Course Overview

Lecture 10 Introduction Uncertain knowledge and Inference in Baysian Networks Reasoning ✓ Artificial Intelligence and Reasoning Over Time ✓ Intelligent Agents Probability and Bayesian approach ✓ Search Bayesian Networks Uninformed Search • Hidden Markov Chains Marco Chiarandini Heuristic Search Kalman Filters ✓ Adversarial Search Deptartment of Mathematics & Computer Science Learning University of Southern Denmark ✓ Minimax search Decision Trees Alpha-beta pruning Maximum Likelihood ✓ Knowledge representation and • EM Algorithm Reasoning

Learning Bayesian Networks

- Neural Networks
- Support vector machines

2

4

Inference by Random Algs

Uncertainty over Time

Exercise

Slides by Stuart Russell and Peter Norvig

Inference by Random Algs Exercise Uncertainty over Time

Complexity of exact inference

Singly connected networks (or polytrees):

- any two nodes are connected by at most one (undirected) path
- time and space cost (with variable elimination) are $O(d^k n)$
- hence time and space cost are linear in n and k bounded by a constant

Multiply connected networks:

✓ Propositional logic

✔ First order logic

✓ Inference

- can reduce 3SAT to exact inference \implies NP-hard
- equivalent to **counting** 3SAT models \implies #P-complete

Outline

1. Inference by Randomized Algorithms

Inference by stochastic simulation

Inference by Random Algs Exercise Uncertainty over Time

Sampling from an empty network

Inference by Random Algs Exercise Uncertainty over Time

6

8

Basic idea:

- Draw N samples from a sampling distribution S
- Compute an approximate posterior probability \hat{P}
- Show this converges to the true probability *P*

Outline:

- Sampling from an empty network

- Rejection sampling: reject samples disagreeing with evidence

- Likelihood weighting: use evidence to weight samples

- Markov chain Monte Carlo (MCMC): sample from a stochastic process

whose stationary distribution is the true posterior

Inference by Random Algs Sampling from an empty network contd^{Exercise}

Probability that PriorSample generates a particular event

 $S_{PS}(x_1 \ldots x_n) = P(x_1 \ldots x_n)$

E.g., $S_{PS}(t, f, t, t) = 0.5 \times 0.9 \times 0.8 \times 0.9 = 0.324 = P(t, f, t, t)$

Proof: Let $N_{PS}(x_1...x_n)$ be the number of samples generated for event

$$\hat{P}(x_1, \dots, x_n) = \lim_{N \to \infty} N_{PS}(x_1, \dots, x_n) / N$$
$$= S_{PS}(x_1, \dots, x_n)$$
$$= \prod_{i=1}^n P(x_i | parents(X_i)) = P(x_1 \dots x_n)$$

~ That is, estimates derived from PriorSample are consistent Shorthand: $\hat{P}(x_1, \ldots, x_n) \approx P(x_1 \ldots x_n)$

Rejection sampling

Inference by Random Algs Exercise Uncertainty over Time

Analysis of rejection sampling

 $\hat{\mathbf{P}}(X|\mathbf{e})$ estimated from samples agreeing with \mathbf{e}

```
function Rejection-Sampling(X, e, bn, N) returns an estimate of P(X|e)
local variables: N, a vector of counts over X, initially zero
for j = 1 to N do
x \leftarrow Prior-Sample(bn)
if x is consistent with e then
N[x] \leftarrow N[x]+1 where x is the value of X in x
return Normalize(N[X])
```

E.g., estimate P(Rain|Sprinkler = true) using 100 samples 27 samples have Sprinkler = trueOf these, 8 have Rain = true and 19 have Rain = false.

 $\hat{\mathbf{P}}(Rain|Sprinkler = true) = Normalize(\langle 8, 19 \rangle) = \langle 0.296, 0.704 \rangle$ Similar to a basic real-world empirical estimation procedure Rejection sampling returns consistent posterior estimates

Proof: $\hat{\mathbf{P}}(\mathbf{X}|\mathbf{z}) = c$

 $\hat{\mathbf{P}}(X|\mathbf{e}) = \alpha \mathbf{N}_{PS}(X, \mathbf{e})$ (algorithm defn.) $= \mathbf{N}_{PS}(X, \mathbf{e}) / N_{PS}(\mathbf{e})$ (normalized by $N_{PS}(\mathbf{e})$) $\approx \mathbf{P}(X, \mathbf{e}) / P(\mathbf{e})$ (property of PriorSample) $= \mathbf{P}(X|\mathbf{e})$ (defn. of conditional probability)

Problem: hopelessly expensive if $P(\mathbf{e})$ is small $P(\mathbf{e})$ drops off exponentially with number of evidence variables!

