Lecture 10 Inference in Baysian Networks and Reasoning Over Time

Marco Chiarandini

Deptartment of Mathematics & Computer Science University of Southern Denmark

Slides by Stuart Russell and Peter Norvig

Course Overview

- ✓ Introduction
 - ✔ Artificial Intelligence
 - ✓ Intelligent Agents
- ✓ Search
 - ✓ Uninformed Search
 - ✔ Heuristic Search
- ✓ Adversarial Search
 - ✓ Minimax search
 - Alpha-beta pruning
- Knowledge representation and Reasoning
 - ✔ Propositional logic
 - ✔ First order logic
 - ✓ Inference

- Uncertain knowledge and Reasoning
 - Probability and Bayesian approach
 - Bayesian Networks
 - Hidden Markov Chains
 - Kalman Filters
- Learning
 - Decision Trees
 - Maximum Likelihood
 - EM Algorithm
 - Learning Bayesian Networks
 - Neural Networks
 - Support vector machines

Inference by Random Algs Exercise Uncertainty over Time

Outline

1. Inference by Randomized Algorithms

2. Exercise

3. Uncertainty over Time

Complexity of exact inference

Singly connected networks (or polytrees):

- any two nodes are connected by at most one (undirected) path
- time and space cost (with variable elimination) are $O(d^k n)$
- hence time and space cost are linear in n and k bounded by a constant

Multiply connected networks:

- − can reduce 3SAT to exact inference ⇒ NP-hard
- equivalent to counting 3SAT models ⇒ #P-complete

- 1. A v B v C
- 2. C v D v ¬A
- 3. B v C v $\neg D$

Basic idea:

- Draw N samples from a sampling distribution S
- Compute an approximate posterior probability P
- Show this converges to the true probability P

Outline:

- Sampling from an empty network
- Rejection sampling: reject samples disagreeing with evidence
 - Likelihood weighting: use evidence to weight samples
- Markov chain Monte Carlo (MCMC): sample from a stochastic process
 - whose stationary distribution is the true posterior

return x

```
function Prior-Sample(bn) returns an event sampled from bn inputs: bn, a belief network specifying joint distribution P(X_1, ..., X_n)

\mathbf{x} \leftarrow \text{an event with } n \text{ elements}

for i = 1 \text{ to } n \text{ do}

x_i \leftarrow \text{a random sample from } P(X_i \mid parents(X_i))

given the values of P(X_i \mid parents(X_i))
```


Sampling from an empty network contd^{Exercise} Uncertainty over Time

Probability that PriorSample generates a particular event

$$S_{PS}(x_1 \ldots x_n) = P(x_1 \ldots x_n)$$

i.e., the true prior probability

Sampling from an empty network contd^{Exercise}

Probability that PriorSample generates a particular event

$$S_{PS}(x_1 \ldots x_n) = P(x_1 \ldots x_n)$$

i.e., the true prior probability

E.g.,
$$S_{PS}(t, f, t, t) = 0.5 \times 0.9 \times 0.8 \times 0.9 = 0.324 = P(t, f, t, t)$$

Sampling from an empty network contd^{Exercise}

Probability that PriorSample generates a particular event

$$S_{PS}(x_1 \ldots x_n) = P(x_1 \ldots x_n)$$

i.e., the true prior probability

E.g.,
$$S_{PS}(t, f, t, t) = 0.5 \times 0.9 \times 0.8 \times 0.9 = 0.324 = P(t, f, t, t)$$

Proof: Let $N_{PS}(x_1 ... x_n)$ be the number of samples generated for event $x_1, ..., x_n$. Then we have

$$\lim_{N \to \infty} \hat{P}(x_1, \dots, x_n) = \lim_{N \to \infty} N_{PS}(x_1, \dots, x_n) / N$$

$$= S_{PS}(x_1, \dots, x_n)$$

$$= \prod_{i=1}^{n} P(x_i | parents(X_i)) = P(x_1 \dots x_n)$$

Sampling from an empty network contd^{Exercise}

Probability that PriorSample generates a particular event

$$S_{PS}(x_1 \ldots x_n) = P(x_1 \ldots x_n)$$

i.e., the true prior probability

E.g.,
$$S_{PS}(t, f, t, t) = 0.5 \times 0.9 \times 0.8 \times 0.9 = 0.324 = P(t, f, t, t)$$

Proof: Let $N_{PS}(x_1 ... x_n)$ be the number of samples generated for event $x_1, ..., x_n$. Then we have

$$\lim_{N \to \infty} \hat{P}(x_1, \dots, x_n) = \lim_{N \to \infty} N_{PS}(x_1, \dots, x_n) / N$$

$$= S_{PS}(x_1, \dots, x_n)$$

$$= \prod_{i=1}^n P(x_i | parents(X_i)) = P(x_1 \dots x_n)$$

 \leadsto That is, estimates derived from PriorSample are consistent Shorthand: $\hat{P}(x_1, \dots, x_n) \approx P(x_1 \dots x_n)$

Rejection sampling

 $\hat{P}(X|e)$ estimated from samples agreeing with e

Rejection sampling

$\hat{P}(X|e)$ estimated from samples agreeing with e

```
function Rejection-Sampling(X, e, bn, N) returns an estimate of P(X|e) local variables: N, a vector of counts over X, initially zero for j=1 to N do x \leftarrow \text{Prior-Sample}(bn) if x is consistent with e then N[x] \leftarrow N[x] + 1 \text{ where } x \text{ is the value of } X \text{ in } x return Normalize(N[X])
```

