# Lecture 10 <br> Inference in Baysian Networks and Reasoning Over Time 

Marco Chiarandini<br>Deptartment of Mathematics \& Computer Science<br>University of Southern Denmark

Slides by Stuart Russell and Peter Norvig
$\checkmark$ Introduction
$\checkmark$ Artificial Intelligence
$\checkmark$ Intelligent Agents
$\checkmark$ Search
$\checkmark$ Uninformed Search
$\checkmark$ Heuristic Search
$\checkmark$ Adversarial Search
$\checkmark$ Minimax search
$\checkmark$ Alpha-beta pruning
$\checkmark$ Knowledge representation and Reasoning
$\checkmark$ Propositional logic
$\checkmark$ First order logic
$\checkmark$ Inference

- Uncertain knowledge and Reasoning
- Probability and Bayesian approach
- Bayesian Networks
- Hidden Markov Chains
- Kalman Filters
- Learning
- Decision Trees
- Maximum Likelihood
- EM Algorithm
- Learning Bayesian Networks
- Neural Networks
- Support vector machines


## Outline

1. Inference by Randomized Algorithms
2. Exercise
3. Uncertainty over Time

## Complexity of exact inference

Singly connected networks (or polytrees):

- any two nodes are connected by at most one (undirected) path
- time and space cost (with variable elimination) are $O\left(d^{k} n\right)$
- hence time and space cost are linear in $n$ and $k$ bounded by a constant

Multiply connected networks:

- can reduce 3SAT to exact inference $\Longrightarrow$ NP-hard
- equivalent to counting 3SAT models $\Longrightarrow$ \#P-complete

1. A v B v C
2. $C$ v D v $\neg \mathrm{A}$
3. $B \operatorname{v} \mathrm{C} \neg \mathrm{D}$


## Inference by stochastic simulation

Basic idea:

- Draw $N$ samples from a sampling distribution $S$
- Compute an approximate posterior probability $\hat{P}$
- Show this converges to the true probability

Outline:

- Sampling from an empty network
- Rejection sampling: reject samples disagreeing with
 evidence
- Likelihood weighting: use evidence to weight samples
- Markov chain Monte Carlo (MCMC): sample from a stochastic process whose stationary distribution is the true posterior


## Sampling from an empty network

function Prior-Sample(bn) returns an event sampled from bn inputs: bn, a belief network specifying joint distribution $\mathrm{P}\left(X_{1}, \ldots, X_{n}\right)$
$\mathbf{x} \leftarrow$ an event with $n$ elements
for $i=1$ to $n$ do
$x_{i} \leftarrow$ a random sample from $\mathrm{P}\left(X_{i} \mid\right.$ parents $\left.\left(X_{i}\right)\right)$ given the values of $\operatorname{Parents}\left(X_{i}\right)$ in x
return x

## Example



## Example



## Example



## Example



## Example



## Example



Inference by Random Algs Exercise
Uncertainty over Time

## Example



## 

Probability that PriorSample generates a particular event

$$
S_{P S}\left(x_{1} \ldots x_{n}\right)=P\left(x_{1} \ldots x_{n}\right)
$$

i.e., the true prior probability

## 

Probability that PriorSample generates a particular event

$$
S_{P S}\left(x_{1} \ldots x_{n}\right)=P\left(x_{1} \ldots x_{n}\right)
$$

i.e., the true prior probability
E.g., $S_{P S}(t, f, t, t)=0.5 \times 0.9 \times 0.8 \times 0.9=0.324=P(t, f, t, t)$

## 

Probability that PriorSample generates a particular event

$$
S_{P S}\left(x_{1} \ldots x_{n}\right)=P\left(x_{1} \ldots x_{n}\right)
$$

i.e., the true prior probability
E.g., $S_{P S}(t, f, t, t)=0.5 \times 0.9 \times 0.8 \times 0.9=0.324=P(t, f, t, t)$

Proof: Let $N_{P S}\left(x_{1} \ldots x_{n}\right)$ be the number of samples generated for event $x_{1}, \ldots, x_{n}$. Then we have

$$
\begin{aligned}
\lim _{N \rightarrow \infty} \hat{P}\left(x_{1}, \ldots, x_{n}\right) & =\lim _{N \rightarrow \infty} N_{P S}\left(x_{1}, \ldots, x_{n}\right) / N \\
& =S_{P S}\left(x_{1}, \ldots, x_{n}\right) \\
& =\prod_{i=1}^{n} P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)=P\left(x_{1} \ldots x_{n}\right)
\end{aligned}
$$

## 

Probability that PriorSample generates a particular event

$$
S_{P S}\left(x_{1} \ldots x_{n}\right)=P\left(x_{1} \ldots x_{n}\right)
$$

i.e., the true prior probability
E.g., $S_{P S}(t, f, t, t)=0.5 \times 0.9 \times 0.8 \times 0.9=0.324=P(t, f, t, t)$

Proof: Let $N_{P S}\left(x_{1} \ldots x_{n}\right)$ be the number of samples generated for event $x_{1}, \ldots, x_{n}$. Then we have

$$
\begin{aligned}
\lim _{N \rightarrow \infty} \hat{P}\left(x_{1}, \ldots, x_{n}\right) & =\lim _{N \rightarrow \infty} N_{P S}\left(x_{1}, \ldots, x_{n}\right) / N \\
& =S_{P S}\left(x_{1}, \ldots, x_{n}\right) \\
& =\prod_{i=1}^{n} P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)=P\left(x_{1} \ldots x_{n}\right)
\end{aligned}
$$

$\rightsquigarrow$ That is, estimates derived from PriorSample are consistent Shorthand: $\hat{P}\left(x_{1}, \ldots, x_{n}\right) \approx P\left(x_{1} \ldots x_{n}\right)$

## Rejection sampling

$\hat{\mathbf{P}}(X \mid \mathrm{e})$ estimated from samples agreeing with e

## Rejection sampling

$\hat{\mathbf{P}}(X \mid \mathrm{e})$ estimated from samples agreeing with e
function Rejection-Sampling $(X, \mathrm{e}, b n, N)$ returns an estimate of $P(X \mid \mathbf{e})$
local variables: N , a vector of counts over $X$, initially zero
for $j=1$ to $N$ do
$x \leftarrow$ Prior-Sample( $b n$ )
if x is consistent with e then
$\mathbf{N}[x] \leftarrow \mathbf{N}[x]+1$ where $x$ is the value of $X$ in x
return Normalize( $\mathrm{N}[X]$ )

