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Inference by Random Algs
Exercise
Uncertainty over TimeComplexity of exact inference

Singly connected networks (or polytrees):
– any two nodes are connected by at most one (undirected) path
– time and space cost (with variable elimination) are O(dkn)
– hence time and space cost are linear in n and k bounded by a constant

Multiply connected networks:
– can reduce 3SAT to exact inference =⇒ NP-hard
– equivalent to counting 3SAT models =⇒ #P-complete
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Inference by Random Algs
Exercise
Uncertainty over TimeInference by stochastic simulation

Basic idea:

Draw N samples from a sampling distribution S
Compute an approximate posterior probability P̂
Show this converges to the true probability P

Outline:
– Sampling from an empty network
– Rejection sampling: reject samples disagreeing with

evidence
– Likelihood weighting: use evidence to weight samples
– Markov chain Monte Carlo (MCMC): sample from a

stochastic process
whose stationary distribution is the true posterior

Coin

0.5
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Inference by Random Algs
Exercise
Uncertainty over TimeSampling from an empty network

function Prior-Sample(bn) returns an event sampled from bn
inputs: bn, a belief network specifying joint distribution

P(X1, . . . ,Xn)

x← an event with n elements
for i = 1 to n do

xi← a random sample from P(Xi | parents(Xi ))
given the values of Parents(Xi ) in x

return x

6

Inference by Random Algs
Exercise
Uncertainty over TimeExample
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Inference by Random Algs
Exercise
Uncertainty over TimeSampling from an empty network contd.

Probability that PriorSample generates a particular event

SPS(x1 . . . xn) = P(x1 . . . xn)

i.e., the true prior probability

E.g., SPS(t, f , t, t) = 0.5× 0.9× 0.8× 0.9 = 0.324 = P(t, f , t, t)

Proof: Let NPS(x1 . . . xn) be the number of samples generated for event
x1, . . . , xn. Then we have

lim
N→∞

P̂(x1, . . . , xn) = lim
N→∞

NPS(x1, . . . , xn)/N

= SPS(x1, . . . , xn)

=
n∏

i = 1

P(xi |parents(Xi )) = P(x1 . . . xn)

 That is, estimates derived from PriorSample are consistent
Shorthand: P̂(x1, . . . , xn) ≈ P(x1 . . . xn)
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Inference by Random Algs
Exercise
Uncertainty over TimeRejection sampling

P̂(X |e) estimated from samples agreeing with e

function Rejection-Sampling(X, e,bn,N) returns an estimate of P(X |e)
local variables: N, a vector of counts over X, initially zero

for j = 1 to N do
x←Prior-Sample(bn)
if x is consistent with e then

N[x]←N[x]+1 where x is the value of X in x
return Normalize(N[X])

E.g., estimate P(Rain|Sprinkler = true) using 100 samples
27 samples have Sprinkler = true

Of these, 8 have Rain= true and 19 have Rain= false.

P̂(Rain|Sprinkler = true) = Normalize(〈8, 19〉) = 〈0.296, 0.704〉
Similar to a basic real-world empirical estimation procedure

9

Inference by Random Algs
Exercise
Uncertainty over TimeAnalysis of rejection sampling

Rejection sampling returns consistent posterior estimates

Proof:
P̂(X |e) = αNPS(X , e) (algorithm defn.)

= NPS(X , e)/NPS(e) (normalized by NPS(e))
≈ P(X , e)/P(e) (property of PriorSample)
= P(X |e) (defn. of conditional probability)

Problem: hopelessly expensive if P(e) is small
P(e) drops off exponentially with number of evidence variables!
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Inference by Random Algs
Exercise
Uncertainty over TimeLikelihood weighting

Idea: fix evidence variables, sample only nonevidence variables,
and weight each sample by the likelihood it accords the evidence

function Likelihood-Weighting(X, e,bn,N) returns an estimate of P(X |e)
local variables: W, a vector of weighted counts over X, initially zero

for j = 1 to N do
x,w←Weighted-Sample(bn)
W[x ]←W[x ] + w where x is the value of X in x

return Normalize(W[X ])

function Weighted-Sample(bn, e) returns an event and a weight

x← an event with n elements; w← 1
for i = 1 to n do

if Xi has a value xi in e
then w←w × P(Xi = xi | parents(Xi ))
else xi← a random sample from P(Xi | parents(Xi ))

return x, w
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Inference by Random Algs
Exercise
Uncertainty over TimeLikelihood weighting example

