graph, but with a different algorithm. Assume that children of a node are visited in
alphabetical order. Each tree shows all the nodes that have been visited. Numbers next to nodes
indicate the relevant “score” used by the algorithm for those nodes.

For each tree, indicate whether it was generated with

1. Depth first search

2. Breadth first search

3. Uniform cost search

4. A* search

5. Best-first (greedy) search

In all cases a strict expanded list was used. Furthermore, if you choose an algorithm that uses a
heuristic function, say whether we used

H1: heuristic 1 = {h(A) = 3, h(B) = 6, h(C) = 4, h(D) = 3}

H2: heuristic 2 = {h(A) = 3, h(B) = 3, h(C) = 0, h(D) = 2}

Also, for all algorithms, say whether the result was an optimal path (measured by sum of link
costs), and if not, why not. Be specific.

Write your answers in the space provided below (not on the figure).

10

G1: 1. Algorithm:
2. Heuristic (if any):
3. Did it find least-cost path? If not, why?

G2: 1. Algorithm:
2. Heuristic (if any):
3. Did it find least-cost path? If not, why?

G3: 1. Algorithm:
2. Heuristic (if any):
3. Did it find least-cost path? If not, why?

G4: 1. Algorithm:
2. Heuristic (if any):
3. Did it find least-cost path? If not, why?

G5: 1. Algorithm:
2. Heuristic (if any):
3. Did it find least-cost path? If not, why?

G6: 1. Algorithm:
2. Heuristic (if any):
3. Did it find least-cost path? If not, why?

G7: 1. Algorithm:
2. Heuristic (if any):
3. Did it find least-cost path? If not, why?

11

A

GD

B

C

D

GC

G

4

6 7 7

5

4 6

5

G6

A

G

D

C

B

1

2
3

4

5 1

1
6

3

G1
A

GD

B

C

D

G7

A

GD

B

C

D

GC

GC

G

1

6 5 7

6 8

3

4 6

5

G2
A

G

B

C

D

6 3

4

G3
A

G

B

C

D

7 6

8 6

G4
A

B D

C

G

3 2

0

G5
A

G

C

B D

D

 H1 H2

A 3 3

B 6 3

C 4 0

D 3 2

G

12

1.2 Algorithms

1. You are faced with a path search problem with a very large branching factor, but where the
answers always involve a relative short sequence of actions (whose exact length is unknown).
All the actions have the same cost. What search algorithm would you use to find the optimal
answer? Indicate under what conditions, if any, a visited or expanded list would be a good
idea.

2. You are faced with a path search problem with a very large branching factor, but where the
answers always involve a relative short sequence of actions (whose exact length is unknown).
These actions, however, have widely varying costs. What search algorithm would you use to
find the optimal answer? Indicate under what conditions, if any, a visited or expanded list
would be a good idea.

2

1 Tree Search (12 points)

Consider the tree shown below. The numbers on the arcs are the arc lengths.

Assume that the nodes are expanded in alphabetical order when no other order is specified
by the search, and that the goal is state G. No visited or expanded lists are used. What
order would the states be expanded by each type of search? Stop when you expand G. Write
only the sequence of states expanded by each search.

Search Type List of states
Breadth First

Depth First

Progressive Deepening Search

Uniform Cost Search

2

2 Graph Search (10 points)

Consider the graph shown below where the numbers on the links are link costs and the
numbers next to the states are heuristic estimates. Note that the arcs are undirected. Let
A be the start state and G be the goal state.

Simulate A* search with a strict expanded list on this graph. At each step, show the path
to the state of the node that’s being expanded, the length of that path, the total estimated
cost of the path (actual + heuristic), and the current value of the expanded list (as a list
of states). You are welcome to use scratch paper or the back of the exam pages to simulate
the search. However, please transcribe (only) the information requested into the table given
below.

Path to State Expanded Length of Path Total Estimated Cost Expanded List
A 0 5 (A)

3

3 Heuristics and A* (8 points)

1. Is the heuristic given in Problem 2 admissible? Explain.

2. Is the heuristic given in Problem 2 consistent? Explain.

3. Did the A* algorithm with strict expanded list find the optimal path in the previous
example? If it did find the optimal path, explain why you would expect that. If it
didn’t find the optimal path, explain why you would expect that and give a simple
(specific) change of state values of the heuristic that would be sufficient to get the
correct behavior.

4

4 Search problem formulation (10 points)

A Mars rover has to leave the lander, collect rock samples from three places (in any order)
and return to the lander.

Assume that it has a navigation module that can take it directly from any place of
interest to any other place of interest. So it has primitive actions go-to-lander, go-to-rock-1,
go-to-rock-2, and go-to-rock-3.

We know the time it takes to traverse between each pair of special locations. Our goal is
to find a sequence of actions that will perform this task in the shortest amount of time.

1. Formulate this problem as a search problem by specifying the state space, initial state,
path-cost function, and goal test. Try to be sure that the state space is detailed enough
to support solving the problem, but not redundant.

2. Say what search technique would be most appropriate, and why.

3. One possible heuristic evaluation function for a state would be the distance back to
the lander from the location of the state; this is clearly admissible. What would be
a more powerful, but still admissible, heuristic for this problem? (Don’t worry about
whether it’s consistent or not.)

5

1 Tree Search (10 points)

Consider the tree shown below. The numbers on the arcs are the arc lengths; the numbers
near states B, C, and D are the heuristic estimates; all other states have a heuristic estimate
of 0.

A

E F G H I J

DCB

5
2 4

6 3 4 9 6 3

1 6 3

Assume that the children of a node are expanded in alphabetical order when no other order
is specified by the search, and that the goal is state J . No visited or expanded lists are used.
What order would the states be expanded by each type of search. Write only the sequence
of states expanded by each search.

Search Type List of states
Breadth First

Depth First

Progressive Deepening Search

Best-First Search

A* Search

2

2 Graph Search (8 points)

Consider the graph shown below. Note that the arcs are undirected. Let A be the start state
and G be the goal state.

A

C

B

G

2

5

6
2

2

Simulate uniform cost search with a strict expanded list on this graph. At each step,
show the state of the node that’s being expanded, the length of that path, and the current
value of the expanded list (as a list of states).

State Expanded Length of Path Expanded List
A 0 (A)

3

3 A∗ Algorithm (12 points)

1. Let’s consider three elements in the design of the A∗ algorithm:

• The heuristic, where the choices are:

– arbitrary heuristic

– admissible heuristic

– consistent heuristic

• History:

– none

– visited list

– strict expanded list

– non-strict expanded list

• Pathmax

– Use pathmax

– Don’t use pathmax

In the table below, indicate all the combinations that guarantee that A∗ will find
an optimal path. Not all rows have to be filled. If multiple values works for any of
Heuristic, History and Pathmax, independent of the other choices, you can write the
multiple values in one row. So

Heuristic History Pathmax
A,B C D,E

can be used to represent all of: A,C,D; A,C,E; B,C,D; and B,C,E.

Heuristic History Pathmax

4

2. In the network of problem 2, assume you are given the following heuristic values:

A = 5; B = 4; C = 0; G = 0

Is this heuristic:

• Admissible? Yes No

• Consistent? Yes No

Justify your answer very briefly.

3. With the heuristic above will A* using a strict expanded list find the optimal path?

Yes No

Justify your answer very briefly.

5

Problem 1 – Search

Below is a graph to be searched (starting at S and ending at G). Link / edge
costs are shown as well as heuristic estimates at the states. You may not
need all the information for every search.

h=5
S

1
3

Bh=2
A

2 h=3 2
1

G C

h=0 h=2

Draw the complete search tree for this graph. Label each node in the tree
with the cost of the path to that node and the heuristic cost at that node.
W hen you need to refer to a node, use the name of the corresponding state
and the length of the path to that node.

 2

For each of the searches below, just give a list of node names (state name,

1. Perform a depth-first search using a visited list. Assume children of a

2. Perform a best-first (greedy search) without a visited or expanded list.

3. Perform a Uniform Cost Search without a visited or expanded list.

4. Perform an A* search (no pathmax) without an expanded list. Show

 the heuristic in this example

. consistent?
Jus r, briefly.

length of path) drawn from the tree above. Break ties using alphabetical
order.

state are ordered in alphabetical order. Show the sequence of nodes
that are expanded by the search.

Show the sequence of nodes that are expanded by the search.

Show the sequence of nodes that are expanded by the search.

the sequence of nodes that are expanded by the search.

Is

1. admissible?

2
tify your answe

 3

For each of the following situations, pick the search that is most appropriate
(be specific about visited and expanded list). Give a one sentence reason
w hy you picked it. If you write a paragraph, we will not read it.

1. W e have a very large search space with a large branching factor and
with possibly infinite paths. W e have no heuristic. W e want to find
paths to the goal with minimum numbers of state.

2. W e have a space with a manageable number of states but lots of

cycles in the state graph. W e have links of varying costs but no
heuristic and we want to find shortest paths.

3. O ur search space is a tree of fixed depth and all the goals are the

leaves of the tree. W e have a heuristic and we want to find any goal
as quickly as possible.

4. W e have a space with a manageable number of states but lots of

cycles in the state graph. W e have links of varying costs and an
admissible heuristic and we want to find shortest paths.

 4

Problem 1: Search (25 points)

S

1 2

A B
2 1

1 1

C D

3 2

G

A. Construct the search tree for the graph above, indicate the path length to each node.

The numbers shown above are link lengths. Pay careful attention to the arrows; some are

bi-directional (shown thick) while some are uni-directional.

 5

B. Using the following search tree (different from Part A), perform the searches

indicated below (always from S to G). Each node shows both the total path cost to the

node as well as the heuristic value for the corresponding state.

C=0 h=5 S

C=2 h=3 C=3 h=2 C=4 h=3 A B C

B C G C=3 h=3 C=7 h=0 C=6 h=1 D

C=4 h=2

D D C=5 h=1 C=8 h=1 C=7 h=0 G

G C=6 h=0

For each of the searches below, write the sequence of nodes expanded by the search.

Specify a node by writing the name of the state and the length of the path (shown as C=x

above), e.g. S0, B3, etc. Break ties using alphabetical order.

1. Depth First Search (no visited list)

2. Breadth First Search (with visited list)

3. Uniform Cost Search (with strict expanded list)

4. A* (without expanded list)

 6

C. Choose the most efficient search method that meets the criteria indicated below.

Explain your choice.

1. You are given a state graph with link costs. The running time of the algorithm

should be a function of the number of states in the graph and the algorithm should

guarantee that the path with shortest path cost is found.

2. You are given a state graph with link costs and consistent heuristic values on the

states. The running time of the algorithm should be a function of the number of

states in the graph and the algorithm should guarantee that the path with shortest

path cost is found.