## Rejection sampling

$\hat{\mathbf{P}}(X \mid \mathrm{e})$ estimated from samples agreeing with e
function Rejection-Sampling $(X, \mathbf{e}, b n, N)$ returns an estimate of $P(X \mid \mathbf{e})$
local variables: N , a vector of counts over $X$, initially zero

$$
\text { for } j=1 \text { to } N \text { do }
$$

$\mathrm{x} \leftarrow$ Prior-Sample(bn)
if x is consistent with e then
$\mathbf{N}[x] \leftarrow \mathbf{N}[x]+1$ where $x$ is the value of $X$ in $\mathbf{x}$
return Normalize $(\mathbb{N}[X])$
E.g., estimate $\mathbf{P}($ Rain $\mid$ Sprinkler $=$ true $)$ using 100 samples

27 samples have Sprinkler = true Of these, 8 have Rain = true and 19 have Rain = false.
$\hat{\mathbf{P}}($ Rain $\mid$ Sprinkler $=$ true $)=\operatorname{Normalize}(\langle 8,19\rangle)=\langle 0.296,0.704\rangle$
Similar to a basic real-world empirical estimation procedure

## Analysis of rejection sampling

Rejection sampling returns consistent posterior estimates

$$
\begin{aligned}
& \text { Proof: } \\
& \begin{array}{ll}
\hat{\mathbf{P}}(X \mid \mathbf{e})=\alpha \mathbf{N}_{P S}(X, \mathbf{e}) & \text { (algorithm defn.) } \\
\quad=\mathbf{N}_{P S}(X, \mathbf{e}) / N_{P S}(\mathbf{e}) & \text { (normalized by } \left.N_{P S}(\mathbf{e})\right) \\
\approx \mathbf{P}(X, \mathbf{e}) / P(\mathbf{e}) & \text { (property of PriorSample) } \\
=\mathbf{P}(X \mid \mathbf{e}) \quad \text { (defn. of conditional probability) }
\end{array}
\end{aligned}
$$

## Analysis of rejection sampling

Rejection sampling returns consistent posterior estimates
Proof:

$$
\begin{array}{cc}
\hat{\mathbf{P}}(X \mid \mathbf{e})=\alpha \mathbf{N}_{P S}(X, \mathbf{e}) & \text { (algorithm defn.) } \\
=\mathbf{N}_{P S}(X, \mathbf{e}) / N_{P S}(\mathbf{e}) & \text { (normalized by } \left.N_{P S}(\mathbf{e})\right) \\
\approx \mathbf{P}(X, \mathbf{e}) / P(\mathbf{e}) & \text { (property of PriorSample) } \\
=\mathbf{P}(X \mid \mathbf{e}) \quad \text { (defn. of conditional probability) }
\end{array}
$$

Problem: hopelessly expensive if $P(\mathbf{e})$ is small
$P($ e $)$ drops off exponentially with number of evidence variables!

Idea: fix evidence variables, sample only nonevidence variables, and weight each sample by the likelihood it accords the evidence

## Likelihood weighting

Idea: fix evidence variables, sample only nonevidence variables, and weight each sample by the likelihood it accords the evidence
function Likelihood-Weighting $(X, \mathbf{e}, b n, N)$ returns an estimate of $P(X \mid \mathbf{e})$ local variables: W , a vector of weighted counts over $X$, initially zero

```
for j=1 to N do
    x},w\leftarrow\mathrm{ Weighted-Sample(bn)
    W}[x]\leftarrow\mathbf{W}[x]+w\mathrm{ where }x\mathrm{ is the value of X in }\textrm{x
    return Normalize(W[X])
```

function Weighted-Sample(bn, e) returns an event and a weight
$\mathrm{x} \leftarrow$ an event with $n$ elements; $w \leftarrow 1$
for $i=1$ to $n$ do
if $X_{i}$ has a value $x_{i}$ in e
then $w \leftarrow w \times P\left(X_{i}=x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)$
else $x_{i} \leftarrow$ a random sample from $\mathrm{P}\left(X_{i} \mid\right.$ parents $\left.\left(X_{i}\right)\right)$
return $\mathrm{x}, \mathrm{w}$

## Likelihood weighting example



## Likelihood weighting analysis

## Likelihood weighting returns consistent estimates

Sampling probability for WeightedSample is

$$
S_{W S}(\mathbf{z}, \mathbf{e})=\prod_{i=1}^{\prime} P\left(z_{i} \mid \text { parents }\left(Z_{i}\right)\right)
$$

(pays attention to evidence in ancestors only) $\rightsquigarrow$ somewhere "in between" prior and posterior distribution

Weight for a given sample $\mathbf{z}, \mathrm{e}$ is

$$
w(\mathbf{z}, \mathbf{e})=\prod_{i=1}^{m} P\left(e_{i} \mid \operatorname{parents}\left(E_{i}\right)\right)
$$

## Likelihood weighting analysis

Likelihood weighting returns consistent estimates
Sampling probability for WeightedSample is

$$
S_{W S}(\mathbf{z}, \mathbf{e})=\prod_{i=1}^{\prime} P\left(z_{i} \mid \operatorname{parents}\left(Z_{i}\right)\right)
$$

(pays attention to evidence in ancestors only) $\rightsquigarrow$ somewhere "in between" prior and posterior distribution

Weight for a given sample $\mathbf{z}, \mathrm{e}$ is

$$
w(\mathbf{z}, \mathbf{e})=\prod_{i=1}^{m} P\left(e_{i} \mid \operatorname{parents}\left(E_{i}\right)\right)
$$

Weighted sampling probability is

$$
S_{W S}(\mathbf{z}, \mathbf{e}) w(\mathbf{z}, \mathbf{e})=\prod^{\prime} P\left(z_{i} \mid \text { parents }\left(Z_{i}\right)\right) \prod^{m} P\left(e_{i} \mid \text { parents }\left(E_{i}\right)\right)=P(\mathbf{z}, \mathbf{e})
$$

## Likelihood weighting analysis

Likelihood weighting returns consistent estimates
Sampling probability for WeightedSample is

$$
S_{W S}(\mathbf{z}, \mathbf{e})=\prod_{i=1}^{\prime} P\left(z_{i} \mid \text { parents }\left(Z_{i}\right)\right)
$$