$\hat{P}(X|e)$ estimated from samples agreeing with e

```
function Rejection-Sampling(X, e, bn, N) returns an estimate of P(X|e) local variables: N, a vector of counts over X, initially zero for j=1 to N do x \leftarrow \text{Prior-Sample}(bn) if x is consistent with e then N[x] \leftarrow N[x]+1 \text{ where } x \text{ is the value of } X \text{ in } x return Normalize(N[X])
```

```
E.g., estimate P(Rain|Sprinkler = true) using 100 samples 27 samples have Sprinkler = true Of these, 8 have Rain = true and 19 have Rain = false.
```

```
\hat{\mathbf{P}}(Rain|Sprinkler=true)=Normalize(\langle 8,19\rangle)=\langle 0.296,0.704\rangle Similar to a basic real-world empirical estimation procedure
```

Analysis of rejection sampling

Rejection sampling returns consistent posterior estimates

Proof:

```
 \begin{split} \hat{\mathbf{P}}(X|\mathbf{e}) &= \alpha \mathbf{N}_{PS}(X,\mathbf{e}) & \text{(algorithm defn.)} \\ &= \mathbf{N}_{PS}(X,\mathbf{e})/N_{PS}(\mathbf{e}) & \text{(normalized by } N_{PS}(\mathbf{e})) \\ &\approx \mathbf{P}(X,\mathbf{e})/P(\mathbf{e}) & \text{(property of PriorSample)} \\ &= \mathbf{P}(X|\mathbf{e}) & \text{(defn. of conditional probability)} \end{split}
```

Analysis of rejection sampling

Rejection sampling returns consistent posterior estimates

Proof:

```
\begin{split} \hat{\mathbf{P}}(X|\mathbf{e}) &= \alpha \mathbf{N}_{PS}(X,\mathbf{e}) & \text{(algorithm defn.)} \\ &= \mathbf{N}_{PS}(X,\mathbf{e})/N_{PS}(\mathbf{e}) & \text{(normalized by } N_{PS}(\mathbf{e})) \\ &\approx \mathbf{P}(X,\mathbf{e})/P(\mathbf{e}) & \text{(property of PriorSample)} \\ &= \mathbf{P}(X|\mathbf{e}) & \text{(defn. of conditional probability)} \end{split}
```

Problem: hopelessly expensive if $P(\mathbf{e})$ is small $P(\mathbf{e})$ drops off exponentially with number of evidence variables!

Likelihood weighting

Idea: fix evidence variables, sample only nonevidence variables, and weight each sample by the likelihood it accords the evidence

Likelihood weighting

Idea: fix evidence variables, sample only nonevidence variables, and weight each sample by the likelihood it accords the evidence

```
function Likelihood-Weighting (X, e, bn, N) returns an estimate of P(X|e)
   local variables: W, a vector of weighted counts over X, initially zero
   for j = 1 to N do
        x, w \leftarrow Weighted-Sample(bn)
        W[x] \leftarrow W[x] + w where x is the value of X in x
   return Normalize(W[X])
function Weighted-Sample(bn, e) returns an event and a weight
   x \leftarrow an event with n elements; w \leftarrow 1
   for i = 1 to n do
        if X_i has a value x_i in e
              then w \leftarrow w \times P(X_i = x_i \mid parents(X_i))
              else x_i \leftarrow a random sample from P(X_i \mid parents(X_i))
   return x, w
```


w = 1.0

w = 1.0

w = 1.0

 $w = 1.0 \times 0.1$

 $w = 1.0 \times 0.1$

 $w = 1.0 \times 0.1$

 $w = 1.0 \times 0.1 \times 0.99 = 0.099$

Likelihood weighting returns consistent estimates

Sampling probability for WeightedSample is

$$S_{WS}(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{l} P(z_i | parents(Z_i))$$

(pays attention to evidence in **ancestors** only) ~somewhere "in between" prior and posterior distribution

Weight for a given sample z, e is

$$w(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{m} P(e_i | parents(E_i))$$

Likelihood weighting analysis

Likelihood weighting returns consistent estimates

Sampling probability for WeightedSample is

$$S_{WS}(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{l} P(z_i | parents(Z_i))$$

$$w(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{m} P(e_i | parents(E_i))$$

Weighted sampling probability is

$$S_{WS}(\mathbf{z}, \mathbf{e})w(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{m} P(z_i|parents(Z_i)) \prod_{i=1}^{m} P(e_i|parents(E_i)) = P(\mathbf{z}, \mathbf{e})$$

Likelihood weighting analysis

Likelihood weighting returns consistent estimates

Sampling probability for WeightedSample is

$$S_{WS}(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{l} P(z_i | parents(Z_i))$$

Weight for a given sample z, e is

$$w(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{m} P(e_i|parents(E_i))$$

Weighted sampling probability is

$$S_{WS}(\mathbf{z}, \mathbf{e})w(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{n} P(z_i|parents(Z_i)) \prod_{i=1}^{m} P(e_i|parents(E_i)) = P(\mathbf{z}, \mathbf{e})$$

but performance still degrades with many evidence variables because a few samples have nearly all the total weight

Summary

Approximate inference by LW:

- LW does poorly when there is lots of (late-in-the-order) evidence
- LW generally insensitive to topology
- Convergence can be very slow with probabilities close to 1 or 0
- Can handle arbitrary combinations of discrete and continuous variables

Approximate inference using MCMC

"State" of network = current assignment to all variables.

Generate next state by sampling one variable given Markov blanket
Sample each variable in turn, keeping evidence fixed

```
function MCMC-Ask(X, e, bn, N) returns an estimate of P(X|e) local variables: N[X], a vector of counts over X, initially zero Z, nonevidence variables in bn, hidden + query X, current state of the network, initially copied from E initialize E with random values for the variables in E for E 1 to E do N[X] \leftarrow N[X] + 1 \text{ where } X \text{ is the value of } X \text{ in } X \text{ for each } Z_i \text{ in } Z \text{ do} sample the value of E in E in E for E in E do given the values of E in E return Normalize(E in in E re
```

Can also choose a variable to sample at random each time

The Markov chain

With Sprinkler = true, WetGrass = true, there are four states:

Wander about for a while, average what you see

The Markov chain

With Sprinkler = true, WetGrass = true, there are four states:

Wander about for a while, average what you see

Probabilistic finite state machine

Inference by Random Algs Exercise Uncertainty over Time

MCMC example contd.