You are given a state graph with no link costs or heuristic values. The algorithm should

find paths to a goal with the least number of states and the space requirements should

depend on the depth of the first goal found and not be exponential in that depth.

 7

6 Game Search (10 points)

Consider the game tree shown below. The top node is a max node. The labels on the arcs
are the moves. The numbers in the bottom layer are the values of the different outcomes of
the game to the max player.

1. What is the value of the game to the max player?

2. What first move should the max player make?

3. Assuming the max player makes that move, what is the best next move for the min
player, assuming that this is the entire game tree?

4. Using alpha-beta pruning, consider the nodes from right to left, which nodes are cut
off? Circle the nodes that are not examined.

9

6.034 Quiz 1, Spring 2005

1 Search Algorithms (16 points)

1.1 Games

The standard alpha-beta algorithm performs a depth-first exploration (to a pre-specified depth) of
the game tree.

1. Can alpha-beta be generalized to do a breadth-first exploration of the game tree and still
get the optimal answer? Explain how or why not. If it can be generalized, indicate any
advantages or disadvantages of using breadth-first search in this application.

2. Can alpha-beta be generalized to do a progressive-deepening exploration of the game tree and
still get the optimal answer? Explain how or why not. If it can be generalized, indicate any
advantages or disadvantages of using progressive-deepening search in this application.

1

1 Propositional Proof (20 pts)

Given the following statements:

1. P ∨Q

2. P → R

3. Q→ S

Prove that R ∨ S is entailed, using resolution refutation.
Use the table below. Fill in the Formulas in the proof; in the Reason field, give the parent

clause numbers. Start by including the given formulas in the form needed for resolution. You do
not need to specify a Reason for the given information. We have given you more than enough space
for your proof. You do not need to fill in every line.

Step Reason Formula
1

2

3

4

5

6

7

8

9

10

11

12

2

2 English to FOL (15 points)

Write the following statements in First Order Logic:

1. “Every city has a postman that has been bitten by every dog in town.”
Use predicates:

• City(x) means x is a city

• Postman(x) means x is a postman

• Dog(x) means x is a dog

• Lives(x, y) means x lives in city y

• Bit(x, y) means x bit y

2. “All blocks supported by blocks that have been moved have also been moved.”
Use predicates:

• Block(x) means x is a block

• Supports(x, y) means x supports y

• Moved(x) means x has been moved

3

3 Logic semantics and interpretation (15 points)

Consider the following interpretation of a language with a unary predicates P , Q, and a binary
predicate R.

• Universe = {1, 2, 3, 4}

• P = {〈1〉, 〈3〉}

• Q = {〈2〉, 〈4〉}

• R = {〈3, 2〉, 〈4, 3〉, 〈3, 1〉, 〈4, 2〉, 〈2, 1〉, 〈4, 1〉}

Circle the sentences below that hold in that interpretation.

1. ∀x.P (x)

2. ∃x.P (x)

3. ∃x.P (x) ∧Q(x)

4. ∃x.P (x) → Q(x)

5. ∀x.P (x) → Q(x)

6. ∀x.P (x) → ¬Q(x)

7. ∀x.Q(x) → ¬P (x)

8. ∀x.∃y.R(x, y)

9. ∃y.∀x.R(x, y)

10. ∀x.P (x) → ∃y.R(x, y)

11. ∀x.Q(x) → ∃y.R(x, y)

4

1 Clause form and resolution (10 points)

1. Circle the correct clause form for this formula from the choices below.

∀x.¬(∃y.P (y) → Q(y)) → R(x)

(a) P (y) ∨R(x)
¬Q(y) ∨R(x)

(b) P (f(x)) ∨R(x)
¬Q(f(x)) ∨R(x)

(c) P (A) ∨R(x)
¬Q(A) ∨R(x)

(d) ¬P (y) ∨Q(y) ∨R(x)

(e) ¬P (f(x)) ∨Q(f(x)) ∨R(x)

(f) ¬P (A) ∨Q(A) ∨R(x)

2. Perform resolution on the following clauses; show the unifier and the result.

P (f(A), A) ∨ ¬Q(f(B), x)
P (f(y), x) ∨Q(x, g(x))

(a) Unifier:

(b) Result:

2

2 Proof (20 points)

This proof encodes the following argument:

• Every integer has at most one predecessor.

• Two is the predecessor of Three.

• The predecessor of Three is even.

• Therefore, Two is even.

To actually carry this out, we also need some axioms about equality, i.e. equality is transitive,
equality is symmetric and equals can be substituted in predicates (such as Even).

Fill in any missing Clauses; in the Reason field, give the parent clause numbers, also fill in all
the unifiers, written as a set of variable/value bindings.

Step Reason Clause Unifier
1 Given ¬Equals(x, y) ∨ ¬Equals(z, y) ∨ Equals(z, x) None
2 Given ¬Equals(x, y) ∨ Equals(y, x) None
3 Given ¬Equals(x, y) ∨ ¬Even(x) ∨ Even(y) None
4 Given ¬Pred(z, x) ∨ Equals(z,Sk1 (x)) None
5 Given Pred(Sk0 ,Three) None
6 Given Even(Sk0) None
7 Given Pred(Two,Three) None
8 Given ¬Even(Two) None
9 Equals(Two,Sk1 (Three))

10 Equals(Sk0 ,Sk1 (Three))

11

12 Equals(Sk0 ,Two)

13

14 ¬Equals(Sk0 ,Two)

15 False

3

3 FOL and Entailment (15 points)

Answer each of these questions with no more than 4 sentences.

1. Given two first-order logic sentences, A and B, how do you show that A entails B?

2. Given two first-order logic sentences, A and B, how do you show that A does not entail B?

3. What is it about a domain that would make you want to use first-order logic, rather than
propositional logic?

4

2. (8 points) For each group of sentences below, give an interpretation that makes the first
sentence(s) true and the last sentence false. Use {A,B, C} as your universe.

(a)

∃x.p(x) ∧ q(x) ∧ r(x, x)
∀x.p(x) → ∃y.¬r(x, y)
∀x.p(x) → ∃y.¬x = y ∧ r(x, y)

∀x.p(x) ∨ ¬q(x)

Solution:

p = {< A >}
q = {< A,C >}
r = {< A,A >,< A,B >}

(b)

∀x.p(x) ↔ ∃y.r(y, x)
∀x.∃y.r(x, y)

∀x.¬p(x)

Solution:

p = {< A >}
r = {< A,A >,< B, A >, < C,A >}

Alternately: (there are others, too)

p = {< A,B,C >}
r = {< A,A >,< B, B >,< C,C >}

2

6.825: Final Exam

There are 130 points total. Points for individual problems are
indicated in bold.

1 Search

(10) You’re a taxi driver. Your taxi can hold 4 passengers. Passengers pay a
flat fee for a ride to the airport, so goal is to pick up 4 passengers and take them
to the airport in the smallest number of miles. Your world can be modeled as
a graph of locations with distances between them. Some, but not all, of the
locations have passengers that you can pick up.

a. Describe the state space of this search problem.

b. What would be a good cost function for this search problem?

c. Now, consider a case where passengers have to pay according to how far
away they are from the airport when they’re picked up (note: they don’t
pay according to how long a ride they take in your taxi, but according to
the length of the shortest path from their pickup-point to the airport).
Describe the state space of this search problem.

d. What would be a good cost function for this version of the problem? You
still have a desire to save gas.

e. Is uniform cost search guaranteed to find the optimal solution in either or
both versions of the problem? Why or why not?

2 FOL Semantics

(6) Consider a world with objects A, B, and C. We’ll look at a logical languge
with constant symbols X, Y , and Z, function symbols f and g, and predicate
symbols p, q, and r. Consider the following interpretation:

• I(X) = A, I(Y) = A, I(Z) = B

• I(f) = {〈A,B〉, 〈B,C〉, 〈C,C〉}

• I(p) = {A,B}

1

• I(q) = {C}

• I(r) = {〈B,A〉, 〈C,B〉, 〈C,C〉}

For each of the following sentences, say whether it is true or false in the given
interpretation I:

a. q(f(Z))

b. r(X, Y)

c. ∃w.f(w) = Y

d. ∀w.r(f(w), w)

e. ∀u, v.r(u, v) → (∀w.r(u, w) → v = w)

f. ∀u, v.r(u, v) → (∀w.r(w, v) → u = w)

3 Interpretations

(6) Using the same set of symbols as in the previous problem, for each group
of sentences below, provide an interpretation that makes the sentences true, or
show that it’s impossible.

a. • ∃w.p(w) ∧ ∃w.q(w)
• ¬∃w.p(w) ∧ q(w)
• ∀u.p(u) → ∃v.r(u, v)

b. • ∀u.∃v.r(u, v)
• ∃u, v.¬r(u, v)
• ∀v.(∃u.r(u, v)) ↔ p(v))

c. • ∀u, v.(p(v) → r(u, v))
• ∃u, v.¬r(u, v)
• ∃v.p(v)

4 Unification

(6) For each pair of literals below, specify a most general unifier, or indicate
that they are not unifiable.

a. r(f(x), y) and r(z, g(w))

b. r(f(x), x) and r(y, g(y))

c. r(a,C, a) and r(f(x), x, y)

2

1 First-Order Logic (24 points)

Here are some English sentences and their translation into clausal form.

1. Every car has a driver.
D(f(x1), x1)

2. The driver of a car is in the car.

¬D(x2, y2) ∨ In(x2, y2)

3. ”In” is transitive.
¬In(x3, y3) ∨ ¬In(y3, z3) ∨ In(x3, z3)

4. Drivers are people.
¬D(x4, y4) ∨ P (x4)

5. Chitty (a car) is in the Stata garage.

In(C,SG)

6. Therefore, there is a person in the Stata garage. (This clause is the negation of the conclusion).

¬P (x6) ∨ ¬In(x6,SG)

We’d like to prove the conclusion using resolution refutation. This proof is kind of tricky, so
we’re going to tell you, in English, what the steps should be. For each step, say which of the previous
clauses (P1 and P2 in the table) it can be derived from using resolution, what the resulting clause
is and what the unifier is.

Step P1 P2 Clause Unifier
7 Every driver is in their car. (one term)

8 If a car is in some location, then its driver is in that location. (two terms)

9 The driver of a car is a person. (one term)

10 The driver of Chitty is in the Stata garage. (one term)

11 There is no car whose driver is in the Stata garage. (one term)

12 False

2

9 Resolution Proof (15 points)

Prove a contradiction from these clauses using resolution. For each new step, indicate which
steps it was derived from (in columns labeled P1 and P2) and what the unifier was. Note
that A is a constant and b, c, d, x, y, u, v, w are all variables.