(pays attention to evidence in ancestors only) $\rightsquigarrow$ somewhere "in between" prior and posterior distribution

Weight for a given sample $\mathbf{z}, \mathrm{e}$ is

$$
w(\mathbf{z}, \mathbf{e})=\prod_{i=1}^{m} P\left(e_{i} \mid \operatorname{parents}\left(E_{i}\right)\right)
$$

Weighted sampling probability is
but performance still degrades with many evidence variables because a few samples have nearly all the total weight


$$
S_{w s}(\mathbf{z}, \mathbf{e}) w(\mathbf{z}, \mathbf{e})=\prod^{\prime} P\left(z_{i} \mid \text { parents }\left(Z_{i}\right)\right) \prod^{m} P\left(e_{i} \mid \text { parents }\left(E_{i}\right)\right)=P(\mathbf{z}, \mathbf{e})
$$

## Summary

Approximate inference by LW:

- LW does poorly when there is lots of (late-in-the-order) evidence
- LW generally insensitive to topology
- Convergence can be very slow with probabilities close to 1 or 0
- Can handle arbitrary combinations of discrete and continuous variables


## Approximate inference using MCMC

"State" of network = current assignment to all variables.
Generate next state by sampling one variable given Markov blanket Sample each variable in turn, keeping evidence fixed

```
function MCMC-Ask \((X, \mathbf{e}, b n, N)\) returns an estimate of \(P(X \mid \mathbf{e})\)
    local variables: \(\mathrm{N}[X]\), a vector of counts over \(X\), initially zero
    Z, nonevidence variables in bn, hidden + query
    x , current state of the network, initially copied from e
    initialize x with random values for the variables in \(\mathbf{Z}\)
    for \(j=1\) to \(N\) do
    \(\mathbf{N}[x] \leftarrow \mathbf{N}[x]+1\) where \(x\) is the value of \(X\) in \(\mathbf{x}\)
    for each \(Z_{i}\) in \(Z\) do
        sample the value of \(Z_{i}\) in \(\times\) from \(\mathrm{P}\left(Z_{i} \mid m b\left(Z_{i}\right)\right)\)
            given the values of \(M B\left(Z_{i}\right)\) in \(x\)
    return Normalize( \(\mathrm{N}[X]\) )
```

Can also choose a variable to sample at random each time

## The Markov chain

With Sprinkler $=$ true, $W$ etGrass $=$ true, there are four states:


Wander about for a while, average what you see

## The Markov chain

With Sprinkler $=$ true, $W$ etGrass $=$ true, there are four states:


Wander about for a while, average what you see
Probabilistic finite state machine

## MCMC example contd.

Estimate $\mathbf{P}($ Rain $\mid$ Sprinkler $=$ true,$W e t G r a s s=$ true $)$

## MCMC example contd.

Estimate $\mathbf{P}($ Rain $\mid$ Sprinkler $=$ true,$W e t G r a s s=$ true $)$
Sample Cloudy or Rain given its Markov blanket, repeat.

## MCMC example contd.

Estimate $\mathbf{P}($ Rain $\mid$ Sprinkler $=$ true,$W e t G r a s s=$ true $)$
Sample Cloudy or Rain given its Markov blanket, repeat. Count number of times Rain is true and false in the samples.

## MCMC example contd.

Estimate $\mathbf{P}($ Rain $\mid$ Sprinkler $=$ true,$W e t G r a s s=$ true $)$
Sample Cloudy or Rain given its Markov blanket, repeat.
Count number of times Rain is true and false in the samples.
E.g., visit 100 states

31 have Rain = true, 69 have Rain $=$ false
$\hat{\mathbf{P}}($ Rain $\mid$ Sprinkler $=$ true, WetGrass $=$ true $)=$ Normalize $(\langle 31,69\rangle)=\langle 0.31,0.69\rangle$

## MCMC example contd.

Estimate $\mathbf{P}($ Rain $\mid$ Sprinkler $=$ true, WetGrass $=$ true $)$
Sample Cloudy or Rain given its Markov blanket, repeat.
Count number of times Rain is true and false in the samples.
E.g., visit 100 states

31 have Rain = true, 69 have Rain = false
$\hat{\mathbf{P}}($ Rain $\mid$ Sprinkler $=$ true, WetGrass $=$ true $)=\operatorname{Normalize~}(\langle 31,69\rangle)=\langle 0.31,0.69\rangle$

## Theorem

The Markov Chain approaches a stationary distribution: long-run fraction of time spent in each state is exactly proportional to its posterior probability

## Markov blanket sampling

Markov blanket of Cloudy is<br>Sprinkler and Rain<br>Markov blanket of Rain is<br>Cloudy, Sprinkler, and WetGrass



## Markov blanket sampling

Markov blanket of Cloudy is
Sprinkler and Rain
Markov blanket of Rain is
Cloudy, Sprinkler, and WetGrass


Probability given the Markov blanket is calculated as follows:

$$
P\left(x_{i}^{\prime} \mid m b\left(X_{i}\right)\right)=P\left(x_{i}^{\prime} \mid \operatorname{parents}\left(X_{i}\right)\right) \prod_{z_{j} \in \operatorname{Children}\left(X_{i}\right)} P\left(z_{j} \mid \operatorname{parents}\left(Z_{j}\right)\right)
$$

Easily implemented in message-passing parallel systems

## Markov blanket sampling

Markov blanket of Cloudy is
Sprinkler and Rain
Markov blanket of Rain is
Cloudy, Sprinkler, and WetGrass


Probability given the Markov blanket is calculated as follows:

$$
P\left(x_{i}^{\prime} \mid m b\left(X_{i}\right)\right)=P\left(x_{i}^{\prime} \mid \text { parents }\left(X_{i}\right)\right) \prod_{z_{j} \in \operatorname{Children}\left(X_{i}\right)} P\left(z_{j} \mid \text { parents }\left(Z_{j}\right)\right)
$$

Easily implemented in message-passing parallel systems
Main computational problems:

1) Difficult to tell if convergence has been achieved
2) Can be wasteful if Markov blanket is large:
$P\left(X_{i} \mid m b\left(X_{i}\right)\right)$ won't change much (law of large numbers)