Estimate P(Rain|Sprinkler = true, WetGrass = true)

Estimate P(Rain|Sprinkler = true, WetGrass = true)

Sample Cloudy or Rain given its Markov blanket, repeat.

Estimate P(Rain|Sprinkler = true, WetGrass = true)

Sample *Cloudy* or *Rain* given its Markov blanket, repeat. Count number of times *Rain* is true and false in the samples.

```
Estimate P(Rain|Sprinkler = true, WetGrass = true)
```

Sample *Cloudy* or *Rain* given its Markov blanket, repeat. Count number of times *Rain* is true and false in the samples.

E.g., visit 100 states 31 have Rain = true, 69 have Rain = false

$$\hat{\textbf{P}}(\textit{Rain}|\textit{Sprinkler} = \textit{true}, \textit{WetGrass} = \textit{true}) = \mathsf{Normalize}(\langle 31, 69 \rangle) = \langle 0.31, 0.69 \rangle$$

```
Estimate P(Rain|Sprinkler = true, WetGrass = true)
```

Sample *Cloudy* or *Rain* given its Markov blanket, repeat. Count number of times *Rain* is true and false in the samples.

E.g., visit 100 states 31 have Rain = true, 69 have Rain = false

$$\hat{\textbf{P}}(\textit{Rain}|\textit{Sprinkler} = \textit{true}, \textit{WetGrass} = \textit{true}) = \mathsf{Normalize}(\langle 31, 69 \rangle) = \langle 0.31, 0.69 \rangle$$

Theorem

The Markov Chain approaches a stationary distribution: long-run fraction of time spent in each state is exactly proportional to its posterior probability

Markov blanket sampling

Markov blanket of *Cloudy* is *Sprinkler* and *Rain*

Markov blanket of *Rain* is *Cloudy*, *Sprinkler*, and *WetGrass*

Markov blanket sampling

Markov blanket of *Cloudy* is *Sprinkler* and *Rain*

Markov blanket of *Rain* is *Cloudy*, *Sprinkler*, and *WetGrass*

Probability given the Markov blanket is calculated as follows:

$$P(x_i'|mb(X_i)) = P(x_i'|parents(X_i)) \prod_{Z_i \in Children(X_i)} P(z_j|parents(Z_j))$$

Easily implemented in message-passing parallel systems

Markov blanket sampling

Markov blanket of *Cloudy* is *Sprinkler* and *Rain*

Markov blanket of *Rain* is *Cloudy*, *Sprinkler*, and *WetGrass*

Probability given the Markov blanket is calculated as follows:

$$P(x_i'|mb(X_i)) = P(x_i'|parents(X_i)) \prod_{Z_j \in Children(X_i)} P(z_j|parents(Z_j))$$

Easily implemented in message-passing parallel systems Main computational problems:

- 1) Difficult to tell if convergence has been achieved
- 2) Can be wasteful if Markov blanket is large: $P(X_i|mb(X_i))$ won't change much (law of large numbers)

Local semantics and Markov Blanket

Local semantics: each node is conditionally independent of its nondescendants given its parents

Each node is conditionally independent of all others given its Markov blanket: parents + children + children's parents

ullet Transition probability $q({f x}
ightarrow {f x}')$

- Transition probability $q(x \rightarrow x')$
- Occupancy probability $\pi_t(\mathbf{x})$ at time t

- Transition probability $q(x \rightarrow x')$
- Occupancy probability $\pi_t(\mathbf{x})$ at time t
- Equilibrium condition on π_t defines stationary distribution $\pi(\mathbf{x})$ Note: stationary distribution depends on choice of $q(\mathbf{x} \to \mathbf{x}')$

- Transition probability $q(x \rightarrow x')$
- Occupancy probability $\pi_t(\mathbf{x})$ at time t
- Equilibrium condition on π_t defines stationary distribution $\pi(\mathbf{x})$ Note: stationary distribution depends on choice of $q(\mathbf{x} \to \mathbf{x}')$
- Pairwise detailed balance on states guarantees equilibrium

- Transition probability $q(x \rightarrow x')$
- Occupancy probability $\pi_t(\mathbf{x})$ at time t
- Equilibrium condition on π_t defines stationary distribution $\pi(\mathbf{x})$ Note: stationary distribution depends on choice of $q(\mathbf{x} \to \mathbf{x}')$
- Pairwise detailed balance on states guarantees equilibrium
- Gibbs sampling transition probability:
 sample each variable given current values of all others
 detailed balance with the true posterior

- Transition probability $q(x \rightarrow x')$
- Occupancy probability $\pi_t(\mathbf{x})$ at time t
- Equilibrium condition on π_t defines stationary distribution $\pi(\mathbf{x})$ Note: stationary distribution depends on choice of $q(\mathbf{x} \to \mathbf{x}')$
- Pairwise detailed balance on states guarantees equilibrium
- Gibbs sampling transition probability:
 sample each variable given current values of all others
 detailed balance with the true posterior
- For Bayesian networks, Gibbs sampling reduces to sampling conditioned on each variable's Markov blanket

• $\pi_t(\mathbf{x}) = \text{probability in state } \mathbf{x} \text{ at time } t$ $\pi_{t+1}(\mathbf{x}') = \text{probability in state } \mathbf{x}' \text{ at time } t+1$

- $\pi_t(\mathbf{x}) = \text{probability in state } \mathbf{x} \text{ at time } t$ $\pi_{t+1}(\mathbf{x}') = \text{probability in state } \mathbf{x}' \text{ at time } t+1$
- \bullet π_{t+1} in terms of π_t and $q(\mathbf{x} \to \mathbf{x}')$

$$\pi_{t+1}(\mathsf{x}') = \sum\nolimits_{\mathbf{X}} \pi_t(\mathsf{x}) q(\mathsf{x} \to \mathsf{x}')$$