Step P1 P2 Clause Unifier
1 XX XX ¬P (x, f(x), y) ∨R(y, g(x)) XXXXXXXXX

2 XX XX ¬R(u, v) ∨ ¬Q(v) ∨ S(u, h(v)) XXXXXXXXX

3 XX XX Q(g(A)) XXXXXXXXX

4 XX XX ¬S(w, w) XXXXXXXXX

5 XX XX P (b, c, h(d)) XXXXXXXXX

6

7

8

9

10

11

Given the following clauses, do a resolution refutation proof.

1. ¬P(x,f(x))!¬R(f(x))!¬Q(x,g(x))

2. ¬P(x2,y2)! Q(x2,y2)

3. ¬P(x3,y3)! R(y3)
4. P(A,x4) [Negated Goal]

Step Parent Parent New Clause MGU

 9

C. Given the following clauses:

1. Hasjob(p, job(p))

2. ¬ Hasjob(p, k) ! Equal(job(p), k)

3. Hasjob(George, Fireman)

4. ¬ Equal(Fireman, Teacher)

5. ¬ Equal(x,y) ! ¬ Equal(y, z) ! Equal(x, z)

6. ¬ Equal(x,y) ! Equal(y,x)

Prove by resolution refutation that:

 ¬ Hasjob(George, Teacher)

Hint: think about the strategy for the proof before you start doing resolutions. How

would you prove the result by hand?

Step Parent Parent Unifier

7 Neg Goal Hasjob(George, Teacher)

8

9

10

11

12

13

14

 11

1 Decision Trees (13 pts)

Data points are: Negative: (-1, 0) (2, 1) (2, -2) Positive: (0, 0) (1, 0)
Construct a decision tree using the algorithm described in the notes for the data above.

1. Show the tree you constructed in the diagram below. The diagram is more than big
enough, leave any parts that you don’t need blank.

f
1
 > 1.5

f
1
 > -0.5

_

_
+

2. Draw the decision boundaries on the graph at the top of the page.

2

3. Explain how you chose the top-level test in the tree. The following table may be useful.

x y -(x/y)*lg(x/y) x y -(x/y)*lg(x/y)
1 2 0.50 1 5 0.46
1 3 0.53 2 5 0.53
2 3 0.39 3 5 0.44
1 4 0.50 4 5 0.26
3 4 0.31

Pick the decision boundary which falls halfway between each pair of adja-
cent points in each dimension, and which produces the minimum average
entropy

AE = q<H(p<) + (1− q<)H(p>)

H(p) = −p lg(p)− (1− p) lg(1− p)

where q< is the fraction of points below the decision boundary, and p<, p> are
the fraction of positive (+) points below and above the decision boundary,
respectively.

f2 > ±0.5 : AE =
1

5
(0) +

4

5
(1) = 0.8

f1 > 1.5 : AE =
3

5
H

(
2

3

)
+

2

5
(0) =

3

5
(0.39 + 0.53) = 0.552

f1 > 0.5 : AE =
2

5
(1) +

3

5
H

(
1

3

)
=

2

5
+

3

5
(0.39 + 0.53) = 0.952

f1 > −0.5 : AE =
1

5
(0) +

4

5
(1) = 0.8

4. What class does the decision tree predict for the new point: (1, -1.01)

Positive (+)

3

2 Nearest Neighbors (8 pts)

Data points are: Negative: (-1, 0) (2, 1) (2, -2) Positive: (0, 0) (1, 0)

1. Draw the decision boundaries for 1-Nearest Neighbors on the graph above. Try to get
the integer-valued coordinate points in the diagram on the correct side of the boundary
lines.

2. What class does 1-NN predict for the new point: (1, -1.01) Explain why.

Positive (+) since this is the class of the closest data point (1,0).

3. What class does 3-NN predict for the new point: (1, -1.01) Explain why.

Positive (+) since it is the majority class of the three closest data points
(0,0), (1,0) and (2,-2).

4

6 Learning algorithms (16 pts)

For each of the learning situations below, say what learning algorithm would be best to use,
and why.

1. You have about 1 million training examples in a 6-dimensional feature space. You only
expect to be asked to classify 100 test examples.

Nearest Neighbors is a good choice. The dimensionality is low and so
appropriate for KNN. For KNN, training is very fast and since there are
few classifications, the fact that this will be slow does not matter. With 1
million training examples, neural net and SVM will be extremely expensive
to train. Naive Bayes is plausible on computational grounds but likely to
be less accurate than KNN.

2. You are going to develop a classifier to recommend which children should be assigned
to special education classes in kindergarten. The classifier has to be justified to the
board of education before it is implemented.

A Decision Tree is a good choice since the resulting classifier will need to
be understandable to humans.

3. You are working for Am*z*n as it tries to take over the retailing world. You are trying
to predict whether customer X will like a particular book, as a function of the input
which is a vector of 1 million bits specifying whether each of Am*z*n’s other customers
liked the book. You will train a classifier on a very large data set of books, where
the inputs are everyone else’s preferences for that book, and the output is customer
X’s preference for that book. The classifier will have to be updated frequently and
efficiently as new data comes in.

Naive Bayes is a good choice since it is fast to train and update. The
dimensionality is high for Nearest Neighbors and Decision Trees. SVM’s
have to be re-trained from scratch if the data changes. Neural Nets could
be trained incrementally but it will generally take a lot of iterations to
change the current settings of the weights.

4. You are trying to predict the average rainfall in California as a function of the measured
currents and tides in the Pacific ocean in the previous six months.

This is a regression problem; neural nets with linear output functions,
regression trees or locally weighted nearest neighbors are all appropriate
choices.

9

4 Machine Learning — Continuous Features (20 points)

In all the parts of this problem we will be dealing with one-dimensional data, that is, a set
of points (xi) with only one feature (called simply x). The points are in two classes given
by the value of yi. We will show you the points on the x axis, labeled by their class values;
we also give you a table of values.

4.1 Nearest Neighbors

i xi yi

1 1 0
2 2 1
3 3 1
4 4 0
5 6 1
6 7 1
7 10 0
8 11 1

1. In the figure below, draw the output of a 1-Nearest-Neighbor classifier over the range
indicated in the figure.

11

2. In the figure below, draw the output of a 5-Nearest-Neighbor classifier over the range
indicated in the figure.

12

4.2 Decision Trees

Answer this problem using the same data as in the Nearest Neighbor problem above.

Which of the following three tests would be chosen as the top node in a decision tree?

x ≤ 1.5 x ≤ 5 x ≤ 10.5

Justify your answer.
Recall that entropy for each side of a split is:

H = −p log p− (1− p) log(1− p)

So, for x ≤ 1.5 we have:

H =
1(0) + 7

(
−5

7 log2(
5
7)−

2
7 log2(

2
7)

)

8

H =
7(0.35 + 0.52)

8
H = 0.761

while x ≤ 5

H =
4

(
−2

4 log2(
2
4)−

2
4 log2(

2
4)

)
+ 4

(
−3

4 log2(
3
4)−

1
4 log2(

1
4)

)

8

H =
4(0.5 + 0.5) + 4(0.31 + 0.50)

8
H = 0.905

and x ≤ 10.5 gives us:

H =
1(0) + 7

(
−4

7 log2(
4
7)−

3
7 log2(

3
7)

)

8

H =
7(0.46 + 0.52)

8
H = 0.85

So, we choose the split with the least average entropy, which is x ≤ 1.5.

13

6 Pruning Trees (20 points)

Following are some different strategies for pruning decision trees. We assume that we grow
the decision tree until there is one or a small number of elements in each leaf. Then, we
prune by deleting individual leaves of the tree until the score of the tree starts to get worse.
The question is how to score each possible pruning of the tree.

For each possible definition of the score below, explain whether or not it would be a good
idea and give a reason why or why not.

1. The score is the percentage correct of the tree on the training set.

Not a good idea. The original tree was constructed to maximize performance on the
training set. Pruning any part of the tree will reduce performance on the training set.

2. The score is the percentage correct of the tree on a separate validation set.

A good idea. The validation set will be an independent check on whether pruning a
node is likely to increase or decrease performance on unseen data.

3. The score is the percentage correct of the tree, computed using cross validation.

Not a good idea. Cross-validation allows you to evaluate algorithms, not individual
hypotheses. Cross-validation will construct many new hypotheses and average their
performance, this will not tell you whether pruning a node in a particular hypothesis is
worthwhile or not.

4. The score is the percentage correct of the tree, computed on the training set, minus a
constant C times the number of nodes in the tree.

C is chosen in advance by running this algorithm (grow a large tree then prune in order
to maximize percent correct minus C times number of nodes) for many different values
of C, and choosing the value of C that minimizes training-set error.

Not a good idea. Running trials to maximize performance on the training set will not
give us an indication of whether this algorithm will produce answers that generalize to
other data sets.

5. The score is the percentage correct of the tree, computed on the training set, minus a
constant C times the number of nodes in the tree.

C is chosen in advance by running cross-validation trials of this algorithm (grow a
large tree then prune in order to maximize percent correct minus C times number of
nodes) for many different values of C, and choosing the value of C that minimizes
cross-validation error.

A good idea when we don’t have enough data to hold out a validation set. Choosing
C by cross-validation will hopefully give us an effective general way of penalizing for
complexity of the tree (for this type of data).

19

!"#$%&'()*((+&,"-.-/(012(3#.-456((
!

!,"4(7*(02(!#.-456!
!

"#$%&!'(&!%)*'!)+!,*#$-!.!$&./&*'!$&#-(0)/!%1.**#+#&/!-/)2*!2#'(!'(&!*#3&!)+!'(&!'/.#$#$-!

&'4!)5&'#5&*!)$&!'/#&*!')!&1#5#$.'&!/&6,$6.$'!7)#$'*!+/)5!'(&!'/.#$#$-!*&'8!!9(&*&!./&!

7)#$'*!2()*&!/&5):.1!6)&*!$)'!.++&%'!'(&!0&(.:#)/!)+!'(&!%1.**#+#&/!+)/!.$;!7)**#01&!$&2!

7)#$'8!

!

<8!=$!'(&!+#-,/&!0&1)24!*>&'%(!'(&!6&%#*#)$!0),$6./;!+)/!.!<?$&./&*'?$&#-(0)/!/,1&!.$6!

%#/%1&!'(&!/&6,$6.$'!7)#$'*8!

!

8 9 9

8 9(
8 9

8
8(

8
8 8 8

9

9(9(9
9 9(

:;&($#<-=,">(5;#?-(.5(#-%>(,33"#@.',4&(

@8!A(.'!#*!'(&!-&$&/.1!%)$6#'#)$B*C!/&D,#/&6!+)/!.!7)#$'!')!0&!6&%1./&6!/&6,$6.$'!+)/!.!<?