## Local semantics and Markov Blanket

Local semantics: each node is conditionally independent of its nondescendants given its parents

Each node is conditionally independent of all others given its Markov blanket: parents + children + children's parents


## MCMC analysis: Outline

- Transition probability $q\left(x \rightarrow x^{\prime}\right)$


## MCMC analysis: Outline

- Transition probability $q\left(x \rightarrow x^{\prime}\right)$
- Occupancy probability $\pi_{t}(\mathbf{x})$ at time $t$


## MCMC analysis: Outline

- Transition probability $q\left(x \rightarrow x^{\prime}\right)$
- Occupancy probability $\pi_{t}(\mathbf{x})$ at time $t$
- Equilibrium condition on $\pi_{t}$ defines stationary distribution $\pi(\mathbf{x})$

Note: stationary distribution depends on choice of $q\left(x \rightarrow x^{\prime}\right)$

## MCMC analysis: Outline

- Transition probability $q\left(x \rightarrow x^{\prime}\right)$
- Occupancy probability $\pi_{t}(\mathbf{x})$ at time $t$
- Equilibrium condition on $\pi_{t}$ defines stationary distribution $\pi(\mathbf{x})$

Note: stationary distribution depends on choice of $q\left(x \rightarrow x^{\prime}\right)$

- Pairwise detailed balance on states guarantees equilibrium


## MCMC analysis: Outline

- Transition probability $q\left(x \rightarrow x^{\prime}\right)$
- Occupancy probability $\pi_{t}(\mathbf{x})$ at time $t$
- Equilibrium condition on $\pi_{t}$ defines stationary distribution $\pi(\mathbf{x})$

Note: stationary distribution depends on choice of $q\left(x \rightarrow x^{\prime}\right)$

- Pairwise detailed balance on states guarantees equilibrium
- Gibbs sampling transition probability:
sample each variable given current values of all others
$\Longrightarrow$ detailed balance with the true posterior


## MCMC analysis: Outline

- Transition probability $q\left(x \rightarrow x^{\prime}\right)$
- Occupancy probability $\pi_{t}(\mathbf{x})$ at time $t$
- Equilibrium condition on $\pi_{t}$ defines stationary distribution $\pi(\mathbf{x})$

Note: stationary distribution depends on choice of $q\left(x \rightarrow x^{\prime}\right)$

- Pairwise detailed balance on states guarantees equilibrium
- Gibbs sampling transition probability:
sample each variable given current values of all others
$\Longrightarrow$ detailed balance with the true posterior
- For Bayesian networks, Gibbs sampling reduces to sampling conditioned on each variable's Markov blanket


## Stationary distribution

- $\pi_{t}(\mathbf{x})=$ probability in state $\mathbf{x}$ at time $t$ $\pi_{t+1}\left(\mathbf{x}^{\prime}\right)=$ probability in state $\mathrm{x}^{\prime}$ at time $t+1$


## Stationary distribution

- $\pi_{t}(\mathbf{x})=$ probability in state $\mathbf{x}$ at time $t$ $\pi_{t+1}\left(\mathbf{x}^{\prime}\right)=$ probability in state $\mathbf{x}^{\prime}$ at time $t+1$
- $\pi_{t+1}$ in terms of $\pi_{t}$ and $q\left(\mathbf{x} \rightarrow \mathbf{x}^{\prime}\right)$

$$
\pi_{t+1}\left(\mathbf{x}^{\prime}\right)=\sum_{\mathbf{x}} \pi_{t}(\mathbf{x}) q\left(\mathbf{x} \rightarrow \mathbf{x}^{\prime}\right)
$$

## Stationary distribution

- $\pi_{t}(\mathbf{x})=$ probability in state $\mathbf{x}$ at time $t$ $\pi_{t+1}\left(\mathbf{x}^{\prime}\right)=$ probability in state $\mathbf{x}^{\prime}$ at time $t+1$
- $\pi_{t+1}$ in terms of $\pi_{t}$ and $q\left(\mathbf{x} \rightarrow \mathbf{x}^{\prime}\right)$

$$
\pi_{t+1}\left(\mathbf{x}^{\prime}\right)=\sum_{\mathbf{x}} \pi_{t}(\mathbf{x}) q\left(\mathbf{x} \rightarrow \mathbf{x}^{\prime}\right)
$$

- Stationary distribution: $\pi_{t}=\pi_{t+1}=\pi$

$$
\pi\left(\mathbf{x}^{\prime}\right)=\sum_{\mathbf{x}} \pi(\mathbf{x}) q\left(\mathbf{x} \rightarrow \mathbf{x}^{\prime}\right) \quad \text { for all } \mathbf{x}^{\prime}
$$

## Stationary distribution

- $\pi_{t}(\mathbf{x})=$ probability in state $\mathbf{x}$ at time $t$ $\pi_{t+1}\left(\mathbf{x}^{\prime}\right)=$ probability in state $\mathbf{x}^{\prime}$ at time $t+1$
- $\pi_{t+1}$ in terms of $\pi_{t}$ and $q\left(\mathbf{x} \rightarrow \mathbf{x}^{\prime}\right)$

$$
\pi_{t+1}\left(\mathbf{x}^{\prime}\right)=\sum_{\mathbf{x}} \pi_{t}(\mathbf{x}) q\left(\mathbf{x} \rightarrow \mathbf{x}^{\prime}\right)
$$

- Stationary distribution: $\pi_{t}=\pi_{t+1}=\pi$

$$
\pi\left(\mathbf{x}^{\prime}\right)=\sum \mathbf{x} \pi(\mathbf{x}) q\left(\mathbf{x} \rightarrow \mathbf{x}^{\prime}\right) \quad \text { for all } \mathbf{x}^{\prime}
$$

- If $\pi$ exists, it is unique (specific to $q\left(\mathbf{x} \rightarrow \mathbf{x}^{\prime}\right)$ )


## Stationary distribution

- $\pi_{t}(\mathbf{x})=$ probability in state $\mathbf{x}$ at time $t$ $\pi_{t+1}\left(\mathbf{x}^{\prime}\right)=$ probability in state $\mathbf{x}^{\prime}$ at time $t+1$
- $\pi_{t+1}$ in terms of $\pi_{t}$ and $q\left(\mathbf{x} \rightarrow \mathbf{x}^{\prime}\right)$

$$
\pi_{t+1}\left(\mathbf{x}^{\prime}\right)=\sum_{\mathbf{x}} \pi_{t}(\mathbf{x}) q\left(\mathbf{x} \rightarrow \mathbf{x}^{\prime}\right)
$$