Likelihood weighting

Inference by Random Algs Exercise Uncertainty over Time

٥

11

Idea: fix evidence variables, sample only nonevidence variables, and weight each sample by the likelihood it accords the evidence

```
function Likelihood-Weighting(X, e, bn, N) returns an estimate of P(X|e)
local variables: W, a vector of weighted counts over X, initially zero
```

```
for j = 1 to N do

x, w \leftarrow Weighted-Sample(bn)

W[x] \leftarrow W[x] + w where x is the value of X in x

return Normalize(W[X])
```

function Weighted-Sample(bn, e) returns an event and a weight

```
 \begin{array}{l} \mathsf{x} \leftarrow \mathsf{an event with } n \text{ elements; } w \leftarrow 1 \\ \mathsf{for } i = 1 \text{ to } n \text{ do} \\ & \mathsf{if } X_i \text{ has a value } x_i \text{ in e} \\ & \mathsf{then } w \leftarrow w \times \ P(X_i = x_i \mid \mathsf{parents}(X_i)) \\ & \mathsf{else } x_i \leftarrow \mathsf{a random sample from } \mathsf{P}(X_i \mid \mathsf{parents}(X_i)) \\ & \mathsf{return } \mathsf{x}, w \end{array}
```

Likelihood weighting example

Inference by Random Algs Exercise Uncertainty over Time

Likelihood weighting analysis

Inference by Random Algs Exercise Uncertainty over Time

Summary

Inference by Random Algs Exercise Uncertainty over Time

Likelihood weighting returns consistent estimates

Sampling probability for WeightedSample is

$$S_{WS}(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{l} P(z_i | parents(Z_i))$$

(pays attention to evidence in **ancestors** only) ~somewhere "in between" prior and posterior distribution

Weight for a given sample z, e is

Weighted sampling probability is

$$S_{WS}(\mathbf{z}, \mathbf{e})w(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{l} P(z_i | parents(Z_i)) \prod_{i=1}^{m} P(e_i | parents(E_i)) = P(\mathbf{z}, \mathbf{e})$$

Approximate inference using MCMC

Inference by Random Algs Exercise Uncertainty over Time

"State" of network = current assignment to all variables. Generate next state by sampling one variable given Markov blanket Sample each variable in turn, keeping evidence fixed

```
function MCMC-Ask(X, e, bn, N) returns an estimate of P(X|e)
local variables: N[X], a vector of counts over X, initially zero
Z, nonevidence variables in bn, hidden + query
x, current state of the network, initially copied from e
initialize x with random values for the variables in Z
for j = 1 to N do
N[x] \leftarrow N[x] + 1 where x is the value of X in x
for each Z_i in Z do
sample the value of Z_i in x from P(Z_i|mb(Z_i))
given the values of MB(Z_i) in x
return Normalize(N[X])
```

Can also choose a variable to sample at random each time

but performance still degrades with many evidence variables because a few samples have nearly all the total weight Approximate inference by LW:

- LW does poorly when there is lots of (late-in-the-order) evidence
- LW generally insensitive to topology
- Convergence can be very slow with probabilities close to 1 or 0
- Can handle arbitrary combinations of discrete and continuous variables

14

16

Exercise Uncertainty over Time

The Markov chain

With Sprinkler = true, WetGrass = true, there are four states:

Wander about for a while, average what you see Probabilistic finite state machine

MCMC example contd.

E.g., visit 100 states

Theorem

Estimate P(Rain|Sprinkler = true, WetGrass = true)

31 have Rain = true. 69 have Rain = false

proportional to its posterior probability

Sample Cloudy or Rain given its Markov blanket, repeat.

Count number of times *Rain* is true and false in the samples.