$&./&*'?$&#-()/!/,1&E!!F**,5&!2&!(.:&!)$1;!'2)!%1.**&*!BG4!?C8!!H&*'.'#$-!'(&!6&+#$#'#)$!

)+!/&6,$6.$'!BI/&5):#$-!#'!6)&*!$)'!%(.$-&!.$;'(#$-IC!#*!$)'!.$!.%%&7'.01&!.$*2&/8!!J#$'!

K!'(#$>!.0),'!'(&!$&#-(0)/())6!)+!/&6,$6.$'!7)#$'*8!

!

!"#$#%"$&'(')'*$+",,$-'($.$#(.*)*)/$0'*)#$1"$#%"$2"#$'-$0'*)#2$#%.#$.("$+,'2"2#$#'$#%.#$0'*)#$

3.2$'00'2"4$#'$2'5"$'#%"($#(.*)*)/$0'*)#67$$8%"$$&'(')'*$+",,$'-$.$("49)4.)#$$0'*)#$

#'9+%"2$'),:$')$'#%"($&'(')'*$+",,2$'-$0'*)#2$'-$#%"$2.5"$+,.227

! <L

!"#$%&'%()%!*+,$-.!
!

!
!

/%
0 / /

/
0

0% /%
0

0 0
/"!

/% /
/ /%

#!

$%&'%!()!"!(*!#!+(,-.!/0!1*0)0**0.!23!24!&4&5&2-!31-&5!)(*!2!.0'&3&(4!6&.045&)&'25&(47!5*008!!

9,35&):!:(,*!243+0*!4,;0*&'2--:<!

!

!

#!=!><?>?@A!

"!=!><BA!

!

C(D!#!&3!'%(304!

!
!" #" $%!&#'()*%!&#'" " !" #" $%!&#'()*%!&#'"

+ ," -./- " + 0 -.10"

+ 1" -./1 " 1 0 -./1"

, 1" -.12 " / 0 -.3,"

+ 3" -./- " 4 0 -.+4"

1 3" -.1+ " + 2 -.1/"

+ /" -.35 " , 2 -.30"

, /" -./1 " 3 2 -./,"

1 /" -.33 " / 2 -.34"

3 /" -.,5 " 4 2 -.,0"

+ 5" -.31 " 0 2 -.+/"

, 5" -./1 " + +- -.11"

/ 5" -.,, " 1 +- -./,"

+ 4" -.3- " 4 +- -.15"

, 4" -./, " 2 +- -.+3"

1 4" -./, " " " "

3 4" -.35 " " " "

/ 4" -.1/ " " " "

5 4" -.+2 " " " "

! EF

!"#$%&'()*((+,&"-.//.01(2)3(4#.0/56(
!

"#$!%&'(!#)!*(%!+,-%$./+%0!1%&$2/23!4%*(#0+!*(&*!5%!(&.%!+*,0/%06!/20/'&*%!(#5!*(%!

4%*(#0!'#,10!#.%$)/*!*(%!*$&/2/23!0&*&!7'#2+/0%$!8#*(!9#,$!0%+/32!'(#/'%+!&+!5%11!&+!*(%!

$&/2/23:!&20!5(&!9#,!'&2!0#!*#!4/2/4/;%!*(/+!-#++/8/1/*9<!!=(%$%!4&9!8%!4#$%!*(&2!#2%!

4%'(&2/+4!)#$!#.%$)/**/236!4&>%!+,$%!*(&*!9#,!/0%2*/)9!*(%4!&11<!

!

!7"/(8*(9&7"&5/(9&.1:$#"5(2;(!#.0/56(
!?<!@#5!0#%+!/*!#.%$)/*A!

B.%$9!-#/2*!/2!0&*&+%*!7/2'1,0/23!2#/+%:!0%)/2%+!/*+!#52!0%'/+/#2!8#,20&$9<!

=(%!0/+*&2'%!),2'*/#2!'&2!8%!'(#+%2!*#!0#!5%11!#2!*$&/2/23!+%*!8,*!1%++!5%11!#2!

2%5!0&*&<!

!

!!C<!@#5!'&2!9#,!$%0,'%!#.%$)/**/23A!

D+%!>EFF!)#$!1&$3%$!>!

D+%!'$#++E.&1/0&*/#2!*#!'(##+%!>!&20!*(%!0/+*&2'%!),2'*/#2!

(

(

(

(

(

!7"/(<*(=&>.5.#0(?"&&5(2;(!#.0/56(
!?<!@#5!0#%+!/*!#.%$)/*A!

G9!&00/23!2%5!*%+*+!*#!*(%!*$%%!*#!'#$$%'*19!'1&++/)9!%.%$9!0&*&!-#/2*!/2!*(%!

$&/2/23!+%<!

!

!

!

!

!!C<!@#5!'&2!9#,!$%0,'%!#.%$)/**/23A!

G9!-$,2/23!*(%!$%+,1*/23!*$%%!8&+%0!#2!-%$)#$4&2'%!#2!&!.&1/0&*/#2!+%*<!

! HI

!"#$%&'()*(+,-'./-0#"(123(,#./045((

(

+6,,#4&(07-0(8#6(9-/0(0#($6.%:(-(,"#;"-'(07-0(:&0&<04(97&07&"(-/(./<#'./;(&='-.%(

'&44-;&(.4(4,-'(#"(/#0>((?#6(:&<.:&(0#(-00-<@(07.4(64./;('-<7./&(%&-"/./;>((+#A(8#6(

<#%%&<0(-(%-";&(/6'$&"(#B(0"-././;('&44-;&4(-/:(%-$&%(07&'(-4(4,-'(#"(/#0=4,-'>((?#6(

B6"07&"(:&<.:&(07-0(8#6(9.%%(64&(07&(,"&4&/<&(#B(./:.C.:6-%(9#":4(./(07&($#:8(#B(07&(

'&44-;&(-4(B&-06"&4>((D7-0(.4A(8#6(<#%%&<0(&C&"8(9#":(B#6/:(./(07&(0"-././;(4&0(-/:(-44.;/(

0#(&-<7(#/&(-/(./:&EA(B"#'(2(0#(F>((D7&/A(;.C&/(-('&44-;&A(8#6(<#/40"6<0(-(B&-06"&(C&<0#"(

9.07(F(&/0".&4(-/:(9".0&(./(&-<7(&/0"8(-(/6'$&"(07-0(./:.<-0&4(7#9('-/8(0.'&4(07&(9#":(

-,,&-"4(./(07-0('&44-;&>(

(

!"#$%&'%()%!*+,$-.(
(

GB(8#6(7-:(0#(<7##4&($&09&&/(-(F&-"&40(F&.;7$#"(.',%&'&/0-0.#/(#"(-/(H&<.4.#/(D"&&(

.',%&'&/0-0.#/A(97.<7(9#6%:(8#6(<7##4&I((J640.B8(8#6"(-/49&"($".&B%8($#07(./(0&"'4(#B(

&E,&<0&:(-<<6"-<8(-/:(&BB.<.&/<8(#B(#,&"-0.#/>((G/:.<-0&(07&(40"&/;07(-/:(9&-@/&44&4(#B(

&-<7(-,,"#-<7>(

(

!"#$"%&'!"()*+,$%'-,"%'.,&'/,$0'/"11'(.'*()*'-(2".%(,.%3'

4*"'+())"%&'5$,+1"2'(.'6%(.)'!"#$"%&'!"()*+,$'/,61-'+"'7*,,%(.)'/*(7*',8'&*"'

8"#&6$"%'#$"'$"1"9#.&':/*(7*'(%'$"1#&"-'&,'7*,,%(.)'&*"'-(%&#.7"'2"&$(7;3''

4*(%'(%'5#$&(761#$1<'%"9"$"'(.'&*(%'#551(7#&(,.'+"7#6%"',8'&*"'*6)"'.62+"$%'

,8'5$,+#+1<'($$"1"9#.&'8"#&6$"%':/,$-%;3'

4*"'=>'&$""'#55$,#7*'/,61-'%5".-'(.(&(#1'"88,$&'(.'7*,,%(.)'/*(7*'/,$-%'/"$"'

$"1"9#.&'&,'2#0(.)'&*"'-"7(%(,.3'

!"#$"%&'."()*+,$'(%'#1%,'9"$<'"?5".%(9"'-6$(.)'71#%%(8(7#&(,.''8,$'*()*'

-(2".%(,.#1'8"#&6$"'9"7&,$%3''=>'&$""%'/,61-'+"'267*'2,$"'"88(7(".&3'

@,A'=>'&$""%'/,61-'+"'71"#$1<'+"&&"$'7*,(7"',.'#11'7$(&"$(#3'

B,/"9"$A'!#C9"'D#<"%'/,61-'5$,+#+1<'+"'+"&&"$'&*#.'"(&*"$',8'&*"23'

(

(

(

(

(

(

(

(

(

(

(

(

(

(

()K

3 Perceptron (7 pts)

x
1

1 2

1

2

-1

-2

-1-2

–

– +

x
2

Data points are: Negative: (-1, 0) (2, -2) Positive: (1, 0). Assume that the points are
examined in the order given here. Recall that the perceptron algorithm uses the extended
form of the data points in which a 1 is added as the 0th component.

1. The linear separator obtained by the standard perceptron algorithm (using a step size
of 1.0 and a zero initial weight vector) is (0 1 2). Explain how this result was obtained.

The perceptron algorithm cycles through the augmented points, updating
weights according to the update rule wnew = w + y · x after misclassifying
points. The intermediate weights are given in the table below.

Test point misclassified? Updated weights
Initial weights 0 0 0

-: (1 -1 0) yes -1 1 0
-: (1 2 -2) yes -2 -1 2
+: (1 1 0) yes -1 0 2
-: (1 -1 0) no
-: (1 2 -2) no
+: (1 1 0) yes 0 1 2
-: (1 -1 0) no
-: (1 2 -2) no
+: (1 1 0) no

2. What class does this linear classifier predict for the new point: (2.0, -1.01)

The margin of the point is -0.01, so it would be classified as negative.

3. Imagine we apply the perceptron learning algorithm to the 5 point data set we used on
Problem 1: Negative: (-1, 0) (2, 1) (2, -2), Positive: (0, 0) (1, 0). Describe qualitatively
what the result would be.

The perceptron algorithm would not converge since the 5 point data set is
not linearly separable.