- Stationary distribution: $\pi_{t}=\pi_{t+1}=\pi$

$$
\pi\left(\mathbf{x}^{\prime}\right)=\sum_{\mathbf{x}} \pi(\mathbf{x}) q\left(\mathbf{x} \rightarrow \mathbf{x}^{\prime}\right) \quad \text { for all } \mathbf{x}^{\prime}
$$

- If $\pi$ exists, it is unique (specific to $q\left(\mathbf{x} \rightarrow \mathbf{x}^{\prime}\right)$ )
- In equilibrium, expected "outflow" = expected "inflow"


## Detailed balance

- "Outflow" = "inflow" for each pair of states:

$$
\pi(\mathbf{x}) q\left(\mathbf{x} \rightarrow \mathbf{x}^{\prime}\right)=\pi\left(\mathbf{x}^{\prime}\right) q\left(\mathbf{x}^{\prime} \rightarrow \mathbf{x}\right) \quad \text { for all } \mathbf{x}, \mathbf{x}^{\prime}
$$

## Detailed balance

- "Outflow" = "inflow" for each pair of states:

$$
\pi(\mathbf{x}) q\left(\mathbf{x} \rightarrow \mathbf{x}^{\prime}\right)=\pi\left(\mathbf{x}^{\prime}\right) q\left(\mathbf{x}^{\prime} \rightarrow \mathbf{x}\right) \quad \text { for all } \mathbf{x}, \mathbf{x}^{\prime}
$$

- Detailed balance $\Longrightarrow$ stationarity:

$$
\begin{aligned}
\sum_{\mathbf{x}} \pi(\mathbf{x}) q\left(\mathbf{x} \rightarrow \mathbf{x}^{\prime}\right) & =\sum \mathbf{x} \pi\left(\mathbf{x}^{\prime}\right) q\left(\mathbf{x}^{\prime} \rightarrow \mathbf{x}\right) \\
& =\pi\left(\mathbf{x}^{\prime}\right) \sum \mathbf{x} q\left(\mathbf{x}^{\prime} \rightarrow \mathbf{x}\right) \\
& =\pi\left(\mathbf{x}^{\prime}\right)
\end{aligned}
$$

## Detailed balance

- "Outflow" = "inflow" for each pair of states:

$$
\pi(\mathbf{x}) q\left(\mathbf{x} \rightarrow \mathbf{x}^{\prime}\right)=\pi\left(\mathbf{x}^{\prime}\right) q\left(\mathbf{x}^{\prime} \rightarrow \mathbf{x}\right) \quad \text { for all } \mathbf{x}, \mathbf{x}^{\prime}
$$

- Detailed balance $\Longrightarrow$ stationarity:

$$
\begin{aligned}
\sum_{\mathbf{x}} \pi(\mathbf{x}) q\left(\mathbf{x} \rightarrow \mathbf{x}^{\prime}\right) & =\sum_{\mathbf{x}} \pi\left(\mathbf{x}^{\prime}\right) q\left(\mathbf{x}^{\prime} \rightarrow \mathbf{x}\right) \\
& =\pi\left(\mathbf{x}^{\prime}\right) \sum \mathbf{x} q\left(\mathbf{x}^{\prime} \rightarrow \mathbf{x}\right) \\
& =\pi\left(\mathbf{x}^{\prime}\right)
\end{aligned}
$$

- MCMC algorithms typically constructed by designing a transition probability $q$ that is in detailed balance with desired $\pi$


## Gibbs sampling

- Sample each variable in turn, given all other variables
- Sample each variable in turn, given all other variables
- Sampling $X_{i}$, let $\bar{X}_{i}$ be all other nonevidence variables
- Sample each variable in turn, given all other variables
- Sampling $X_{i}$, let $\bar{X}_{i}$ be all other nonevidence variables
- Current values are $x_{i}$ and $\bar{x}_{i} ;$ e is fixed


## Gibbs sampling

- Sample each variable in turn, given all other variables
- Sampling $X_{i}$, let $\bar{X}_{i}$ be all other nonevidence variables
- Current values are $x_{i}$ and $\bar{x}_{i} ;$ e is fixed
- Transition probability is given by

$$
q\left(\mathbf{x} \rightarrow \mathbf{x}^{\prime}\right)=q\left(x_{i}, \overline{\mathbf{x}_{i}} \rightarrow x_{i}^{\prime}, \overline{\mathbf{x}_{i}}\right)=P\left(x_{i}^{\prime} \mid \overline{\mathbf{x}_{i}}, \mathbf{e}\right)
$$

## Gibbs sampling

- Sample each variable in turn, given all other variables
- Sampling $X_{i}$, let $\overline{\mathbf{X}}_{i}$ be all other nonevidence variables
- Current values are $x_{i}$ and $\overline{x_{i}} ;$ e is fixed
- Transition probability is given by

$$
q\left(\mathbf{x} \rightarrow \mathbf{x}^{\prime}\right)=q\left(x_{i}, \overline{\mathbf{x}_{i}} \rightarrow x_{i}^{\prime}, \overline{\mathbf{x}_{i}}\right)=P\left(x_{i}^{\prime} \mid \overline{\mathbf{x}_{i}}, \mathbf{e}\right)
$$

- This gives detailed balance with true posterior $P(\mathbf{x} \mid \mathrm{e})$ :

$$
\begin{aligned}
\pi(\mathbf{x}) q\left(\mathbf{x} \rightarrow \mathbf{x}^{\prime}\right) & =P(\mathbf{x} \mid \mathbf{e}) P\left(x_{i}^{\prime} \mid \overline{x_{i}}, \mathbf{e}\right)=P\left(x_{i}, \overline{\bar{x}_{i}} \mid \mathbf{e}\right) P\left(x_{i}^{\prime} \mid \overline{\mathbf{x}}_{i}, \mathbf{e}\right) \\
& =P\left(x_{i} \mid \overline{\mathbf{x}_{i}}, \mathbf{e}\right) P\left(\overline{\mathbf{x}_{i}} \mathbf{e}\right) P\left(x_{i}^{\prime} \mid \overline{\mathbf{x}_{i}}, \mathbf{e}\right) \quad \text { (chain rule) } \\
& =P\left(x_{i} \mid \overline{\mathbf{x}_{i}}, \mathbf{e}\right) P\left(x_{i}^{\prime}, \overline{\mathbf{x}_{i}} \mid \mathbf{e}\right) \quad \text { (chain rule backwards) } \\
& =q\left(\mathbf{x}^{\prime} \rightarrow \mathbf{x}\right) \pi\left(\mathbf{x}^{\prime}\right)=\pi\left(\mathbf{x}^{\prime}\right) q\left(\mathbf{x}^{\prime} \rightarrow \mathbf{x}\right)
\end{aligned}
$$