- $\pi_t(\mathbf{x}) = \text{probability in state } \mathbf{x} \text{ at time } t$ $\pi_{t+1}(\mathbf{x}') = \text{probability in state } \mathbf{x}' \text{ at time } t+1$
- ullet π_{t+1} in terms of π_t and $q(\mathbf{x}
 ightarrow \mathbf{x}')$

$$\pi_{t+1}(\mathsf{x}') = \sum_{\mathbf{X}} \pi_t(\mathsf{x}) q(\mathsf{x} o \mathsf{x}')$$

• Stationary distribution: $\pi_t = \pi_{t+1} = \pi$

$$\pi(\mathbf{x}') = \sum_{\mathbf{X}} \pi(\mathbf{x}) q(\mathbf{x} \to \mathbf{x}')$$
 for all \mathbf{x}'

- $\pi_t(\mathbf{x}) = \text{probability in state } \mathbf{x} \text{ at time } t$ $\pi_{t+1}(\mathbf{x}') = \text{probability in state } \mathbf{x}' \text{ at time } t+1$
- ullet π_{t+1} in terms of π_t and $q(\mathbf{x}
 ightarrow \mathbf{x}')$

$$\pi_{t+1}(\mathsf{x}') = \sum_{\mathbf{X}} \pi_t(\mathsf{x}) q(\mathsf{x} o \mathsf{x}')$$

• Stationary distribution: $\pi_t = \pi_{t+1} = \pi$

$$\pi(\mathbf{x}') = \sum_{\mathbf{X}} \pi(\mathbf{x}) q(\mathbf{x}
ightarrow \mathbf{x}')$$
 for all \mathbf{x}'

• If π exists, it is unique (specific to $q(\mathbf{x} \to \mathbf{x}')$)

- $\pi_t(\mathbf{x}) = \text{probability in state } \mathbf{x} \text{ at time } t$ $\pi_{t+1}(\mathbf{x}') = \text{probability in state } \mathbf{x}' \text{ at time } t+1$
- ullet π_{t+1} in terms of π_t and $q(\mathbf{x}
 ightarrow \mathbf{x}')$

$$\pi_{t+1}(\mathsf{x}') = \sum\nolimits_{\mathbf{X}} \pi_t(\mathsf{x}) q(\mathsf{x} \to \mathsf{x}')$$

• Stationary distribution: $\pi_t = \pi_{t+1} = \pi$

$$\pi(\mathbf{x}') = \sum_{\mathbf{X}} \pi(\mathbf{x}) q(\mathbf{x} o \mathbf{x}')$$
 for all \mathbf{x}'

- If π exists, it is unique (specific to $q(\mathbf{x} \to \mathbf{x}')$)
- In equilibrium, expected "outflow" = expected "inflow"

Detailed balance

• "Outflow" = "inflow" for each pair of states:

$$\pi(\mathbf{x})q(\mathbf{x}
ightarrow \mathbf{x}') = \pi(\mathbf{x}')q(\mathbf{x}'
ightarrow \mathbf{x})$$
 for all $\mathbf{x}, \ \mathbf{x}'$

Detailed balance

• "Outflow" = "inflow" for each pair of states:

$$\pi(\mathbf{x})q(\mathbf{x} \to \mathbf{x}') = \pi(\mathbf{x}')q(\mathbf{x}' \to \mathbf{x})$$
 for all $\mathbf{x}, \ \mathbf{x}'$

• Detailed balance \implies stationarity:

$$\sum_{\mathbf{x}} \pi(\mathbf{x}) q(\mathbf{x} \to \mathbf{x}') = \sum_{\mathbf{x}} \pi(\mathbf{x}') q(\mathbf{x}' \to \mathbf{x})$$

$$= \pi(\mathbf{x}') \sum_{\mathbf{x}} q(\mathbf{x}' \to \mathbf{x})$$

$$= \pi(\mathbf{x}')$$

Detailed balance

• "Outflow" = "inflow" for each pair of states:

$$\pi(\mathbf{x})q(\mathbf{x} \to \mathbf{x}') = \pi(\mathbf{x}')q(\mathbf{x}' \to \mathbf{x})$$
 for all $\mathbf{x}, \ \mathbf{x}'$

$$\sum_{\mathbf{x}} \pi(\mathbf{x}) q(\mathbf{x} \to \mathbf{x}') = \sum_{\mathbf{x}} \pi(\mathbf{x}') q(\mathbf{x}' \to \mathbf{x})$$

$$= \pi(\mathbf{x}') \sum_{\mathbf{x}} q(\mathbf{x}' \to \mathbf{x})$$

$$= \pi(\mathbf{x}')$$

• MCMC algorithms typically constructed by designing a transition probability q that is in detailed balance with desired π

• Sample each variable in turn, given all other variables

- Sample each variable in turn, given all other variables
- Sampling X_i , let $\bar{\mathbf{X}}_i$ be all other nonevidence variables

- Sample each variable in turn, given all other variables
- Sampling X_i , let $\bar{\mathbf{X}}_i$ be all other nonevidence variables
- Current values are x_i and $\bar{x_i}$; **e** is fixed

- Sample each variable in turn, given all other variables
- Sampling X_i , let $\bar{\mathbf{X}}_i$ be all other nonevidence variables
- Current values are x_i and $\bar{\mathbf{x}}_i$; **e** is fixed
- Transition probability is given by

$$q(\mathbf{x} \to \mathbf{x}') = q(x_i, \bar{\mathbf{x}_i} \to x_i', \bar{\mathbf{x}_i}) = P(x_i' | \bar{\mathbf{x}_i}, \mathbf{e})$$

- Sample each variable in turn, given all other variables
- Sampling X_i , let $\bar{\mathbf{X}}_i$ be all other nonevidence variables
- Current values are x_i and $\bar{\mathbf{x}}_i$; **e** is fixed
- Transition probability is given by

$$q(\mathbf{x} \to \mathbf{x}') = q(x_i, \bar{\mathbf{x}}_i \to x_i', \bar{\mathbf{x}}_i) = P(x_i'|\bar{\mathbf{x}}_i, \mathbf{e})$$