5

6 Perceptron (8 points)

The following table shows a data set and the number of times each point is misclassified
during a run of the perceptron algorithm, starting with zero weights. What is the equation
of the separating line found by the algorithm, as a function of x1, x2, and x3? Assume that
the learning rate is 1 and the initial weights are all zero.

x1 x2 x3 y times misclassified
2 3 1 +1 12
2 4 0 +1 0
3 1 1 -1 3
1 1 0 -1 6
1 2 1 -1 11

w̄ = η
m∑

i=1

αiy
ix̄i

= (12)(1)(1, 2, 3, 1) + (3)(−1)(1, 3, 1, 1) + (6)(−1)(1, 1, 1, 0) + (11)(−1)(1, 1, 2, 1)

= (−8,−2, 5,−2)

So the equation of the separating line is

−2x1 + 5x2 − 2x3 − 8 = 0

15

!"#$%&'()*((+,&"-.//.01(2)3(4#.0/56(
!

"#$!%&'(!#)!*(%!+,-%$./+%0!1%&$2/23!4%*(#0+!*(&*!5%!(&.%!+*,0/%06!/20/'&*%!(#5!*(%!

4%*(#0!'#,10!#.%$)/*!*(%!*$&/2/23!0&*&!7'#2+/0%$!8#*(!9#,$!0%+/32!'(#/'%+!&+!5%11!&+!*(%!

$&/2/23:!&20!5(&!9#,!'&2!0#!*#!4/2/4/;%!*(/+!-#++/8/1/*9<!!=(%$%!4&9!8%!4#$%!*(&2!#2%!

4%'(&2/+4!)#$!#.%$)/**/236!4&>%!+,$%!*(&*!9#,!/0%2*/)9!*(%4!&11<!

!

!7"/(8*(9&7"&5/(9&.1:$#"5(2;(!#.0/56(
!?<!@#5!0#%+!/*!#.%$)/*A!

B.%$9!-#/2*!/2!0&*&+%*!7/2'1,0/23!2#/+%:!0%)/2%+!/*+!#52!0%'/+/#2!8#,20&$9<!

=(%!0/+*&2'%!),2'*/#2!'&2!8%!'(#+%2!*#!0#!5%11!#2!*$&/2/23!+%*!8,*!1%++!5%11!#2!

2%5!0&*&<!

!

!!C<!@#5!'&2!9#,!$%0,'%!#.%$)/**/23A!

D+%!>EFF!)#$!1&$3%$!>!

D+%!'$#++E.&1/0&*/#2!*#!'(##+%!>!&20!*(%!0/+*&2'%!),2'*/#2!

(

(

(

(

(

!7"/(<*(=&>.5.#0(?"&&5(2;(!#.0/56(
!?<!@#5!0#%+!/*!#.%$)/*A!

G9!&00/23!2%5!*%+*+!*#!*(%!*$%%!*#!'#$$%'*19!'1&++/)9!%.%$9!0&*&!-#/2*!/2!*(%!

$&/2/23!+%<!

!

!

!

!

!!C<!@#5!'&2!9#,!$%0,'%!#.%$)/**/23A!

G9!-$,2/23!*(%!$%+,1*/23!*$%%!8&+%0!#2!-%$)#$4&2'%!#2!&!.&1/0&*/#2!+%*<!

! HI

4 Search Problem formulation (23 points)

Consider a Mars rover that has to drive around the surface, collect rock samples, and return to the
lander. We want to construct a plan for its exploration.

• It has batteries. The batteries can be charged by stopping and unfurling the solar collectors
(pretend it’s always daylight). One hour of solar collection results in one unit of battery
charge. The batteries can hold a total of 10 units of charge.

• It can drive. It has a map at 10-meter resolution indicating how many units of battery charge
and how much time (in hours) will be required to reach a suitable rock in each square.

• It can pick up a rock. This requires one unit of battery charge. The robot has a map at
10-meter resolution that indicates the type of rock expected in that location and the expected
weight of rocks in that location. Assume only one type of rock and one size can be found in
each square.

The objective for the rover is to get one of each of 10 types of rocks, within three days, while
minimizing a combination of their total weight and the distance traveled. You are given a tradeoff
parameter α that converts units of weight to units of distance. The rover starts at the lander with
a full battery and must return to the lander.

Here is a list of variables that might be used to describe the rover’s world:

• types of rocks already collected

• current rover location (square on map)

• current lander location (square on map)

• weight of rocks at current location (square on map)

• cost to traverse the current location (square on map)

• time since last charged

• time since departure from lander

• current day

• current battery charge level

• total battery capacity

• distance to lander

• total weight of currently collected rocks

8

1. Use a set of the variables above to describe the rover’s state. Do not include extraneous
information.

• types of rocks already collected

• current rover location (square on map)

• time since departure from lander

• current battery charge level

• total weight of currently collected rocks (optional, depending on your choice
of cost function)

2. Specify the goal test.

• All types of rocks have been collected

• rover at lander location

• time since departure less than 3 days

3. Specify the actions. Indicate how they modify the state and any preconditions for being used.

charge : precondition: none; effects: increases battery voltage by 1 unit, increases
time-since-departure by 1 hour

move : precondition: enough battery voltage to cross square; effects: decreases
battery voltage by amount specified in map; increases time by amount spec-
ified in map; changes rover location

pick-up-rock : precondition: enough battery voltage; effects: decreases battery
voltage by 1 unit; changes types of rocks already collected

4. Specify a function that determines the cost of each action.

charge : 0

move : 10 meters

pick-up-rock : α * weight-of-rocks-at-current-location

9

5. This can be treated as a path search problem. We would like to find a heuristic. Say whether
each of these possible heuristics would be useful in finding the optimal path or, if not, what’s
wrong with them. Let l be the number of rocks already collected.

H1: The sum of the distances (in the map) from the rover to the 10− l closest locations for
the missing types of rocks.
This heuristic is inadmissible.

H2: The length of the shortest tour through the 10− l closest locations for the missing types
of rocks.
This heuristic would take an impractical amount of time to compute; and
while more reasonable than H1 is also inadmissible.

H3: The distance back to the lander.
This heuristic is admissible, but very weak.

10

5 Search traces (21 points)

Consider the graph shown in the figure below. We can search it with a variety of different algorithms,
resulting in different search trees. Each of the trees (labeled G1 though G7) was generated by
searching this graph, but with a different algorithm. Assume that children of a node are visited in
alphabetical order. Each tree shows all the nodes that have been visited. Numbers next to nodes
indicate the relevant “score” used by the algorithm for those nodes.

For each tree, indicate whether it was generated with

1. Depth first search

2. Breadth first search

3. Uniform cost search

4. A* search

5. Best-first (greedy) search

In all cases a strict expanded list was used. Furthermore, if you choose an algorithm that uses a
heuristic function, say whether we used

H1: heuristic 1 = {h(A) = 3, h(B) = 6, h(C) = 4, h(D) = 3}

H2: heuristic 2 = {h(A) = 3, h(B) = 3, h(C) = 0, h(D) = 2}

Also, for all algorithms, say whether the result was an optimal path (measured by sum of link
costs), and if not, why not. Be specific.

Write your answers in the space provided below (not on the figure).

11

G1: 1. Algorithm: Breadth First Search
2. Heuristic (if any): None
3. Did it find least-cost path? If not, why? No. Breadth first search is only guaranteed
to find a path with the shortest number of links; it does not consider link cost at
all.

G2: 1. Algorithm: Best First Search
2. Heuristic (if any): H1
3. Did it find least-cost path? If not, why?
No. Best first search is not guaranteed to find an optimal path. It takes the first
path to goal it finds.

G3: 1. Algorithm: A*
2. Heuristic (if any): H1
3. Did it find least-cost path? If not, why? No. A* is only guaranteed to find an optimal
path when the heuristic is admissible (or consistent with a strict expanded list).
H1 is neither: the heuristic value for C is not an underestimate of the optimal
cost to goal.

G4: 1. Algorithm: Best First Search
2. Heuristic (if any): H2
3. Did it find least-cost path? If not, why? Yes. Though best first search is not guar-
anteed to find an optimal path, in this case it did.

G5: 1. Algorithm: Depth First Search
2. Heuristic (if any): None
3. Did it find least-cost path? If not, why? No. Depth first search is an any-path
search; it does not consider link cost at all.

G6: 1. Algorithm: A*
2. Heuristic (if any): H2

12

3. Did it find least-cost path? If not, why? Yes. A* is guaranteed to find an optimal
path when the heuristic is admissible (or consistent with a strict expanded list).
H2 is admissible but not consistent, since the link from D to C decreases the
heuristic cost by 2, which is greater than the link cost of 1. Still, the optimal
path was found.

G7: 1. Algorithm: Uniform Cost Search
2. Heuristic (if any): None
3. Did it find least-cost path? If not, why? Yes. Uniform Cost is guaranteed to find a
shortest path.

13

A

GD

B

C

D

GC

G

4

6 7 7

5

4 6

5

G6

A

G

D

C

B

1

2
3

4

5 1

1
6

3

G1
A

GD

B

C

D

G7

A

GD

B

C

D

GC

GC

G

1

6 5 7

6 8

3

4 6

5

G2
A

G

B

C

D

6 3

4

G3
A

G

B

C

D

7 6

8 6

G4
A

B D

C

G

3 2

0

G5
A

G

C

B D

D

 H1 H2

A 3 3

B 6 3

C 4 0

D 3 2

G

14

1.2 Algorithms

1. You are faced with a path search problem with a very large branching factor, but where the
answers always involve a relative short sequence of actions (whose exact length is unknown).
All the actions have the same cost. What search algorithm would you use to find the optimal
answer? Indicate under what conditions, if any, a visited or expanded list would be a good
idea.

Progressive deepening (PD), with no visited or expanded list would probably be
the best choice. All the costs are the same, so breadth-first (BF) and PD both
guarantee finding the shortest path in that situation, without the overhead of
uniform-cost search. Since the branching factor is high, space will be an issue,
which is why we prefer PD over BF. If we were to use a visited list with PD,
the space cost would be the same as BF and it would not make sense to pay the
additional run-time cost of PD (repeated exploration of parts of the tree) if we
give up the space advantage.

2. You are faced with a path search problem with a very large branching factor, but where the
answers always involve a relative short sequence of actions (whose exact length is unknown).
These actions, however, have widely varying costs. What search algorithm would you use to
find the optimal answer? Indicate under what conditions, if any, a visited or expanded list
would be a good idea.

Since we have variable link costs, we should use Uniform Cost search to guarantee
the optimal answer. The fact that the costs are highly variable is good, since we
expect that we might be able to avoid exploring sub-trees with high cost. Note
that we don’t necessarily have a useful heuristic and so A* may not be applicable.
Using an expanded list would make sense if the search space involves lots of loops,
which would lead us to re-visit the same state many times. However, since we
know that there’s a relatively short path to the goal, it might not be worth the
extra space.