## 

- Absolute approximation: $|P(X \mid \mathbf{e})-\hat{P}(X \mid \mathbf{e})| \leq \epsilon$


## 

- Absolute approximation: $|P(X \mid \mathbf{e})-\hat{P}(X \mid \mathbf{e})| \leq \epsilon$
- Relative approximation: $\frac{|P(X \mid \mathbf{e})-\hat{P}(X \mid \mathbf{e})|}{P(X \mid \mathbf{e})} \leq \epsilon$


## Performance of approximation algorith

- Absolute approximation: $|P(X \mid \mathbf{e})-\hat{P}(X \mid \mathbf{e})| \leq \epsilon$
- Relative approximation: $\frac{|P(X \mid \mathbf{e})-\hat{P}(X \mid \mathbf{e})|}{P(X \mid \mathbf{e})} \leq \epsilon$
- Relative $\Longrightarrow$ absolute since $0 \leq P \leq 1$ (may be $O\left(2^{-n}\right)$ )


## 

- Absolute approximation: $|P(X \mid \mathbf{e})-\hat{P}(X \mid \mathbf{e})| \leq \epsilon$
- Relative approximation: $\frac{|P(X \mid \mathbf{e})-\hat{P}(X \mid \mathbf{e})|}{P(X \mid \mathbf{e})} \leq \epsilon$
- Relative $\Longrightarrow$ absolute since $0 \leq P \leq 1$ (may be $O\left(2^{-n}\right)$ )
- Randomized algorithms may fail with probability at most $\delta$


## 

- Absolute approximation: $|P(X \mid \mathbf{e})-\hat{P}(X \mid \mathbf{e})| \leq \epsilon$
- Relative approximation: $\frac{|P(X \mid \mathbf{e})-\hat{P}(X \mid \mathbf{e})|}{P(X \mid \mathbf{e})} \leq \epsilon$
- Relative $\Longrightarrow$ absolute since $0 \leq P \leq 1$ (may be $O\left(2^{-n}\right)$ )
- Randomized algorithms may fail with probability at most $\delta$
- Polytime approximation: poly $\left(n, \epsilon^{-1}, \log \delta^{-1}\right)$


## Performance of approximation algorith ${ }^{\text {ExScerice }}$

- Absolute approximation: $|P(X \mid \mathbf{e})-\hat{P}(X \mid \mathbf{e})| \leq \epsilon$
- Relative approximation: $\frac{|P(X \mid \mathbf{e})-\hat{P}(X \mid \mathbf{e})|}{P(X \mid \mathbf{e})} \leq \epsilon$
- Relative $\Longrightarrow$ absolute since $0 \leq P \leq 1$ (may be $O\left(2^{-n}\right)$ )
- Randomized algorithms may fail with probability at most $\delta$
- Polytime approximation: $\operatorname{poly}\left(n, \epsilon^{-1}, \log \delta^{-1}\right)$
- Theorem (Dagum and Luby, 1993): both absolute and relative approximation for either deterministic or randomized algorithms are NP-hard for any $\epsilon, \delta<0.5$
(Absolute approximation polytime with no evidence-Chernoff bounds)


## Summary

Exact inference by variable elimination:

- polytime on polytrees, NP-hard on general graphs
- space $=$ time, very sensitive to topology

Approximate inference by LW, MCMC:

- PriorSampling and RejectionSampling unusable as evidence grow
- LW does poorly when there is lots of (late-in-the-order) evidence
- LW, MCMC generally insensitive to topology
- Convergence can be very slow with probabilities close to 1 or 0
- Can handle arbitrary combinations of discrete and continuous variables


## Outline

1. Inference by Randomized Algorithms
2. Exercise

## 3. Uncertainty over Time

## Wumpus World

| 1,4 | 2,4 | 3,4 | 4,4 |
| :---: | :--- | :--- | :--- |
| 1,3 | 2,3 | 3,3 | 4,3 |
| 1,2 <br> $\mathbf{B}$ | 2,2 | 3,2 | 4,2 |
| $\mathbf{O K}$ |  |  |  |
| $\mathbf{O K}$ | $\mathbf{O K}$ |  | 4,1 |

$P_{i j}=$ true iff $[i, j]$ contains a pit $B_{i j}=$ true iff $[i, j]$ is breezy
Include only $B_{1,1}, B_{1,2}, B_{2,1}$ in the probability model

## Specifying the probability model

The full joint distribution is $\mathbf{P}\left(P_{1,1}, \ldots, P_{4,4}, B_{1,1}, B_{1,2}, B_{2,1}\right)$
Apply product rule: $\mathbf{P}\left(B_{1,1}, B_{1,2}, B_{2,1} \mid P_{1,1}, \ldots, P_{4,4}\right) \mathbf{P}\left(P_{1,1}, \ldots, P_{4,4}\right)$
(Do it this way to get $P($ Effect $\mid$ Cause).)

## Specifying the probability model

The full joint distribution is $\mathbf{P}\left(P_{1,1}, \ldots, P_{4,4}, B_{1,1}, B_{1,2}, B_{2,1}\right)$
Apply product rule: $\mathbf{P}\left(B_{1,1}, B_{1,2}, B_{2,1} \mid P_{1,1}, \ldots, P_{4,4}\right) \mathbf{P}\left(P_{1,1}, \ldots, P_{4,4}\right)$
(Do it this way to get $P($ Effect $\mid$ Cause).)
First term: 1 if pits are adjacent to breezes, 0 otherwise
Second term: pits are placed randomly, probability 0.2 per square:

$$
\mathbf{P}\left(P_{1,1}, \ldots, P_{4,4}\right)=\prod_{i, j=1,1}^{4,4} \mathbf{P}\left(P_{i, j}\right)=0.2^{n} \times 0.8^{16-n}
$$

for $n$ pits.