• This gives detailed balance with true posterior $P(\mathbf{x}|\mathbf{e})$:

$$\pi(\mathbf{x})q(\mathbf{x} \to \mathbf{x}') = P(\mathbf{x}|\mathbf{e})P(x_i'|\bar{\mathbf{x}}_i, \mathbf{e}) = P(x_i, \bar{\mathbf{x}}_i|\mathbf{e})P(x_i'|\bar{\mathbf{x}}_i, \mathbf{e})$$

$$= P(x_i|\bar{\mathbf{x}}_i, \mathbf{e})P(\bar{\mathbf{x}}_i|\mathbf{e})P(x_i'|\bar{\mathbf{x}}_i, \mathbf{e}) \text{ (chain rule)}$$

$$= P(x_i|\bar{\mathbf{x}}_i, \mathbf{e})P(x_i', \bar{\mathbf{x}}_i|\mathbf{e}) \text{ (chain rule backwards)}$$

$$= q(\mathbf{x}' \to \mathbf{x})\pi(\mathbf{x}') = \pi(\mathbf{x}')q(\mathbf{x}' \to \mathbf{x})$$

• Absolute approximation: $|P(X|\mathbf{e}) - \hat{P}(X|\mathbf{e})| \le \epsilon$

- Absolute approximation: $|P(X|\mathbf{e}) \hat{P}(X|\mathbf{e})| \le \epsilon$
- Relative approximation: $\frac{|P(X|\mathbf{e}) \hat{P}(X|\mathbf{e})|}{P(X|\mathbf{e})} \le \epsilon$

- Absolute approximation: $|P(X|\mathbf{e}) \hat{P}(X|\mathbf{e})| \le \epsilon$
- \bullet Relative approximation: $\frac{|P(X|\mathbf{e}) \hat{P}(X|\mathbf{e})|}{P(X|\mathbf{e})} \leq \epsilon$
- Relative \implies absolute since $0 \le P \le 1$ (may be $O(2^{-n})$)

- Absolute approximation: $|P(X|\mathbf{e}) \hat{P}(X|\mathbf{e})| \le \epsilon$
- \bullet Relative approximation: $\frac{|P(X|\mathbf{e}) \hat{P}(X|\mathbf{e})|}{P(X|\mathbf{e})} \leq \epsilon$
- Relative \implies absolute since $0 \le P \le 1$ (may be $O(2^{-n})$)
- ullet Randomized algorithms may fail with probability at most δ

- Absolute approximation: $|P(X|\mathbf{e}) \hat{P}(X|\mathbf{e})| \le \epsilon$
- \bullet Relative approximation: $\frac{|P(X|\mathbf{e}) \hat{P}(X|\mathbf{e})|}{P(X|\mathbf{e})} \leq \epsilon$
- Relative \implies absolute since $0 \le P \le 1$ (may be $O(2^{-n})$)
- ullet Randomized algorithms may fail with probability at most δ
- \bullet Polytime approximation: $\mathsf{poly}(n,\epsilon^{-1},\log\delta^{-1})$

- Absolute approximation: $|P(X|\mathbf{e}) \hat{P}(X|\mathbf{e})| \le \epsilon$
- Relative approximation: $\frac{|P(X|\mathbf{e}) \hat{P}(X|\mathbf{e})|}{P(X|\mathbf{e})} \le \epsilon$
- Relative \implies absolute since $0 \le P \le 1$ (may be $O(2^{-n})$)
- ullet Randomized algorithms may fail with probability at most δ
- Polytime approximation: $poly(n, \epsilon^{-1}, \log \delta^{-1})$
- Theorem (Dagum and Luby, 1993): both absolute and relative approximation for either deterministic or randomized algorithms are NP-hard for any $\epsilon, \delta < 0.5$ (Absolute approximation polytime with no evidence—Chernoff bounds)

Summary

Exact inference by variable elimination:

- polytime on polytrees, NP-hard on general graphs
- space = time, very sensitive to topology

Approximate inference by LW, MCMC:

- PriorSampling and RejectionSampling unusable as evidence grow
 - LW does poorly when there is lots of (late-in-the-order) evidence
 - LW, MCMC generally insensitive to topology
 - Convergence can be very slow with probabilities close to 1 or 0
 - Can handle arbitrary combinations of discrete and continuous variables

Outline

1. Inference by Randomized Algorithms

2. Exercise

3. Uncertainty over Time

Wumpus World

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2 B OK	2,2	3,2	4,2
1,1	2,1 B	3,1	4,1
ок	OK		

 $P_{ij} = true$ iff [i,j] contains a pit $B_{ij} = true$ iff [i,j] is breezy Include only $B_{1,1}, B_{1,2}, B_{2,1}$ in the probability model

Specifying the probability model

```
The full joint distribution is \mathbf{P}(P_{1,1},\ldots,P_{4,4},B_{1,1},B_{1,2},B_{2,1})
Apply product rule: \mathbf{P}(B_{1,1},B_{1,2},B_{2,1}\,|\,P_{1,1},\ldots,P_{4,4})\mathbf{P}(P_{1,1},\ldots,P_{4,4})
(Do it this way to get P(\textit{Effect}|\,\textit{Cause}).)
```

Specifying the probability model

The full joint distribution is $P(P_{1,1},...,P_{4,4},B_{1,1},B_{1,2},B_{2,1})$

Apply product rule:
$$P(B_{1,1}, B_{1,2}, B_{2,1} | P_{1,1}, \dots, P_{4,4}) P(P_{1,1}, \dots, P_{4,4})$$

(Do it this way to get P(Effect | Cause).)