2

6.034 Quiz 1, Spring 2004 — Solutions
Open Book, Open Notes

1 Tree Search (12 points)

Consider the tree shown below. The numbers on the arcs are the arc lengths.

Assume that the nodes are expanded in alphabetical order when no other order is specified
by the search, and that the goal is state G. No visited or expanded lists are used. What
order would the states be expanded by each type of search? Stop when you expand G. Write
only the sequence of states expanded by each search.
Search Type List of states
Breadth First A B C D E G

Depth First A B D F K L E C G

Progressive Deepening Search A A B C A B D E C G

Uniform Cost Search A B D E C F G

1

2 Graph Search (10 points)

Consider the graph shown below where the numbers on the links are link costs and the
numbers next to the states are heuristic estimates. Note that the arcs are undirected. Let
A be the start state and G be the goal state.

Simulate A* search with a strict expanded list on this graph. At each step, show the path
to the state of the node that’s being expanded, the length of that path, the total estimated
cost of the path (actual + heuristic), and the current value of the expanded list (as a list
of states). You are welcome to use scratch paper or the back of the exam pages to simulate
the search. However, please transcribe (only) the information requested into the table given
below.
Path to State Expanded Length of Path Total Estimated Cost Expanded List
A 0 5 (A)
C-A 3 4 (C A)
B-A 1 5 (B C A)
H-C-A 5 6 (H B C A)
G-H-C-A 6 6 (G H B C A)

2

3 Heuristics and A* (8 points)

1. Is the heuristic given in Problem 2 admissible? Explain.

Yes. The heuristic is admissible because it is less than or equal to the actual shortest
distance to the goal.

2. Is the heuristic given in Problem 2 consistent? Explain.

No, the heurstic is not consistent. There are two places in the graph where consistency
fails. One is between A and C where the drop in heuristic is 4, but the path length is
only 3. The other is between B and C where the drop in heuristic is 3 but the path
length is only 1.

3. Did the A* algorithm with strict expanded list find the optimal path in the previous
example? If it did find the optimal path, explain why you would expect that. If it
didn’t find the optimal path, explain why you would expect that and give a simple
(specific) change of state values of the heuristic that would be sufficient to get the
correct behavior.

A* with a strict expanded list will not find the shortest path (which is ABCHG with
cost 5). This is because the heuristic is not consistent. We can make the heuristic
consistent by changing its value at C to be 3. There are other valid ways to make the
graph consistent (change h(B) to 2 and h(A) to 3, for example) and those were right
as well.

3

4 Search problem formulation (10 points)

A Mars rover has to leave the lander, collect rock samples from three places (in any order)
and return to the lander.

Assume that it has a navigation module that can take it directly from any place of
interest to any other place of interest. So it has primitive actions go-to-lander, go-to-rock-1,
go-to-rock-2, and go-to-rock-3.

We know the time it takes to traverse between each pair of special locations. Our goal is
to find a sequence of actions that will perform this task in the shortest amount of time.

1. Formulate this problem as a search problem by specifying the state space, initial state,
path-cost function, and goal test. Try to be sure that the state space is detailed enough
to support solving the problem, but not redundant.

• States: 〈 current-location, have-rock1?, have-rock2?, have-rock3? 〉
These are state variables. The variable current-location ranges over the set {lander,
rock1, rock2, rock3 }. The other variables are binary.

• Initial state: 〈 lander, no, no, no 〉
• Path cost: sum of arc costs; arc cost = distance between locations

• Goal test: 〈 lander, yes, yes, yes 〉

2. Say what search technique would be most appropriate, and why.

We want a shortest path, so we need UCS or A*. We might as well use A*, since it
will probably be faster and there’s a reasonable heuristic available.

3. One possible heuristic evaluation function for a state would be the distance back to
the lander from the location of the state; this is clearly admissible. What would be
a more powerful, but still admissible, heuristic for this problem? (Don’t worry about
whether it’s consistent or not.)

This should have read “One possible heuristic evaluation function for a state would be
the amount of time required for the robot to go back to the lander from the location
of the state...”

So, because of the typo, we gave everyone a free two points on this problem.

The answer we had in mind was the maximum, over uncollected rocks r, of the time to
get from the current location to r, and the time to get from r to the lander.

4

6.034 Quiz 1, Spring 2003: Solutions v. 1.1
Open Book, Open Notes

1 Tree Search (10 points)

Consider the tree shown below. The numbers on the arcs are the arc lengths; the numbers
near states B, C, and D are the heuristic estimates; all other states have a heuristic estimate
of 0.

A

E F G H I J

DCB

5
2 4

6 3 4 9 6 3

1 6 3

Assume that the children of a node are expanded in alphabetical order when no other order
is specified by the search, and that the goal is state J . No visited or expanded lists are used.
What order would the states be expanded by each type of search. Write only the sequence
of states expanded by each search.

Search Type List of states
Breadth First A B C D E F G H I J

Depth First A B E F G C H D I J

Progressive Deepening Search A A B C D A B E F G C H D I J

Best-First Search A B E F G D I J

A* Search A B D J

1

2 Graph Search (8 points)

Consider the graph shown below. Note that the arcs are undirected. Let A be the start state
and G be the goal state.

A

C

B

G

2

5

6
2

2

Simulate uniform cost search with a strict expanded list on this graph. At each step,
show the state of the node that’s being expanded, the length of that path, and the current
value of the expanded list (as a list of states).

State Expanded Length of Path Expanded List
A 0 (A)

B 2 (B A)

C 4 (C B A)

G 6 (G C B A)

2

3 A∗ Algorithm (12 points)

1. Let’s consider three elements in the design of the A∗ algorithm:

• The heuristic, where the choices are:

– arbitrary heuristic

– admissible heuristic

– consistent heuristic

• History:

– none

– visited list

– strict expanded list

– non-strict expanded list

• Pathmax

– Use pathmax

– Don’t use pathmax

In the table below, indicate all the combinations that guarantee that A∗ will find
an optimal path. Not all rows have to be filled. If multiple values works for any of
Heuristic, History and Pathmax, independent of the other choices, you can write the
multiple values in one row. So

Heuristic History Pathmax
A,B C D,E

can be used to represent all of: A,C,D; A,C,E; B,C,D; and B,C,E.

Heuristic History Pathmax
Admissible None, Non-Strict Use, Don’t Use

Consistent None, Non-Strict, Strict Use, Don’t Use

3

2. In the network of problem 2, assume you are given the following heuristic values:

A = 5; B = 4; C = 0; G = 0

Is this heuristic:

• Admissible? Yes No

• Consistent? Yes No

Justify your answer very briefly.

It is admissible because it is always less than the length of the shortest path. It is not
consistent because the difference between the heuristic values at B and C is 4, which is
greater than the arc-length of 2.

3. With the heuristic above will A* using a strict expanded list find the optimal path?

Yes No

Justify your answer very briefly.

We will visit C first from A with estimated cost of 5, and because it’s on the expanded
list, even when we later find a path to C with estimated cost of 4, we won’t expand it
again.

4

Problem 1 – Search (30 poin ts)

Below is a graph to be searched (starting at S and ending at G). Link / edge
costs are shown as well as heuristic estimates at the states. You may not
need all the information for every search.

h=5
S

1
3

Bh=2
A

2 h=32
1

G C

h=0 h=2

Draw the complete search tree for this graph. Label each node in the tree
with the cost of the path to that node and the heuristic cost at that node.
W hen you need to refer to a node, use the name of the corresponding state
and the length of the path to that node. (5 poin ts)

C is path cost,
C=0, h=5 S

h is heuristic

C=1, h=3 C=3, h=2 A B

C=5, h=2 C=2, h=2
C=5, h=0 C G C

C=6, h=3
B

C=4, h=2 A

C=6, h=0 G

S

 2

For each of the searches below, just give a list of node names (state name,
length of path) drawn from the tree above. Break ties using alphabetical
order. (2 poin ts each)

1. Perform a depth-first search using a visited list. Assume children of a
state are ordered in alphabetical order. Show the sequence of nodes
that are expanded by the search.

S0 , A3, C5, G5 no te tha t B6 is no t expanded because B is on visi t ed list
(placed there w hen S0 w as expanded).

2. Perform a best-first (greedy search) without a visited or expanded list.
Show the sequence of nodes that are expanded by the search.

S0 (h=5), A3(h=2), G5(h=0)

3. Perform a Uniform Cost Search without a visited or expanded list.
Show the sequence of nodes that are expanded by the search.

S0 , B1, C2, A3, A4, C5, G5 no te tha t nodes are ordered f irst by cost
then alphabe tically w hen t ied for cost .

4. Perform an A* search (no pathmax) without an expanded list. Show
the sequence of nodes that are expanded by the search.

S0(0+5), B1(1+3), C2(2+2), A3(3+2), G5(5+0)

Is the heuristic in this example

1. admissible? Yes

2. consistent? No

Justify your answer, briefly. (3 poin ts)

A ll the h values are less than or equal to actual pa th cost to the goal and so
the heurist ic is admissible .
The heurist ic drops from 5 a t S to 3 a t B w hile the path cost be t w een S and B
is only 1, and so the heurist ic is no t consist en t .

 3

For each of the following situations, pick the search that is most appropriate
(be specific about visited and expanded list). Give a one sentence reason
w hy you picked it. If you write a paragraph, we will not read it.

1. W e have a very large search space with a large branching factor and
with possibly infinite paths. W e have no heuristic. W e want to find
paths to the goal with minimum numbers of state.

It era tive deepening is the best choice , i t uses li t t le memory (like DFS)
bu t guaran tees f inding the pa th w ith minimum number o f st a tes (like
BFS).

2. W e have a space with a manageable number of states but lots of

cycles in the state graph. W e have links of varying costs but no
heuristic and we want to find shortest paths.

Uniform Cost Search with a strict expanded list is the best choice , i t
guaran tees f inding shortest pa ths and the expanded list limits the cost
to a funct ion o f the number o f st a tes, w hich is reasonable in this case .
Recall tha t a visi t ed list w ill in terfere w ith the correct opera tion o f
UCS.

3. O ur search space is a tree of fixed depth and all the goals are the

leaves of the tree. W e have a heuristic and we want to find any goal
as quickly as possible.

This has a typo w hich makes i t ambiguous. If you read it as " all the
leaves are goals " , then depth-f irst search is the best choice (ge ts to the
leaves f astest). If you read it as " all the goals are a t the leaves " , then
the best choice is a greedy search (best f irst), w hich uses the heurist ic
to guide you to the part o f the tree w ith the goals. In neither case is a
visi t ed or expanded list advisable since w e are searching a tree (no
loops).