P(Rain|Sprinkler = true,WetGrass = true)
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w = 1.0 × 0.1 × 0.99 = 0.099
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Inference by Random Algs
Exercise
Uncertainty over TimeLikelihood weighting analysis

Likelihood weighting returns consistent estimates

Sampling probability for WeightedSample is

SWS(z, e) =
l∏

i = 1

P(zi |parents(Zi ))

(pays attention to evidence in ancestors only)
 somewhere “in between” prior and posterior
distribution

Weight for a given sample z, e is

w(z, e) =
m∏

i = 1

P(ei |parents(Ei ))

Cloudy

RainSprinkler

 Wet
Grass

but performance still degrades
with many evidence variables
because a few samples have
nearly all the total weight

Weighted sampling probability is

SWS(z, e)w(z, e) =
l∏

i = 1

P(zi |parents(Zi ))
m∏

i = 1

P(ei |parents(Ei )) = P(z, e)
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Inference by Random Algs
Exercise
Uncertainty over TimeSummary

Approximate inference by LW:
– LW does poorly when there is lots of (late-in-the-order) evidence
– LW generally insensitive to topology
– Convergence can be very slow with probabilities close to 1 or 0
– Can handle arbitrary combinations of discrete and continuous variables
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Inference by Random Algs
Exercise
Uncertainty over TimeApproximate inference using MCMC

“State” of network = current assignment to all variables.
Generate next state by sampling one variable given Markov blanket
Sample each variable in turn, keeping evidence fixed

function MCMC-Ask(X, e,bn,N) returns an estimate of P(X |e)
local variables: N[X ], a vector of counts over X, initially zero

Z, nonevidence variables in bn, hidden + query
x, current state of the network, initially copied from e

initialize x with random values for the variables in Z
for j = 1 to N do

N[x ]←N[x ] + 1 where x is the value of X in x
for each Zi in Z do

sample the value of Zi in x from P(Zi |mb(Zi ))
given the values of MB(Zi ) in x

return Normalize(N[X ])

Can also choose a variable to sample at random each time
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Inference by Random Algs
Exercise
Uncertainty over TimeThe Markov chain

With Sprinkler = true,WetGrass = true, there are four states:

Cloudy

RainSprinkler

 Wet
Grass

Cloudy

RainSprinkler

 Wet
Grass

Cloudy

RainSprinkler

 Wet
Grass

Cloudy

RainSprinkler

 Wet
Grass

Wander about for a while, average what you see

Probabilistic finite state machine
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Inference by Random Algs
Exercise
Uncertainty over TimeMCMC example contd.

Estimate P(Rain|Sprinkler = true,WetGrass = true)

Sample Cloudy or Rain given its Markov blanket, repeat.
Count number of times Rain is true and false in the samples.

E.g., visit 100 states
31 have Rain= true, 69 have Rain= false

P̂(Rain|Sprinkler = true,WetGrass = true) = Normalize(〈31, 69〉) = 〈0.31, 0.69〉

Theorem
The Markov Chain approaches a stationary distribution:

long-run fraction of time spent in each state is exactly
proportional to its posterior probability
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Inference by Random Algs
Exercise
Uncertainty over TimeMarkov blanket sampling

Markov blanket of Cloudy is
Sprinkler and Rain

Markov blanket of Rain is
Cloudy , Sprinkler , and WetGrass

Cloudy

RainSprinkler

 Wet
Grass

Probability given the Markov blanket is calculated as follows:

P(x ′i |mb(Xi )) = P(x ′i |parents(Xi ))
∏

Zj∈Children(Xi )

P(zj |parents(Zj))

Easily implemented in message-passing parallel systems

Main computational problems:
1) Difficult to tell if convergence has been achieved
2) Can be wasteful if Markov blanket is large:

P(Xi |mb(Xi )) won’t change much (law of large numbers)
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Inference by Random Algs
Exercise
Uncertainty over TimeLocal semantics and Markov Blanket

Local semantics: each node is
conditionally independent
of its nondescendants given its parents

Each node is conditionally
independent of all others given its
Markov blanket: parents + children +
children’s parents

. . .

. . .U1
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Z1j

. . .