 $\hat{\mathbf{P}}(Rain|Sprinkler = true, WetGrass = true) = Normalize((31, 69)) = (0.31, 0.69)$

Inference by Random Algs Exercise Uncertainty over Time

Markov blanket sampling

Inference by Random Algs Exercise Uncertainty over Time

Markov blanket of *Cloudy* is Sprinkler and Rain

Markov blanket of Rain is Cloudy, Sprinkler, and WetGrass

Main computational problems:

- 1) Difficult to tell if convergence has been achieved
- 2) Can be wasteful if Markov blanket is large:
 - $P(X_i|mb(X_i))$ won't change much (law of large numbers)
 - Inference by Random Algs Exercise Uncertainty over Time

18

Local semantics and Markov Blanket

The Markov Chain approaches a stationary distribution: long-run fraction of time spent in each state is exactly

Local semantics: each node is conditionally independent of its nondescendants given its parents

Each node is conditionally

independent of all others given its

Markov blanket: parents + children +

MCMC analysis: Outline

- Transition probability $q(\mathbf{x} \rightarrow \mathbf{x}')$
- Occupancy probability $\pi_t(\mathbf{x})$ at time t
- Equilibrium condition on π_t defines stationary distribution $\pi(\mathbf{x})$ Note: stationary distribution depends on choice of $q(\mathbf{x} \rightarrow \mathbf{x}')$
- Pairwise detailed balance on states guarantees equilibrium
- Gibbs sampling transition probability: sample each variable given current values of all others \implies detailed balance with the true posterior
- For Bayesian networks, Gibbs sampling reduces to sampling conditioned on each variable's Markov blanket

17 Inference by Random Algs

Exercise

Uncertainty over Time

Stationary distribution

- $\pi_t(\mathbf{x}) = \text{probability in state } \mathbf{x} \text{ at time } t$ $\pi_{t+1}(\mathbf{x}') = \text{probability in state } \mathbf{x}' \text{ at time } t+1$
- π_{t+1} in terms of π_t and $q(\mathbf{x} \rightarrow \mathbf{x}')$

$$\pi_{t+1}(\mathbf{x}') = \sum_{\mathbf{x}} \pi_t(\mathbf{x}) q(\mathbf{x} \to \mathbf{x}')$$

• Stationary distribution: $\pi_t = \pi_{t+1} = \pi$

$$\pi(\mathbf{x}') = \sum_{\mathbf{x}} \pi(\mathbf{x}) q(\mathbf{x} \to \mathbf{x}')$$
 for all \mathbf{x}'

- If π exists, it is unique (specific to $q(\mathbf{x} \rightarrow \mathbf{x}')$)
- In equilibrium, expected "outflow" = expected "inflow"

Gibbs sampling

- Sample each variable in turn, given all other variables
- Sampling X_i , let $\bar{\mathbf{X}}_i$ be all other nonevidence variables
- Current values are x_i and $\bar{x_i}$; e is fixed
- Transition probability is given by

$$q(\mathbf{x}
ightarrow \mathbf{x}') = q(x_i, ar{\mathbf{x}_i}
ightarrow x_i', ar{\mathbf{x}_i}) = P(x_i' | ar{\mathbf{x}_i}, \mathbf{e})$$

• This gives detailed balance with true posterior $P(\mathbf{x}|\mathbf{e})$:

 $\pi(\mathbf{x})q(\mathbf{x} \to \mathbf{x}') = P(\mathbf{x}|\mathbf{e})P(x_i'|\bar{\mathbf{x}}_i, \mathbf{e}) = P(x_i, \bar{\mathbf{x}}_i|\mathbf{e})P(x_i'|\bar{\mathbf{x}}_i, \mathbf{e})$ = $P(x_i | \bar{\mathbf{x}}_i, \mathbf{e}) P(\bar{\mathbf{x}}_i | \mathbf{e}) P(x'_i | \bar{\mathbf{x}}_i, \mathbf{e})$ (chain rule) $= P(x_i | \bar{\mathbf{x}}_i, \mathbf{e}) P(x'_i, \bar{\mathbf{x}}_i | \mathbf{e})$ (chain rule backwards) $= q(\mathbf{x}' \rightarrow \mathbf{x})\pi(\mathbf{x}') = \pi(\mathbf{x}')q(\mathbf{x}' \rightarrow \mathbf{x})$

Exercise

Uncertainty over Time

• "Outflow" = "inflow" for each pair of states:

$$\pi(\mathbf{x})q(\mathbf{x}
ightarrow\mathbf{x}')=\pi(\mathbf{x}')q(\mathbf{x}'
ightarrow\mathbf{x})$$
 for all $\mathbf{x},\ \mathbf{x}'$