4. W e have a space with a manageable number of states but lots of

cycles in the state graph. W e have links of varying costs and an
admissible heuristic and we want to find shortest paths.

This calls for A* and a non-strict expanded list and , since w e don't
kno w tha t the heurist ic is consist en t , using pa thmax. This allo ws us to
use all the in formation w e have and to avoid the extra cost due to
cycles.

 4

Problem 1: Search (25 points)

S

1 2

A B
2 1

1 1

C D

3 2

G

A. Construct the search tree for the graph above, indicate the path length to each node.

The numbers shown above are link lengths. Pay careful attention to the arrows; some are

bi-directional (shown thick) while some are uni-directional.

S

A B
1 2

C D C 32 3

B G 4 5

C C 85

 5

B. Using the following search tree, perform the searches indicated below (always from S

to G). Each node shows both the total path cost to the node as well as the heuristic value

for the corresponding state.

C=0 h=5 S

C=2 h=3 C=3 h=2 C=4 h=3 A B C

B C G C=3 h=3 C=7 h=0 C=6 h=1 D

C=4 h=2

D D C=5 h=1 C=8 h=1 C=7 h=0 G

G C=6 h=0

For each of the searches below, write the sequence of nodes expanded by the search.

Specify a node by writing the name of the state and the length of the path (C above), e.g.

S0, B3, etc. Break ties using alphabetical order.

1. Depth First Search (no visited list)

S0, A2, B4, C3, D5, G6

2. Breadth First Search (with visited list)

S0, A2, B3, C4, G7

3. Uniform Cost Search (with strict expanded list)

S0, A2, B3, C3, D5, G6

4. A* (without expanded list)

S0(+5), A2(+3), B3(+2), B4(+2), C3(+3), D5(+1), G6(+0)

 6

C. Choose the most efficient search method that meets the criteria indicated below.

Explain your choice.

1. You are given a state graph with link costs. The running time of the algorithm

should be a function of the number of states in the graph and the algorithm should

guarantee that the path with shortest path cost is found.

UCS + expanded list

UCS guarantees shortest paths, expanded list makes sure that the running time

depends only on the number of states not the number of paths.

2. You are given a state graph with link costs and consistent heuristic values on the

states. The running time of the algorithm should be a function of the number of

states in the graph and the algorithm should guarantee that the path with shortest

path cost is found.

A* + expanded list

A* with consistent heuristic guarantees shortest paths, expanded list keeps the

running time a function of number of states.

3. You are given a state graph with no link costs or heuristic values. The algorithm

should find paths to a goal with the least number of states and the space

requirements should depend on the depth of the first goal found.

Iterative deepening

Guarantees minimum number of states on path to goal and the memory requirements are

determined by the last depth-first search (at the level of the first goal found).

 7

6 Game Search (10 points)

Consider the game tree shown below. The top node is a max node. The labels on the arcs
are the moves. The numbers in the bottom layer are the values of the different outcomes of
the game to the max player.

1. What is the value of the game to the max player?

4

2. What first move should the max player make?

R

3. Assuming the max player makes that move, what is the best next move for the min
player, assuming that this is the entire game tree?

L

4. Using alpha-beta pruning, consider the nodes from right to left, which nodes are cut
off? Circle the nodes that are not examined.

The nodes that are not examined are the left-most node labeled “2” and the node labeled
“1.”

8

6.034 Quiz 1, Spring 2005

1 Search Algorithms (16 points)

1.1 Games

The standard alpha-beta algorithm performs a depth-first exploration (to a pre-specified depth) of
the game tree.

1. Can alpha-beta be generalized to do a breadth-first exploration of the game tree and still
get the optimal answer? Explain how or why not. If it can be generalized, indicate any
advantages or disadvantages of using breadth-first search in this application.

No. The alpha-beta algorithm is an optimization on min-max. Min-max inher-
ently needs to look at the game-tree nodes below the current node (down to some
pre-determined depth) in order to assign a value to that node. A breadth-first
version of min-max does not make much sense. Thinking about alpha-beta in-
stead of min-max only makes it worse, since the whole point of alpha-beta is to
use min-max values from one of the earlier (left-most) sub-trees to decide that
we do not need to explore some later (right-most) subtrees.

Some answers suggested that min-max inherently needs to go all the way down
to the leaves of the game tree, where the outcome of the game is known. This
is not true. Typically one picks some depth of look-ahead depth and searches to
that depth, using the static evaluator to compute a score for the board position
at that depth.

2. Can alpha-beta be generalized to do a progressive-deepening exploration of the game tree and
still get the optimal answer? Explain how or why not. If it can be generalized, indicate any
advantages or disadvantages of using progressive-deepening search in this application.

Yes. Progressive-deepening involves repeated depth-first searches to increasing
depths. This can be done trivially with min-max and alpha-beta as well, which
also involve picking a maximum depth of lookahead in the tree. PD does waste
some work, but as we saw in the notes, the extra work is a small fraction of the
work that you would do anyways, especially when the branching factor is high,
as it is in game trees. The advantage is that in timed situations you guarantee
that you always have a reasonable move available.

1

6.034 Quiz 2, Spring 2006
Open Book, Open Notes

1 Propositional Proof (20 pts)

Given the following statements:

1. P ∨Q

2. P → R

3. Q→ S

Prove that R ∨ S is entailed, using resolution refutation.
Use the table below. Fill in the Formulas in the proof; in the Reason field, give the parent

clause numbers. Start by including the given formulas in the form needed for resolution. You do
not need to specify a Reason for the given information. We have given you more than enough space
for your proof. You do not need to fill in every line.

Step Reason Formula
1 Given P ∨Q
2 Given ¬P ∨R
3 Given ¬Q ∨ S
4 Negated Conclusion ¬R
5 Negated Conclusion ¬S
6 2 + 4 ¬P
7 6 + 1 Q
8 7 + 3 S
9 8 + 5 False

1

2 English to FOL (15 points)

Write the following statements in First Order Logic:

1. “Every city has a postman that has been bitten by every dog in the city.”
Use predicates:

• City(x) means x is a city

• Postman(x) means x is a postman

• Dog(x) means x is a dog

• Lives(x, y) means x lives in city y

• Bit(x, y) means x bit y

∀c.City(c) → (∃p.Postman(p) ∧ Lives(p, c) ∧ (∀d.Dog(d) ∧ Lives(d, c) → Bit(d, p)))

2. “All blocks supported by blocks that have been moved have also been moved.”
Use predicates:

• Block(x) means x is a block

• Supports(x, y) means x supports y

• Moved(x) means x has been moved

∀x.∀y.Block(x) ∧Block(y) ∧ Supports(x, y) ∧Moved(x) → Moved(y)

2

3 Logic semantics and interpretation (15 points)

Consider the following interpretation of a language with a unary predicates P , Q, and a binary
predicate R.

• Universe = {1, 2, 3, 4}

• P = {〈1〉, 〈3〉}

• Q = {〈2〉, 〈4〉}

• R = {〈3, 2〉, 〈4, 3〉, 〈3, 1〉, 〈4, 2〉, 〈2, 1〉, 〈4, 1〉}

Circle the sentences below that hold in that interpretation.

1. ∀x.P (x)

2. ∃x.P (x) – Holds

3. ∃x.P (x) ∧Q(x)

4. ∃x.P (x) → Q(x) – Holds

5. ∀x.P (x) → Q(x)

6. ∀x.P (x) → ¬Q(x) – Holds

7. ∀x.Q(x) → ¬P (x) – Holds

8. ∀x.∃y.R(x, y)

9. ∃y.∀x.R(x, y)

10. ∀x.P (x) → ∃y.R(x, y)

11. ∀x.Q(x) → ∃y.R(x, y) – Holds

3

6.034 Quiz 3 Solutions, Spring 2006
Open Book, Open Notes

1 Clause form and resolution (10 points)

1. Circle the correct clause form for this formula from the choices below.

∀x.¬(∃y.P (y) → Q(y)) → R(x)

(a) P (y) ∨R(x)
¬Q(y) ∨R(x)

(b) P (f(x)) ∨R(x)
¬Q(f(x)) ∨R(x)

(c) P (A) ∨R(x)
¬Q(A) ∨R(x)

(d) ¬P (y) ∨Q(y) ∨R(x)

(e) ¬P (f(x)) ∨Q(f(x)) ∨R(x)

• ∀x.(∃y.P (y) → Q(y)) ∨R(x)
• ∀x.(∃y.¬P (y) ∨Q(y)) ∨R(x)
• ∀x.(¬P (f(x)) ∨Q(f(x))) ∨R(x)
• ¬P (f(x)) ∨Q(f(x)) ∨R(x)

(f) ¬P (A) ∨Q(A) ∨R(x)

2. Perform resolution on the following clauses; show the unifier and the result.

P (f(A), A) ∨ ¬Q(f(B), x)
P (f(y), x) ∨Q(x, g(x))

(a) Unifier:
rename variables, so x in first clause is x1 and x in the second clause is x2, then
x1/g(x2), x2/f(B) or, equivalently, x1/g(f(B)), x2/f(B).

(b) Result: P (f(A), A) ∨ P (f(y), f(B))

1

2 Proof (20 points)

This proof encodes the following argument:

• Every integer has at most one predecessor.

• Two is the predecessor of Three.

• The predecessor of Three is even.

• Therefore, Two is even.

To actually carry this out, we also need some axioms about equality, i.e. equality is transitive,
equality is symmetric and equals can be substituted in predicates (such as Even).

Fill in any missing Clauses; in the Reason field, give the parent clause numbers, also fill in all
the unifiers, written as a set of variable/value bindings.

Step Reason Clause Unifier
1 Given ¬Equals(x, y) ∨ ¬Equals(z, y) ∨ Equals(z, x) None
2 Given ¬Equals(x, y) ∨ Equals(y, x) None
3 Given ¬Equals(x, y) ∨ ¬Even(x) ∨ Even(y) None
4 Given ¬Pred(z, x) ∨ Equals(z,Sk1 (x)) None
5 Given Pred(Sk0 ,Three) None
6 Given Even(Sk0) None
7 Given Pred(Two,Three) None
8 Given ¬Even(Two) None
9 4,7 Equals(Two,Sk1 (Three)) z/Two, x/Three
10 4,5 Equals(Sk0 ,Sk1 (Three)) z/Sk0, x/Three
11 1,9 ¬Equals(z, Sk1(Three)) ∨ Equals(z, Two) x/Two, y/Sk1(Three)
12 10,11 Equals(Sk0 ,Two) z/Sk0
13 3,8 Equals(x, Two) ∨ ¬Even(x) y/Two
14 6,13 ¬Equals(Sk0 ,Two) x/Sk0
15 12,14 False

2

3 FOL and Entailment (15 points)

Answer each of these questions with no more than 4 sentences.