. . .U1

X

Um

Yn

Znj

Y1
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Inference by Random Algs
Exercise
Uncertainty over TimeMCMC analysis: Outline

Transition probability q(x→ x′)

Occupancy probability πt(x) at time t

Equilibrium condition on πt defines stationary distribution π(x)
Note: stationary distribution depends on choice of q(x→ x′)

Pairwise detailed balance on states guarantees equilibrium

Gibbs sampling transition probability:
sample each variable given current values of all others

=⇒ detailed balance with the true posterior

For Bayesian networks, Gibbs sampling reduces to
sampling conditioned on each variable’s Markov blanket
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Inference by Random Algs
Exercise
Uncertainty over TimeStationary distribution

πt(x) = probability in state x at time t
πt+1(x′) = probability in state x′ at time t + 1

πt+1 in terms of πt and q(x→ x′)

πt+1(x′) = Σxπt(x)q(x→ x′)

Stationary distribution: πt = πt+1 = π

π(x′) = Σxπ(x)q(x→ x′) for all x′

If π exists, it is unique (specific to q(x→ x′))

In equilibrium, expected “outflow” = expected “inflow”
21

Inference by Random Algs
Exercise
Uncertainty over TimeDetailed balance

“Outflow” = “inflow” for each pair of states:

π(x)q(x→ x′) = π(x′)q(x′ → x) for all x, x′

Detailed balance =⇒ stationarity:

Σxπ(x)q(x→ x′) = Σxπ(x′)q(x′ → x)

= π(x′)Σxq(x′ → x)

= π(x′)

MCMC algorithms typically constructed by designing a transition
probability q that is in detailed balance with desired π
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Inference by Random Algs
Exercise
Uncertainty over TimeGibbs sampling

Sample each variable in turn, given all other variables

Sampling Xi , let X̄i be all other nonevidence variables

Current values are xi and x̄i ; e is fixed

Transition probability is given by

q(x→ x′) = q(xi , x̄i → x ′i , x̄i ) = P(x ′i |x̄i , e)

This gives detailed balance with true posterior P(x|e):
π(x)q(x→ x′) = P(x|e)P(x ′i |x̄i , e) = P(xi , x̄i |e)P(x ′i |x̄i , e)

= P(xi |x̄i , e)P(x̄i |e)P(x ′i |x̄i , e) (chain rule)
= P(xi |x̄i , e)P(x ′i , x̄i |e) (chain rule backwards)
= q(x′ → x)π(x′) = π(x′)q(x′ → x)
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Inference by Random Algs
Exercise
Uncertainty over TimePerformance of approximation algorithms

Absolute approximation: |P(X |e)− P̂(X |e)| ≤ ε

Relative approximation: |P(X |e)−P̂(X |e)|
P(X |e) ≤ ε

Relative =⇒ absolute since 0 ≤ P ≤ 1 (may be O(2−n))

Randomized algorithms may fail with probability at most δ

Polytime approximation: poly(n, ε−1, log δ−1)

Theorem (Dagum and Luby, 1993): both absolute and relative
approximation for either deterministic or randomized algorithms
are NP-hard for any ε, δ < 0.5
(Absolute approximation polytime with no evidence—Chernoff bounds)
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Inference by Random Algs
Exercise
Uncertainty over TimeSummary

Exact inference by variable elimination:
– polytime on polytrees, NP-hard on general graphs
– space = time, very sensitive to topology

Approximate inference by LW, MCMC:

– PriorSampling and RejectionSampling unusable as evidence grow
– LW does poorly when there is lots of (late-in-the-order) evidence
– LW, MCMC generally insensitive to topology
– Convergence can be very slow with probabilities close to 1 or 0
– Can handle arbitrary combinations of discrete and continuous variables
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Inference by Random Algs
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Uncertainty over TimeOutline

1. Inference by Randomized Algorithms

2. Exercise

3. Uncertainty over Time
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Inference by Random Algs
Exercise
Uncertainty over TimeWumpus World

OK
 1,1  2,1  3,1  4,1

 1,2  2,2  3,2  4,2

 1,3  2,3  3,3  4,3

 1,4  2,4

OKOK

 3,4  4,4

B

B

Pij = true iff [i , j ] contains a pit
Bij = true iff [i , j ] is breezy
Include only B1,1,B1,2,B2,1 in the probability model
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Inference by Random Algs
Exercise
Uncertainty over TimeSpecifying the probability model

The full joint distribution is P(P1,1, . . . ,P4,4,B1,1,B1,2,B2,1)

Apply product rule: P(B1,1,B1,2,B2,1 |P1,1, . . . ,P4,4)P(P1,1, . . . ,P4,4)

(Do it this way to get P(Effect|Cause).)