First term: 1 if pits are adjacent to breezes, 0 otherwise

Second term: pits are placed randomly, probability 0.2 per square:

$$\mathbf{P}(P_{1,1},\ldots,P_{4,4}) = \prod_{i,j=1,1}^{4,4} \mathbf{P}(P_{i,j}) = 0.2^n \times 0.8^{16-n}$$

for n pits.

Observations and query

We know the following facts:

$$b = \neg b_{1,1} \wedge b_{1,2} \wedge b_{2,1}$$

 $known = \neg p_{1,1} \wedge \neg p_{1,2} \wedge \neg p_{2,1}$

Query is $P(P_{1,3}|known, b)$

Define $Unknown = P_{ij}s$ other than $P_{1,3}$ and Known

Observations and query

We know the following facts:

$$b = \neg b_{1,1} \wedge b_{1,2} \wedge b_{2,1}$$

 $known = \neg p_{1,1} \wedge \neg p_{1,2} \wedge \neg p_{2,1}$

Query is $P(P_{1,3}|known,b)$

Define $Unknown = P_{ij}$ s other than $P_{1,3}$ and Known

For inference by enumeration, we have

$$\mathbf{P}(P_{1,3}|known,b) = \alpha \sum_{unknown} \mathbf{P}(P_{1,3},unknown,known,b)$$

Grows exponentially with number of squares!

Using conditional independence

Basic insight: observations are conditionally independent of other hidden squares given neighbouring hidden squares

Using conditional independence

Basic insight: observations are conditionally independent of other hidden squares given neighbouring hidden squares

Define $Unknown = Fringe \cup Other$ $P(b|P_{1,3}, Known, Unknown) = P(b|P_{1,3}, Known, Fringe)$ Manipulate query into a form where we can use this!

$$P(P_{1,3}|known,b) = \alpha \sum_{unknown} P(P_{1,3}, unknown, known, b)$$

$$\begin{split} \mathbf{P}(P_{1,3}|\textit{known},b) &= \alpha \sum_{\textit{unknown}} \mathbf{P}(P_{1,3},\textit{unknown},\textit{known},b) \\ &= \alpha \sum_{\textit{unknown}} \mathbf{P}(b|P_{1,3},\textit{known},\textit{unknown}) \mathbf{P}(P_{1,3},\textit{known},\textit{unknown}) \end{split}$$

fringe other

$$\begin{split} \mathbf{P}(P_{1,3}|\textit{known},b) &= \alpha \sum_{\textit{unknown}} \mathbf{P}(P_{1,3},\textit{unknown},\textit{known},b) \\ &= \alpha \sum_{\textit{unknown}} \mathbf{P}(b|P_{1,3},\textit{known},\textit{unknown}) \mathbf{P}(P_{1,3},\textit{known},\textit{unknown}) \\ &= \alpha \sum_{\textit{unknown}} \sum_{\textit{p}} \mathbf{P}(b|\textit{known},P_{1,3},\textit{fringe},\textit{other}) \mathbf{P}(P_{1,3},\textit{known},\textit{fringe},\textit{other}) \end{split}$$

$$\begin{split} \mathbf{P}(P_{1,3}|known,b) &= \alpha \sum_{unknown} \mathbf{P}(P_{1,3},unknown,known,b) \\ &= \alpha \sum_{unknown} \mathbf{P}(b|P_{1,3},known,unknown) \mathbf{P}(P_{1,3},known,unknown) \\ &= \alpha \sum_{fringe\ other} \sum_{other} \mathbf{P}(b|known,P_{1,3},fringe,other) \mathbf{P}(P_{1,3},known,fringe,other) \\ &= \alpha \sum_{fringe\ other} \sum_{other} \mathbf{P}(b|known,P_{1,3},fringe) \mathbf{P}(P_{1,3},known,fringe,other) \end{split}$$

$$\begin{split} \mathbf{P}(P_{1,3}|known,b) &= \alpha \sum_{unknown} \mathbf{P}(P_{1,3},unknown,known,b) \\ &= \alpha \sum_{unknown} \mathbf{P}(b|P_{1,3},known,unknown) \mathbf{P}(P_{1,3},known,unknown) \\ &= \alpha \sum_{fringe} \sum_{other} \mathbf{P}(b|known,P_{1,3},fringe,other) \mathbf{P}(P_{1,3},known,fringe,other) \\ &= \alpha \sum_{fringe} \sum_{other} \mathbf{P}(b|known,P_{1,3},fringe) \mathbf{P}(P_{1,3},known,fringe,other) \\ &= \alpha \sum_{fringe} \sum_{other} \mathbf{P}(b|known,P_{1,3},fringe) \sum_{other} \mathbf{P}(P_{1,3},known,fringe,other) \end{split}$$

$$\begin{split} & \mathbf{P}(P_{1,3}|known,b) = \alpha \sum_{unknown} \mathbf{P}(P_{1,3},unknown,known,b) \\ & = \alpha \sum_{unknown} \mathbf{P}(b|P_{1,3},known,unknown) \mathbf{P}(P_{1,3},known,unknown) \\ & = \alpha \sum_{fringe} \sum_{other} \mathbf{P}(b|known,P_{1,3},fringe,other) \mathbf{P}(P_{1,3},known,fringe,other) \\ & = \alpha \sum_{fringe} \sum_{other} \mathbf{P}(b|known,P_{1,3},fringe) \mathbf{P}(P_{1,3},known,fringe,other) \\ & = \alpha \sum_{fringe} \mathbf{P}(b|known,P_{1,3},fringe) \sum_{other} \mathbf{P}(P_{1,3},known,fringe,other) \\ & = \alpha \sum_{fringe} \mathbf{P}(b|known,P_{1,3},fringe) \sum_{other} \mathbf{P}(P_{1,3}) P(known) P(fringe) P(other) \end{split}$$