1. Given two first-order logic sentences, A and B, how do you show that A entails B?

To prove A entails B, we can use FOL Resolution by using A as the KB, introducing ¬B
and trying to reach a contradiction. While proof by FOL resolution is sound, it is only semi-
decidable; if A does indeed entail B, this will eventually find a contradiction, but if it A does
not entail B, it may loop forever.

2. Given two first-order logic sentences, A and B, how do you show that A does not entail B?

To prove that A does not entail B, we need to find an interpretation for which A is true and
B is not. Explicitly searching for such an interpretation is in general intractable (because the
number of potential interpretations is infinite and even the size of the interpretation may be
infinite).

3. What is it about a domain that would make you want to use first-order logic, rather than
propositional logic?

One situation where FOL is useful is for infinite (or very large) domains; there is no way to
express infinite domains in propositional logic. FOL lets you express general statements about
relationships among types of objects in the world (or objects based on their properties), rather
than merely statements about individual objects themselves.

3

2. (8 points) For each group of sentences below, give an interpretation that makes the first
sentence(s) true and the last sentence false. Use {A,B, C} as your universe.

(a)

∃x.p(x) ∧ q(x) ∧ r(x, x)
∀x.p(x) → ∃y.¬r(x, y)
∀x.p(x) → ∃y.¬x = y ∧ r(x, y)

∀x.p(x) ∨ ¬q(x)

Solution:

p = {< A >}
q = {< A,C >}
r = {< A,A >,< A,B >}

(b)

∀x.p(x) ↔ ∃y.r(y, x)
∀x.∃y.r(x, y)

∀x.¬p(x)

Solution:

p = {< A >}
r = {< A,A >,< B, A >, < C,A >}

Alternately: (there are others, too)

p = {< A,B,C >}
r = {< A,A >,< B, B >,< C,C >}

2

6.825: Final Exam

There are 130 points total. Points for individual problems are
indicated in bold.

1 Search

(10) You’re a taxi driver. Your taxi can hold 4 passengers. Passengers pay a
flat fee for a ride to the airport, so goal is to pick up 4 passengers and take them
to the airport in the smallest number of miles. Your world can be modeled as
a graph of locations with distances between them. Some, but not all, of the
locations have passengers that you can pick up.

a. Describe the state space of this search problem.

b. What would be a good cost function for this search problem?

c. Now, consider a case where passengers have to pay according to how far
away they are from the airport when they’re picked up (note: they don’t
pay according to how long a ride they take in your taxi, but according to
the length of the shortest path from their pickup-point to the airport).
Describe the state space of this search problem.

d. What would be a good cost function for this version of the problem? You
still have a desire to save gas.

e. Is uniform cost search guaranteed to find the optimal solution in either or
both versions of the problem? Why or why not?

2 FOL Semantics

(6) Consider a world with objects A, B, and C. We’ll look at a logical languge
with constant symbols X, Y , and Z, function symbols f and g, and predicate
symbols p, q, and r. Consider the following interpretation:

• I(X) = A, I(Y) = A, I(Z) = B

• I(f) = {〈A,B〉, 〈B,C〉, 〈C,C〉}

• I(p) = {A,B}

1

• I(q) = {C}

• I(r) = {〈B,A〉, 〈C,B〉, 〈C,C〉}

For each of the following sentences, say whether it is true or false in the given
interpretation I:

a. q(f(Z))

b. r(X, Y)

c. ∃w.f(w) = Y

d. ∀w.r(f(w), w)

e. ∀u, v.r(u, v) → (∀w.r(u, w) → v = w)

f. ∀u, v.r(u, v) → (∀w.r(w, v) → u = w)

3 Interpretations

(6) Using the same set of symbols as in the previous problem, for each group
of sentences below, provide an interpretation that makes the sentences true, or
show that it’s impossible.

a. • ∃w.p(w) ∧ ∃w.q(w)
• ¬∃w.p(w) ∧ q(w)
• ∀u.p(u) → ∃v.r(u, v)

b. • ∀u.∃v.r(u, v)
• ∃u, v.¬r(u, v)
• ∀v.(∃u.r(u, v)) ↔ p(v))

c. • ∀u, v.(p(v) → r(u, v))
• ∃u, v.¬r(u, v)
• ∃v.p(v)

4 Unification

(6) For each pair of literals below, specify a most general unifier, or indicate
that they are not unifiable.

a. r(f(x), y) and r(z, g(w))

b. r(f(x), x) and r(y, g(y))

c. r(a,C, a) and r(f(x), x, y)

2

2 FOL Semantics

a. T

b. F

c. F

d. T

e. F

f. T

3 Interpretations

a. • I(p) = {A}
• I(q) = {C}
• I(r) = {〈A,B〉}

b. • I(p) = {B,C}
• I(r) = {〈A,B〉, 〈B,B〉, 〈C,C〉}

c. • I(p) = {A}
• I(r) = {〈A,A〉, 〈B,A〉, 〈C,A〉}

4 Unification

a. {z/f(x), y/g(w)}

b. not unifiable

c. {a/f(x), x/C, y/f(x)}

5 Clausal Form

a. r(f(y), y) ∨ s(f(y), y)

b. ¬r(x, y) ∨ p(y)

c. ¬r(f(y), y) ∨ p(f(y))

6 Operator Descriptions

a. ∀s.on(s) → off (result(push(s))) and ∀s.off (s) → on(result(push(s)))

b. (Pre: on, Eff: off, ¬ on) and (Pre: off, Eff: on, ¬ off)

2

6.034 Quiz 2 Answers, Spring 2004

1 First-Order Logic (24 points)

Here are some English sentences and their translation into clausal form.

1. Every car has a driver.
D(f(x1), x1)

2. The driver of a car is in the car.

¬D(x2, y2) ∨ In(x2, y2)

3. ”In” is transitive.
¬In(x3, y3) ∨ ¬In(y3, z3) ∨ In(x3, z3)

4. Drivers are people.
¬D(x4, y4) ∨ P (x4)

5. Chitty (a car) is in the Stata garage.

In(C,SG)

6. Therefore, there is a person in the Stata garage. (This clause is the negation of the conclusion).

¬P (x6) ∨ ¬In(x6,SG)

We’d like to prove the conclusion using resolution refutation. This proof is kind of tricky, so
we’re going to tell you, in English, what the steps should be. For each step, say which of the previous
clauses (P1 and P2 in the table) it can be derived from using resolution, what the resulting clause
is and what the unifier is.

Step P1 P2 Clause Unifier
7 Every driver is in their car. (one term)

1 2 In(f(x1), x1) {x2/f(x1), y2/x1}
8 If a car is in some location, then its driver is in that location. (two terms)

3 7 ¬In(x1, z3) ∨ In(f(x1), z3) {x3/f(x1), y3/x1}
9 The driver of a car is a person. (one term)

1 4 P (f(x1)) {x4/f(x1), y4/x1}
10 The driver of Chitty is in the Stata garage. (one term)

5 8 In(f(C), SG) {x1/C, z3/SG}
11 There is no car whose driver is in the Stata garage. (one term)

6 9 ¬In(f(x1), SG) {x6/f(x1)}
12 False

10 11 Nil {x1/C}

1

9 Resolution Proof (15 points)

Prove a contradiction from these clauses using resolution. For each new step, indicate which
steps it was derived from (in columns labeled P1 and P2) and what the unifier was. Note
that A is a constant and b, c, d, x, y, u, v, w are all variables.

This is just an example answer; there were lots of orders in which this could be done.

Step P1 P2 Clause Unifier
1 XX XX ¬P (x, f(x), y) ∨R(y, g(x)) XXXXXXXXX

2 XX XX ¬R(u, v) ∨ ¬Q(v) ∨ S(u, h(v)) XXXXXXXXX

3 XX XX Q(g(A)) XXXXXXXXX

4 XX XX ¬S(w, w) XXXXXXXXX

5 XX XX P (b, c, h(d)) XXXXXXXXX

6 1 5 R(h(d), g(b)) {x/b, c/f(x), y/h(d)}

7 2 6 ¬Q(g(b)) ∨ S(h(d), h(g(b))) {u/h(d), v/g(b)}

8 4 7 ¬Q(g(b)) {w/h(d), d/g(b)}

9 3 8 False {b/A}

10

10

Given the following clauses, do a resolution refutation proof. (10 poin ts)

1. ¬P(x,f(x))!¬R(f(x))!¬Q(x,g(x))

2. ¬P(x2,y2)! Q(x2,y2)

3. ¬P(x3,y3)! R(y3)
4. P(A,x4) [Negated Goal]

Step Parent Parent New Clause MGU
5 3 4 R(y3) x3= A , y3=x4
6 2 4 Q(A , y2) x2= A , y2=x4
7 1 5 ¬P(x, f(x))!¬Q(x,g(x)) y3=f(x)
8 6 7 ¬P(A ,f(A)) x= A , y2=g(x)
9 4 8 () x4=f(A)

or

Step Parent Parent New Clause MGU
5 1 4 ¬R(f(A)) !¬Q(A ,g(A)) x= A , x4=f(x)
6 3 5 ¬P(x3, f(A)) !¬Q(A ,g(A)) y3=f(A)
7 2 6 ¬P(x3, f(A)) !¬P(A ,g(A)) x2= A , y2=g(A)
8 4 7 ¬P(A ,g(A)) x3= A , x4=f(A)
9 4 8 () x4=g(A)

There are o ther possibili t ies as w ell. Note tha t (w henever possible) you w ant
to use the shortest clauses in the resolu tion st eps.

 9

C. Given the following clauses:

1. Hasjob(p, job(p))

2. ¬ Hasjob(p, k) ! Equal(job(p), k)

3. Hasjob(George, Fireman)

4. ¬ Equal(Fireman, Teacher)

5. ¬ Equal(x,y) ! ¬ Equal(y, z) ! Equal(x, z)

6. ¬ Equal(x,y) ! Equal(y,x)

Prove by resolution refutation that:

 ¬ Hasjob(George, Teacher)

Hint: think about the strategy for the proof before you start doing resolutions. How

would you prove the result by hand?

Step Parent Parent Unifier

7 Neg Goal Hasjob(George, Teacher) -----------------

8 2 7 Equal(job(George), Teacher) p=George

k=Teacher

9 2 3 Equal(job(George), Fireman) p=George

k=Fireman

10 9 6 Equal(Fireman, job(George)) x=job(George)

y=Fireman

11 5 10 ¬ Equal(job(George),z) !

Equal(Fireman, z)

x=Fireman

y=job(George)

12 8 11 Equal(Fireman,Teacher) z=Teacher

13 4 12 Contradiction

14

 11