## Observations and query

We know the following facts:

$$
\begin{aligned}
& b=\neg b_{1,1} \wedge b_{1,2} \wedge b_{2,1} \\
& \text { known }=\neg p_{1,1} \wedge \neg p_{1,2} \wedge \neg p_{2,1}
\end{aligned}
$$

Query is $\mathbf{P}\left(P_{1,3} \mid\right.$ known, $\left.b\right)$
Define Unknown $=P_{i j}$ s other than $P_{1,3}$ and Known

## Observations and query

We know the following facts:

$$
\begin{aligned}
& b=\neg b_{1,1} \wedge b_{1,2} \wedge b_{2,1} \\
& \text { known }=\neg p_{1,1} \wedge \neg p_{1,2} \wedge \neg p_{2,1}
\end{aligned}
$$

Query is $\mathbf{P}\left(P_{1,3} \mid\right.$ known, $\left.b\right)$
Define Unknown $=P_{i j}$ s other than $P_{1,3}$ and Known
For inference by enumeration, we have

$$
\mathbf{P}\left(P_{1,3} \mid \text { known, } b\right)=\alpha \sum_{u n k n o w n} \mathbf{P}\left(P_{1,3}, \text { unknown, known, } b\right)
$$

Grows exponentially with number of squares!

## Using conditional independence

Basic insight: observations are conditionally independent of other hidden squares given neighbouring hidden squares


## Using conditional independence

Basic insight: observations are conditionally independent of other hidden squares given neighbouring hidden squares


Define Unknown $=$ Fringe $\cup$ Other
$\mathbf{P}\left(b \mid P_{1,3}\right.$, Known, Unknown $)=\mathbf{P}\left(b \mid P_{1,3}\right.$, Known, Fringe $)$
Manipulate query into a form where we can use this!

## Using conditional independence contd.

$$
\mathrm{P}\left(P_{1,3} \mid \text { known }, b\right)=\alpha \sum_{\text {unknown }} \mathrm{P}\left(P_{1,3}, \text { unknown, known, } b\right)
$$

## Using conditional independence contd.

$$
\begin{aligned}
& \mathrm{P}\left(P_{1,3} \mid \text { known, } b\right)=\alpha \sum_{\text {unknown }} \mathbf{P}\left(P_{1,3}, \text { unknown, known, } b\right) \\
& \quad=\alpha \sum_{\text {unknown }} \mathbf{P}\left(b \mid P_{1,3}, \text { known, unknown }\right) \mathbf{P}\left(P_{1,3}, \text { known, unknown }\right)
\end{aligned}
$$

## Using conditional independence contd.

$$
\begin{aligned}
\mathbf{P} & \left(P_{1,3} \mid \text { known, } b\right)=\alpha \sum_{\text {unknown }} \mathbf{P}\left(P_{1,3}, \text { unknown, known, } b\right) \\
& =\alpha \sum_{\text {unknown }} \mathbf{P}\left(b \mid P_{1,3}, \text { known, unknown }\right) \mathbf{P}\left(P_{1,3}, \text { known, unknown }\right) \\
& =\alpha \sum_{\text {fringe other }} \sum_{\text {on }} \mathbf{P}\left(b \mid \text { known, } P_{1,3}, \text { fringe, other }\right) \mathbf{P}\left(P_{1,3}, \text { known, fringe, other }\right)
\end{aligned}
$$

## Using conditional independence contd.

$$
\begin{aligned}
\mathbf{P} & \left(P_{1,3} \mid \text { known, } b\right)=\alpha \sum_{\text {unknown }} \mathbf{P}\left(P_{1,3}, \text { unknown, known, } b\right) \\
& =\alpha \sum_{\text {unknown }} \mathbf{P}\left(b \mid P_{1,3}, \text { known, unknown }\right) \mathbf{P}\left(P_{1,3}, \text { known, unknown }\right) \\
& =\alpha \sum_{\text {fringe other }} \sum \mathbf{P}\left(b \mid \text { known, } P_{1,3}, \text { fringe, other }\right) \mathbf{P}\left(P_{1,3}, \text { known, fringe, other }\right) \\
& =\alpha \sum_{\text {fringe other }} \sum \mathbf{P}\left(b \mid \text { known, } P_{1,3}, \text { fringe }\right) \mathbf{P}\left(P_{1,3}, \text { known, fringe, other }\right)
\end{aligned}
$$

## Using conditional independence contd.

$$
\begin{aligned}
\mathbf{P} & \left(P_{1,3} \mid \text { known, } b\right)=\alpha \sum_{\text {unknown }} \mathbf{P}\left(P_{1,3}, \text { unknown, known, } b\right) \\
& =\alpha \sum_{\text {unknown }} \mathbf{P}\left(b \mid P_{1,3}, \text { known, unknown }\right) \mathbf{P}\left(P_{1,3}, \text { known, unknown }\right) \\
& =\alpha \sum_{\text {fringe other }} \sum^{\mathbf{P}}\left(b \mid \text { known, } P_{1,3}, \text { fringe, other }\right) \mathbf{P}\left(P_{1,3}, \text { known, fringe, other }\right) \\
& =\alpha \sum_{\text {fringe other }} \sum^{\mathbf{P}}\left(b \mid \text { known, } P_{1,3}, \text { fringe }\right) \mathbf{P}\left(P_{1,3}, \text { known, fringe, other }\right) \\
& =\alpha \sum_{\text {fringe }} \mathbf{P}\left(b \mid \text { known, } P_{1,3}, \text { fringe }\right) \sum_{\text {other }} \mathbf{P}\left(P_{1,3}, \text { known, fringe, other }\right)
\end{aligned}
$$