• Detailed balance \implies stationarity:

$$\sum_{\mathbf{x}} \pi(\mathbf{x}) q(\mathbf{x} \to \mathbf{x}') = \sum_{\mathbf{x}} \pi(\mathbf{x}') q(\mathbf{x}' \to \mathbf{x})$$
$$= \pi(\mathbf{x}') \sum_{\mathbf{x}} q(\mathbf{x}' \to \mathbf{x})$$
$$= \pi(\mathbf{x}')$$

• MCMC algorithms typically constructed by designing a transition probability q that is in detailed balance with desired π

Inference by Random Algs Performance of approximation algorithms^{Exercise}

- Absolute approximation: $|P(X|\mathbf{e}) \hat{P}(X|\mathbf{e})| \le \epsilon$
- Relative approximation: $\frac{|P(X|\mathbf{e}) \hat{P}(X|\mathbf{e})|}{P(X|\mathbf{e})} \le \epsilon$
- Relative \implies absolute since $0 \le P \le 1$ (may be $O(2^{-n})$)
- Randomized algorithms may fail with probability at most δ
- Polytime approximation: $poly(n, \epsilon^{-1}, \log \delta^{-1})$
- Theorem (Dagum and Luby, 1993): both absolute and relative approximation for either deterministic or randomized algorithms are NP-hard for any $\epsilon, \delta < 0.5$ (Absolute approximation polytime with no evidence—Chernoff bounds)

21

Inference by Random Algs

Uncertainty over Time

Exercise

Summary

Inference by Random Algs Exercise Uncertainty over Time

Outline

Exact inference by variable elimination:

- polytime on polytrees, NP-hard on general graphs
- space = time, very sensitive to topology

Approximate inference by LW, MCMC:

- PriorSampling and RejectionSampling unusable as evidence grow

- LW does poorly when there is lots of (late-in-the-order) evidence
- LW, MCMC generally insensitive to topology
- Convergence can be very slow with probabilities close to $1 \mbox{ or } 0$
- Can handle arbitrary combinations of discrete and continuous variables

1. Inference by Randomized Algorithms

2. Exercise

3. Uncertainty over Time

25

27

Wumpus World

24

2,3

2,1 B

OK

1,3

1,2 B

1,1

OK

OK

34

3,3

3,2

44

Inference by Random Algs Exercise Uncertainty over Time

Specifying the probability model

Inference by Random Algs Exercise Uncertainty over Time

26

The full joint distribution is $\mathbf{P}(P_{1,1}, \dots, P_{4,4}, B_{1,1}, B_{1,2}, B_{2,1})$ Apply product rule: $\mathbf{P}(B_{1,1}, B_{1,2}, B_{2,1} | P_{1,1}, \dots, P_{4,4})\mathbf{P}(P_{1,1}, \dots, P_{4,4})$ (Do it this way to get P(Effect | Cause).) First term: 1 if pits are adjacent to breezes, 0 otherwise

Second term: pits are placed randomly, probability 0.2 per square:

$$\mathbf{P}(P_{1,1},\ldots,P_{4,4}) = \prod_{i,j=1,1}^{4,4} \mathbf{P}(P_{i,j}) = 0.2^n \times 0.8^{16-n}$$

for *n* pits.

 $\begin{array}{l} P_{ij} = true \mbox{ iff } [i,j] \mbox{ contains a pit} \\ B_{ij} = true \mbox{ iff } [i,j] \mbox{ is breezy} \\ \mbox{ Include only } B_{1,1}, B_{1,2}, B_{2,1} \mbox{ in the probability model} \end{array}$

Observations and query

We know the following facts: $b = \neg b_{1,1} \wedge b_{1,2} \wedge b_{2,1}$

Query is $P(P_{1,3}|known, b)$

 $known = \neg p_{1,1} \land \neg p_{1,2} \land \neg p_{2,1}$

For inference by enumeration, we have

Inference by Random Algs Exercise Uncertainty over Time

Basic insight: observations are conditionally independent of other hidden squares given neighbouring hidden squares

Using conditional independence

Define $Unknown = Fringe \cup Other$ $\mathbf{P}(b|P_{1,3}, Known, Unknown) = \mathbf{P}(b|P_{1,3}, Known, Fringe)$ Manipulate query into a form where we can use this!