First term: 1 if pits are adjacent to breezes, 0 otherwise

Second term: pits are placed randomly, probability 0.2 per square:

P(P1,1, . . . ,P4,4) =

4,4∏
i,j = 1,1

P(Pi,j) = 0.2n× 0.816−n

for n pits.
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Inference by Random Algs
Exercise
Uncertainty over TimeObservations and query

We know the following facts:
b = ¬b1,1 ∧ b1,2 ∧ b2,1
known = ¬p1,1 ∧ ¬p1,2 ∧ ¬p2,1

Query is P(P1,3|known, b)

Define Unknown = Pijs other than P1,3 and Known

For inference by enumeration, we have

P(P1,3|known, b) = αΣunknownP(P1,3, unknown, known, b)

Grows exponentially with number of squares!
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Inference by Random Algs
Exercise
Uncertainty over TimeUsing conditional independence

Basic insight: observations are conditionally independent of other hidden
squares given neighbouring hidden squares

 1,1  2,1  3,1  4,1

 1,2  2,2  3,2  4,2

 1,3  2,3  3,3  4,3

 1,4  2,4  3,4  4,4

KNOWN
FRINGE

QUERY
OTHER

Define Unknown = Fringe ∪ Other
P(b|P1,3,Known,Unknown) = P(b|P1,3,Known,Fringe)
Manipulate query into a form where we can use this!
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Inference by Random Algs
Exercise
Uncertainty over TimeUsing conditional independence contd.

P(P1,3|known, b) = α
X

unknown

P(P1,3, unknown, known, b)

= α
X

unknown

P(b|P1,3, known, unknown)P(P1,3, known, unknown)

= α
X
fringe

X
other

P(b|known,P1,3, fringe, other)P(P1,3, known, fringe, other)

= α
X
fringe

X
other

P(b|known,P1,3, fringe)P(P1,3, known, fringe, other)

= α
X
fringe

P(b|known,P1,3, fringe)
X
other

P(P1,3, known, fringe, other)

= α
X
fringe

P(b|known,P1,3, fringe)
X
other

P(P1,3)P(known)P(fringe)P(other)

= αP(known)P(P1,3)
X
fringe

P(b|known,P1,3, fringe)P(fringe)
X
other

P(other)

= α′ P(P1,3)
X
fringe

P(b|known,P1,3, fringe)P(fringe)
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Exercise
Uncertainty over TimeUsing conditional independence contd.

OK

 1,1  2,1  3,1

 1,2  2,2

 1,3

OKOK

B

B

OK

 1,1  2,1  3,1

 1,2  2,2

 1,3

OKOK

B

B

OK

 1,1  2,1  3,1

 1,2  2,2

 1,3

OKOK

B

B

0.2 x 0.2 = 0.04 0.2 x 0.8 = 0.16 0.8 x 0.2 = 0.16

OK

 1,1  2,1  3,1

 1,2  2,2

 1,3

OKOK

B

B

OK

 1,1  2,1  3,1

 1,2  2,2

 1,3

OKOK

B

B

0.2 x 0.2 = 0.04 0.2 x 0.8 = 0.16

P(P1,3|known, b) = α′ 〈0.2(0.04 + 0.16 + 0.16), 0.8(0.04 + 0.16)〉
≈ 〈0.31, 0.69〉

P(P2,2|known, b) ≈ 〈0.86, 0.14〉
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Inference by Random Algs
Exercise
Uncertainty over TimeOutline

1. Inference by Randomized Algorithms

2. Exercise

3. Uncertainty over Time
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Inference by Random Algs
Exercise
Uncertainty over TimeOutline

♦ Time and uncertainty
♦ Inference: filtering, prediction, smoothing
♦ Hidden Markov models
♦ Kalman filters (a brief mention)
♦ Dynamic Bayesian networks (an even briefer mention)
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Inference by Random Algs
Exercise
Uncertainty over TimeTime and uncertainty

The world changes; we need to track and predict it

Diabetes management vs vehicle diagnosis

Basic idea: copy state and evidence variables for each time step
Xt = set of unobservable state variables at time t

e.g., BloodSugart , StomachContentst , etc.
Et = set of observable evidence variables at time t

e.g., MeasuredBloodSugart , PulseRatet , FoodEatent

This assumes discrete time; step size depends on problem

Notation: Xa:b = Xa,Xa+1, . . . ,Xb−1,Xb
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Inference by Random Algs
Exercise
Uncertainty over TimeMarkov processes (Markov chains)