$$\begin{split} &\mathsf{P}(P_{1,3}|known,b) = \alpha \sum_{unknown} \mathsf{P}(P_{1,3},unknown,known,b) \\ &= \alpha \sum_{unknown} \mathsf{P}(b|P_{1,3},known,unknown) \mathsf{P}(P_{1,3},known,unknown) \\ &= \alpha \sum_{fringe} \sum_{other} \mathsf{P}(b|known,P_{1,3},fringe,other) \mathsf{P}(P_{1,3},known,fringe,other) \\ &= \alpha \sum_{fringe} \sum_{other} \mathsf{P}(b|known,P_{1,3},fringe) \mathsf{P}(P_{1,3},known,fringe,other) \\ &= \alpha \sum_{fringe} \mathsf{P}(b|known,P_{1,3},fringe) \sum_{other} \mathsf{P}(P_{1,3},known,fringe,other) \\ &= \alpha \sum_{fringe} \mathsf{P}(b|known,P_{1,3},fringe) \sum_{other} \mathsf{P}(P_{1,3}) P(known) P(fringe) P(other) \\ &= \alpha P(known) \mathsf{P}(P_{1,3}) \sum_{i} \mathsf{P}(b|known,P_{1,3},fringe) P(fringe) \sum_{i} P(other) \end{split}$$

fringe

$$\begin{split} &\mathsf{P}(P_{1,3}|known,b) = \alpha \sum_{unknown} \mathsf{P}(P_{1,3},unknown,known,b) \\ &= \alpha \sum_{unknown} \mathsf{P}(b|P_{1,3},known,unknown) \mathsf{P}(P_{1,3},known,unknown) \\ &= \alpha \sum_{fringe} \sum_{other} \mathsf{P}(b|known,P_{1,3},fringe,other) \mathsf{P}(P_{1,3},known,fringe,other) \\ &= \alpha \sum_{fringe} \sum_{other} \mathsf{P}(b|known,P_{1,3},fringe) \mathsf{P}(P_{1,3},known,fringe,other) \\ &= \alpha \sum_{fringe} \mathsf{P}(b|known,P_{1,3},fringe) \sum_{other} \mathsf{P}(P_{1,3},known,fringe,other) \\ &= \alpha \sum_{fringe} \mathsf{P}(b|known,P_{1,3},fringe) \sum_{other} \mathsf{P}(P_{1,3}) P(known) P(fringe) P(other) \\ &= \alpha P(known) \mathsf{P}(P_{1,3}) \sum_{fringe} \mathsf{P}(b|known,P_{1,3},fringe) P(fringe) \sum_{other} \mathsf{P}(other) \\ &= \alpha' \mathsf{P}(P_{1,3}) \sum_{fringe} \mathsf{P}(b|known,P_{1,3},fringe) P(fringe) \end{split}$$

$$\mathbf{P}(P_{1,3}|known,b) = \alpha' \langle 0.2(0.04 + 0.16 + 0.16), \ 0.8(0.04 + 0.16) \rangle$$

$$\approx \langle 0.31, 0.69 \rangle$$

$$P(P_{2,2}|known,b) \approx \langle 0.86, 0.14 \rangle$$

Outline

1. Inference by Randomized Algorithms

2. Exercise

3. Uncertainty over Time

Outline

- ♦ Time and uncertainty
- ♦ Inference: filtering, prediction, smoothing
- ♦ Hidden Markov models
- ♦ Kalman filters (a brief mention)
- ♦ Dynamic Bayesian networks (an even briefer mention)

• The world changes; we need to track and predict it

- The world changes; we need to track and predict it
- Diabetes management vs vehicle diagnosis

- The world changes; we need to track and predict it
- Diabetes management vs vehicle diagnosis
- Basic idea: copy state and evidence variables for each time step X_t = set of unobservable state variables at time t e.g., BloodSugar_t, StomachContents_t, etc.
 E_t = set of observable evidence variables at time t e.g., MeasuredBloodSugar_t, PulseRate_t, FoodEaten_t

- The world changes; we need to track and predict it
- Diabetes management vs vehicle diagnosis
- Basic idea: copy state and evidence variables for each time step X_t = set of unobservable state variables at time t e.g., BloodSugar_t, StomachContents_t, etc.
 E_t = set of observable evidence variables at time t e.g., MeasuredBloodSugar_t, PulseRate_t, FoodEaten_t
- This assumes discrete time; step size depends on problem

- The world changes; we need to track and predict it
- Diabetes management vs vehicle diagnosis
- Basic idea: copy state and evidence variables for each time step X_t = set of unobservable state variables at time t e.g., BloodSugar_t, StomachContents_t, etc.
 E_t = set of observable evidence variables at time t e.g., MeasuredBloodSugar_t, PulseRate_t, FoodEaten_t
- This assumes discrete time; step size depends on problem
- Notation: $X_{a:b} = X_a, X_{a+1}, \dots, X_{b-1}, X_b$

Construct a Bayes net from these variables:

Construct a Bayes net from these variables:

- unbounded number of conditional probability table
- unbounded number of parents

Construct a Bayes net from these variables:

- unbounded number of conditional probability table
- unbounded number of parents

Markov assumption: X_t depends on **bounded** subset of $X_{0:t-1}$

First-order Markov process: $P(X_t|X_{0:t-1}) = P(X_t|X_{t-1})$

Second-order Markov process: $P(X_t|X_{0:t-1}) = P(X_t|X_{t-2},X_{t-1})$

Construct a Bayes net from these variables:

- unbounded number of conditional probability table
- unbounded number of parents

Markov assumption: X_t depends on **bounded** subset of $X_{0:t-1}$

First-order Markov process: $P(X_t|X_{0:t-1}) = P(X_t|X_{t-1})$

Second-order Markov process: $P(X_t|X_{0:t-1}) = P(X_t|X_{t-2},X_{t-1})$

Sensor Markov assumption: $P(E_t|X_{0:t}, E_{0:t-1}) = P(E_t|X_t)$

Construct a Bayes net from these variables:

- unbounded number of conditional probability table
- unbounded number of parents

Markov assumption: X_t depends on **bounded** subset of $X_{0:t-1}$

First-order Markov process: $P(X_t|X_{0:t-1}) = P(X_t|X_{t-1})$

Second-order Markov process: $P(X_t|X_{0:t-1}) = P(X_t|X_{t-2},X_{t-1})$

Sensor Markov assumption: $P(\mathbf{E}_t|\mathbf{X}_{0:t},\mathbf{E}_{0:t-1}) = P(\mathbf{E}_t|\mathbf{X}_t)$ \rightsquigarrow Stationary process:

- ullet transition model $\mathbf{P}(\mathbf{X}_t|\mathbf{X}_{t-1})$ and
- sensor model $P(E_t|X_t)$ fixed for all t

Example

Example

First-order Markov assumption not exactly true in real world! Possible fixes:

- 1. Increase order of Markov process
- 2. Augment state, e.g., add $Temp_t$, $Pressure_t$

Example: robot motion.