29

Using conditional independence contd.

Define $Unknown = P_{ii}$ s other than $P_{1,3}$ and Known

Grows exponentially with number of squares!

 $\mathbf{P}(P_{1,3}|known, b) = \alpha \sum_{unknown} \mathbf{P}(P_{1,3}, unknown, known, b)$

 $\mathbf{P}(P_{1,3}|known, b) = \alpha \sum_{m=1,\dots,m} \mathbf{P}(P_{1,3}, unknown, known, b)$ $= \alpha \sum_{i=1}^{n} P(b|P_{1,3}, known, unknown) P(P_{1,3}, known, unknown)$ $= \alpha \sum_{i=1}^{n} \sum_{j=1}^{n} P(b|known, P_{1,3}, fringe, other) P(P_{1,3}, known, fringe, other)$ $= \alpha \sum_{i=1}^{n} \sum_{j=1}^{n} \mathsf{P}(b|known, P_{1,3}, fringe) \mathsf{P}(P_{1,3}, known, fringe, other)$ $= \alpha \sum_{\text{frince}} \mathbf{P}(b|known, P_{1,3}, fringe) \sum_{\text{other}} \mathbf{P}(P_{1,3}, known, fringe, other)$ $= \alpha \sum_{\text{fringe}} \mathsf{P}(b|known, P_{1,3}, \text{fringe}) \sum_{\text{other}} \mathsf{P}(P_{1,3}) P(known) P(fringe) P(other)$ $= \alpha P(known) P(P_{1,3}) \sum_{fringe} P(b|known, P_{1,3}, fringe) P(fringe) \sum_{other} P(other)$ = $\alpha' P(P_{1,3}) \sum_{\text{fringe}} P(b|known, P_{1,3}, fringe) P(fringe)$

Using conditional independence contd.

Inference by Random Algs Exercise Uncertainty over Time

30

 $P(P_{1,3}|known, b) = \alpha' \langle 0.2(0.04 + 0.16 + 0.16), 0.8(0.04 + 0.16) \rangle$ \approx (0.31, 0.69)

 $\mathbf{P}(P_{2,2}|known, b) \approx \langle 0.86, 0.14 \rangle$

Outline

Outline

1. Inference by Randomized Algorithms

2. Exercise

3. Uncertainty over Time

- \diamond Time and uncertainty
- \diamondsuit Inference: filtering, prediction, smoothing
- ♦ Hidden Markov models
- ♦ Kalman filters (a brief mention)
- ♦ Dynamic Bayesian networks (an even briefer mention)

33

Time and uncertainty

Inference by Random Algs Exercise Uncertainty over Time

- The world changes; we need to track and predict it
- Diabetes management vs vehicle diagnosis
- Basic idea: copy state and evidence variables for each time step
 X_t = set of unobservable state variables at time t
 - e.g., *BloodSugar*_t, *StomachContents*_t, etc.
 - E_t = set of observable evidence variables at time t e.g., MeasuredBloodSugar_t, PulseRate_t, FoodEaten_t
- This assumes discrete time; step size depends on problem
- Notation: $\mathbf{X}_{a:b} = \mathbf{X}_{a}, \mathbf{X}_{a+1}, \dots, \mathbf{X}_{b-1}, \mathbf{X}_{b}$

Markov processes (Markov chains)

Construct a Bayes net from these variables:

- unbounded number of conditional probability table
- unbounded number of parents

Markov assumption: X_t depends on **bounded** subset of $X_{0:t-1}$ First-order Markov process: $P(X_t|X_{0:t-1}) = P(X_t|X_{t-1})$ Second-order Markov process: $P(X_t|X_{0:t-1}) = P(X_t|X_{t-2}, X_{t-1})$

First-order $X_{t-2} \rightarrow X_{t-1} \rightarrow X_t \rightarrow X_{t+1} \rightarrow X_{t+2}$

Sensor Markov assumption: $P(E_t|X_{0:t}, E_{0:t-1}) = P(E_t|X_t)$ \sim Stationary process:

- transition model $P(X_t|X_{t-1})$ and
- sensor model $P(E_t|X_t)$ fixed for all t

34

Inference by Random Algs Exercise Uncertainty over Time

Inference tasks

Inference by Random Algs Exercise Uncertainty over Time

First-order Markov assumption not exactly true in real world! Possible fixes:

1. Increase order of Markov process

2. Augment state, e.g., add Temp_t, Pressure_t

Example: robot motion.