Construct a Bayes net from these variables:
- unbounded number of conditional probability table
- unbounded number of parents

Markov assumption: Xt depends on bounded subset of X0:t−1
First-order Markov process: P(Xt |X0:t−1) = P(Xt |Xt−1)
Second-order Markov process: P(Xt |X0:t−1) = P(Xt |Xt−2,Xt−1)

X t −1 X tX t −2 X t +1 X t +2

X t −1 X tX t −2 X t +1 X t +2First−order

Second−order

Sensor Markov assumption: P(Et |X0:t ,E0:t−1) = P(Et |Xt)
 Stationary process:

transition model P(Xt |Xt−1) and
sensor model P(Et |Xt) fixed for all t
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Inference by Random Algs
Exercise
Uncertainty over TimeExample

tRain

tUmbrella

Raint −1

Umbrella t −1

Raint +1

Umbrella t +1

Rt −1 tP(R  )

0.3f
0.7t

tR tP(U  )

0.9t
0.2f

First-order Markov assumption not exactly true in real world!
Possible fixes:

1. Increase order of Markov process
2. Augment state, e.g., add Tempt , Pressuret

Example: robot motion.
Augment position and velocity with Batteryt
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Inference by Random Algs
Exercise
Uncertainty over TimeInference tasks

1. Filtering: P(Xt |e1:t)
belief state—input to the decision process of a rational agent

2. Prediction: P(Xt+k |e1:t) for k > 0
evaluation of possible action sequences;
like filtering without the evidence

3. Smoothing: P(Xk |e1:t) for 0 ≤ k < t
better estimate of past states, essential for learning

4. Most likely explanation: argmaxx1:t P(x1:t |e1:t)
speech recognition, decoding with a noisy channel
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Exercise
Uncertainty over TimeFiltering

Aim: devise a recursive state estimation algorithm:

P(Xt+1|e1:t+1) = f (et+1,P(Xt |e1:t))

P(Xt+1|e1:t+1) = P(Xt+1|e1:t , et+1)

= αP(et+1|Xt+1, e1:t)P(Xt+1|e1:t)

= αP(et+1|Xt+1)P(Xt+1|e1:t)

I.e., prediction + estimation. Prediction by summing out Xt :

P(Xt+1|e1:t+1) = αP(et+1|Xt+1)ΣxtP(Xt+1|xt , e1:t)P(xt |e1:t)

= αP(et+1|Xt+1)ΣxtP(Xt+1|xt)P(xt |e1:t)

f1:t+1 = Forward(f1:t , et+1) where f1:t = P(Xt |e1:t)
Time and space constant (independent of t)
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tRain

tUmbrella

Raint −1

Umbrella t −1

Raint +1

Umbrella t +1

Rt −1 tP(R  )

0.3f
0.7t

tR tP(U  )

0.9t
0.2f

Rain1

Umbrella1

Rain2

Umbrella2

Rain0

0.818
0.182

0.627
0.373

0.883
0.117

True
False

0.500
0.500

0.500
0.500
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Inference by Random Algs
Exercise
Uncertainty over TimeSmoothing

X 0 X 1

1E tE

tXX k

Ek

Divide evidence e1:t into e1:k , ek+1:t :

P(Xk |e1:t) = P(Xk |e1:k , ek+1:t)

= αP(Xk |e1:k)P(ek+1:t |Xk , e1:k)

= αP(Xk |e1:k)P(ek+1:t |Xk)

= αf1:kbk+1:t

Backward message computed by a backwards recursion:

P(ek+1:t |Xk) =
X
xk+1

P(ek+1:t |Xk , xk+1)P(xk+1|Xk)

=
X
xk+1

P(ek+1:t |xk+1)P(xk+1|Xk)

=
X
xk+1

P(ek+1|xk+1)P(ek+2:t |xk+1)P(xk+1|Xk)
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Uncertainty over TimeSmoothing example

Rain1

Umbrella1

Rain2

Umbrella2

Rain0

True
False

0.818
0.182

0.627
0.373

0.883
0.117

0.500
0.500

0.500
0.500

1.000
1.000

0.690
0.410

0.883
0.117

forward

backward

smoothed
0.883
0.117

Forward–backward algorithm: cache forward messages along the way
Time linear in t (polytree inference), space O(t|f|)

42