Augment position and velocity with Battery_t

Inference tasks

- 1. Filtering: $P(X_t|e_{1:t})$ belief state—input to the decision process of a rational agent
- 2. Prediction: $P(X_{t+k}|e_{1:t})$ for k > 0 evaluation of possible action sequences; like filtering without the evidence
- 3. Smoothing: $P(X_k|e_{1:t})$ for $0 \le k < t$ better estimate of past states, essential for learning
- 4. Most likely explanation: $\arg\max_{\mathbf{x}_{1:t}} P(\mathbf{x}_{1:t}|\mathbf{e}_{1:t})$ speech recognition, decoding with a noisy channel

Filtering

Aim: devise a **recursive** state estimation algorithm:

$$\mathsf{P}(\mathsf{X}_{t+1}|\mathsf{e}_{1:t+1}) = f(\mathsf{e}_{t+1},\mathsf{P}(\mathsf{X}_t|\mathsf{e}_{1:t}))$$

Filtering

Aim: devise a **recursive** state estimation algorithm:

$$\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) = f(\mathbf{e}_{t+1},\mathbf{P}(\mathbf{X}_t|\mathbf{e}_{1:t}))$$

$$P(X_{t+1}|e_{1:t+1}) = P(X_{t+1}|e_{1:t}, e_{t+1})$$
= $\alpha P(e_{t+1}|X_{t+1}, e_{1:t}) P(X_{t+1}|e_{1:t})$
= $\alpha P(e_{t+1}|X_{t+1}) P(X_{t+1}|e_{1:t})$

I.e., prediction + estimation.

Filtering

Aim: devise a recursive state estimation algorithm:

$$\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) = f(\mathbf{e}_{t+1},\mathbf{P}(\mathbf{X}_t|\mathbf{e}_{1:t}))$$

$$P(X_{t+1}|e_{1:t+1}) = P(X_{t+1}|e_{1:t}, e_{t+1})$$
= $\alpha P(e_{t+1}|X_{t+1}, e_{1:t})P(X_{t+1}|e_{1:t})$
= $\alpha P(e_{t+1}|X_{t+1})P(X_{t+1}|e_{1:t})$

I.e., prediction + estimation. Prediction by summing out X_t :

$$P(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) = \alpha P(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \sum_{\mathbf{x}_t} P(\mathbf{X}_{t+1}|\mathbf{x}_t, \mathbf{e}_{1:t}) P(\mathbf{x}_t|\mathbf{e}_{1:t})$$

$$= \alpha P(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \sum_{\mathbf{x}_t} P(\mathbf{X}_{t+1}|\mathbf{x}_t) P(\mathbf{x}_t|\mathbf{e}_{1:t})$$

 $\mathbf{f}_{1:t+1} = \mathsf{Forward}(\mathbf{f}_{1:t}, \mathbf{e}_{t+1}) \text{ where } \mathbf{f}_{1:t} = \mathbf{P}(\mathbf{X}_t | \mathbf{e}_{1:t})$ Time and space **constant** (independent of t)

Filtering example

Filtering example Uncertainty over Time

Smoothing

Smoothing

Divide evidence $\mathbf{e}_{1:t}$ into $\mathbf{e}_{1:k}$, $\mathbf{e}_{k+1:t}$:

$$P(\mathbf{X}_{k}|\mathbf{e}_{1:t}) = P(\mathbf{X}_{k}|\mathbf{e}_{1:k}, \mathbf{e}_{k+1:t})$$

$$= \alpha P(\mathbf{X}_{k}|\mathbf{e}_{1:k}) P(\mathbf{e}_{k+1:t}|\mathbf{X}_{k}, \mathbf{e}_{1:k})$$

$$= \alpha P(\mathbf{X}_{k}|\mathbf{e}_{1:k}) P(\mathbf{e}_{k+1:t}|\mathbf{X}_{k})$$

$$= \alpha \mathbf{f}_{1:k} \mathbf{b}_{k+1:t}$$

Backward message computed by a backwards recursion:

$$\begin{aligned} \mathsf{P}(\mathsf{e}_{k+1:t}|\mathsf{X}_k) &= \sum_{\mathsf{x}_{k+1}} \mathsf{P}(\mathsf{e}_{k+1:t}|\mathsf{X}_k,\mathsf{x}_{k+1}) \mathsf{P}(\mathsf{x}_{k+1}|\mathsf{X}_k) \\ &= \sum_{\mathsf{x}_{k+1}} P(\mathsf{e}_{k+1:t}|\mathsf{x}_{k+1}) \mathsf{P}(\mathsf{x}_{k+1}|\mathsf{X}_k) \\ &= \sum_{\mathsf{x}_{k+1}} P(\mathsf{e}_{k+1}|\mathsf{x}_{k+1}) P(\mathsf{e}_{k+2:t}|\mathsf{x}_{k+1}) \mathsf{P}(\mathsf{x}_{k+1}|\mathsf{X}_k) \end{aligned}$$

Smoothing example

Forward–backward algorithm: cache forward messages along the way Time linear in t (polytree inference), space $O(t|\mathbf{f}|)$