Augment position and velocity with Battery_t

1. Filtering: $P(X_t | e_{1:t})$ belief state—input to the decision process of a rational agent

- Prediction: P(X_{t+k}|e_{1:t}) for k > 0 evaluation of possible action sequences; like filtering without the evidence
- Smoothing: P(X_k|e_{1:t}) for 0 ≤ k < t better estimate of past states, essential for learning
- Most likely explanation: arg max_{x1:t} P(x_{1:t}|e_{1:t}) speech recognition, decoding with a noisy channel

37

Inference by Random Algs

Uncertainty over Time

Exercise

Filtering

Aim: devise a **recursive** state estimation algorithm:

$$\mathsf{P}(\mathsf{X}_{t+1}|\mathsf{e}_{1:t+1}) = f(\mathsf{e}_{t+1},\mathsf{P}(\mathsf{X}_t|\mathsf{e}_{1:t}))$$

$$P(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) = P(\mathbf{X}_{t+1}|\mathbf{e}_{1:t}, \mathbf{e}_{t+1})$$

= $\alpha P(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}, \mathbf{e}_{1:t})P(\mathbf{X}_{t+1}|\mathbf{e}_{1:t})$
= $\alpha P(\mathbf{e}_{t+1}|\mathbf{X}_{t+1})P(\mathbf{X}_{t+1}|\mathbf{e}_{1:t})$

I.e., prediction + estimation. Prediction by summing out X_t :

$$P(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) = \alpha P(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \sum_{\mathbf{x}_t} P(\mathbf{X}_{t+1}|\mathbf{x}_t, \mathbf{e}_{1:t}) P(\mathbf{x}_t|\mathbf{e}_{1:t})$$
$$= \alpha P(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \sum_{\mathbf{x}_t} P(\mathbf{X}_{t+1}|\mathbf{x}_t) P(\mathbf{x}_t|\mathbf{e}_{1:t})$$

 $\mathbf{f}_{1:t+1} = \mathsf{Forward}(\mathbf{f}_{1:t}, \mathbf{e}_{t+1}) \text{ where } \mathbf{f}_{1:t} = \mathbf{P}(\mathbf{X}_t | \mathbf{e}_{1:t})$ Time and space **constant** (independent of *t*)

Filtering example

Inference by Random Algs Exercise Uncertainty over Time

38

Smoothing

$$\mathbf{P}(\mathbf{X}_{k}|\mathbf{e}_{1:t}) = \mathbf{P}(\mathbf{X}_{k}|\mathbf{e}_{1:k}, \mathbf{e}_{k+1:t})$$

= $\alpha \mathbf{P}(\mathbf{X}_{k}|\mathbf{e}_{1:k})\mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_{k}, \mathbf{e}_{1:k})$
= $\alpha \mathbf{P}(\mathbf{X}_{k}|\mathbf{e}_{1:k})\mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_{k})$

$$= \alpha \mathbf{f}_{1:k} \mathbf{b}_{k+1:t}$$

Backward message computed by a backwards recursion:

$$\begin{aligned} \mathsf{P}(\mathsf{e}_{k+1:t}|\mathsf{X}_{k}) &= \sum_{\mathsf{x}_{k+1}} \mathsf{P}(\mathsf{e}_{k+1:t}|\mathsf{X}_{k},\mathsf{x}_{k+1}) \mathsf{P}(\mathsf{x}_{k+1}|\mathsf{X}_{k}) \\ &= \sum_{\mathsf{x}_{k+1}} P(\mathsf{e}_{k+1:t}|\mathsf{x}_{k+1}) \mathsf{P}(\mathsf{x}_{k+1}|\mathsf{X}_{k}) \\ &= \sum_{\mathsf{x}_{k+1}} P(\mathsf{e}_{k+1}|\mathsf{x}_{k+1}) P(\mathsf{e}_{k+2:t}|\mathsf{x}_{k+1}) \mathsf{P}(\mathsf{x}_{k+1}|\mathsf{X}_{k}) \end{aligned}$$

Inference by Random Algs Exercise Uncertainty over Time

Smoothing example

Inference by Random Algs Exercise Uncertainty over Time

Forward-backward algorithm: cache forward messages along the way Time linear in t (polytree inference), space $O(t|\mathbf{f}|)$