## Using conditional independence contd.

$$
\begin{aligned}
\mathbf{P} & \left(P_{1,3} \mid \text { known, } b\right)=\alpha \sum_{\text {unknown }} \mathbf{P}\left(P_{1,3}, \text { unknown, known, } b\right) \\
& =\alpha \sum_{\text {unknown }} \mathbf{P}\left(b \mid P_{1,3}, \text { known, unknown }\right) \mathbf{P}\left(P_{1,3}, \text { known, unknown }\right) \\
& =\alpha \sum_{\text {fringe other }} \sum_{\text {oth }} \mathbf{P}\left(b \mid \text { known, } P_{1,3}, \text { fringe, other }\right) \mathbf{P}\left(P_{1,3}, \text { known, fringe, other }\right) \\
& =\alpha \sum_{\text {fringe }} \sum_{\text {other }} \mathbf{P}\left(b \mid \text { known, } P_{1,3}, \text { fringe }\right) \mathbf{P}\left(P_{1,3}, \text { known, fringe, other }\right) \\
& =\alpha \sum_{\text {fringe }} \mathbf{P}\left(b \mid \text { known, } P_{1,3}, \text { fringe }\right) \sum_{\text {other }} \mathbf{P}\left(P_{1,3}, \text { known, fringe, other }\right) \\
& =\alpha \sum_{\text {fringe }} \mathbf{P}\left(b \mid \text { known, } P_{1,3}, \text { fringe }\right) \sum_{\text {other }} \mathbf{P}\left(P_{1,3}\right) P(\text { known }) P(\text { fringe }) P(\text { other })
\end{aligned}
$$

## Using conditional independence contd.

$$
\begin{aligned}
\mathbf{P} & \left(P_{1,3} \mid \text { known, } b\right)=\alpha \sum_{\text {unknown }} \mathbf{P}\left(P_{1,3}, \text { unknown, known, } b\right) \\
& =\alpha \sum_{\text {unknown }} \mathbf{P}\left(b \mid P_{1,3}, \text { known, unknown }\right) \mathbf{P}\left(P_{1,3}, \text { known, unknown }\right) \\
& =\alpha \sum_{\text {fringe }} \sum_{\text {other }} \mathbf{P}\left(b \mid \text { known, } P_{1,3}, \text { fringe, other }\right) \mathbf{P}\left(P_{1,3}, \text { known, fringe, other }\right) \\
& =\alpha \sum_{\text {fringe other }} \sum \mathbf{P}\left(b \mid \text { known, } P_{1,3}, \text { fringe }\right) \mathbf{P}\left(P_{1,3}, \text { known, fringe, other }\right) \\
& =\alpha \sum_{\text {fringe }} \mathbf{P}\left(b \mid \text { known, } P_{1,3}, \text { fringe }\right) \sum_{\text {other }} \mathbf{P}\left(P_{1,3}, \text { known, fringe, other }\right) \\
& =\alpha \sum_{\text {fringe }} \mathbf{P}\left(b \mid k n o w n, P_{1,3}, \text { fringe }\right) \sum_{\text {other }} \mathbf{P}\left(P_{1,3}\right) P(\text { known }) P(\text { fringe }) P(\text { other }) \\
& =\alpha P(\text { known }) \mathbf{P}\left(P_{1,3}\right) \sum_{\text {fringe }} \mathbf{P}\left(b \mid \text { known, } P_{1,3}, \text { fringe }\right) P(\text { fringe }) \sum_{\text {other }} P(\text { other })
\end{aligned}
$$

## Using conditional independence contd.

$$
\begin{aligned}
\mathbf{P} & \left(P_{1,3} \mid \text { known, } b\right)=\alpha \sum_{\text {unknown }} \mathbf{P}\left(P_{1,3},\right. \text { unknown, known, b) } \\
& =\alpha \sum_{\text {unknown }} \mathbf{P}\left(b \mid P_{1,3}, \text { known, unknown }\right) \mathbf{P}\left(P_{1,3}, \text { known, unknown }\right) \\
& =\alpha \sum_{\text {fringe other }} \sum_{\text {oth }} \mathbf{P}\left(b \mid \text { known, } P_{1,3}, \text { fringe, other }\right) \mathbf{P}\left(P_{1,3}, \text { known, fringe, other }\right) \\
& =\alpha \sum_{\text {fringe other }} \sum \mathbf{P}\left(b \mid \text { known, } P_{1,3}, \text { fringe }\right) \mathbf{P}\left(P_{1,3}, \text { known, fringe, other }\right) \\
& =\alpha \sum_{\text {fringe }} \mathbf{P}\left(b \mid \text { known, } P_{1,3}, \text { fringe }\right) \sum_{\text {other }} \mathbf{P}\left(P_{1,3}, \text { known, fringe, other }\right) \\
& =\alpha \sum_{\text {fringe }} \mathbf{P}\left(b \mid \text { known, } P_{1,3}, \text { fringe }\right) \sum_{\text {other }} \mathbf{P}\left(P_{1,3}\right) P(\text { known }) P(\text { fringe }) P(\text { other }) \\
& =\alpha P(k n o w n) \mathbf{P}\left(P_{1,3}\right) \sum_{\text {fringe }} \mathbf{P}\left(b \mid \text { known, } P_{1,3}, \text { fringe }\right) P(\text { fringe }) \sum_{\text {other }} P(\text { other }) \\
& =\alpha^{\prime} \mathbf{P}\left(P_{1,3}\right) \sum_{\text {fringe }} \mathbf{P}\left(b \mid \text { known, } P_{1,3}, \text { fringe }\right) P(\text { fringe })
\end{aligned}
$$

## Using conditional independence contd.


$0.2 \times 0.2=0.04$

$0.2 \times 0.8=0.16$

$0.8 \times 0.2=0.16$

$0.2 \times 0.2=0.04$

$0.2 \times 0.8=0.16$

$$
\begin{aligned}
\mathbf{P}\left(P_{1,3} \mid \text { known }, b\right) & =\alpha^{\prime}\langle 0.2(0.04+0.16+0.16), 0.8(0.04+0.16)\rangle \\
& \approx\langle 0.31,0.69\rangle
\end{aligned}
$$

$$
\mathbf{P}\left(P_{2,2} \mid \text { known }, b\right) \approx\langle 0.86,0.14\rangle
$$

## Outline

1. Inference by Randomized Algorithms
2. Exercise
3. Uncertainty over Time

Time and uncertainty
Inference: filtering, prediction, smoothing
Hidden Markov models
Kalman filters (a brief mention)
Dynamic Bayesian networks (an even briefer mention)

## Time and uncertainty

- The world changes; we need to track and predict it


## Time and uncertainty

- The world changes; we need to track and predict it
- Diabetes management vs vehicle diagnosis
- The world changes; we need to track and predict it
- Diabetes management vs vehicle diagnosis
- Basic idea: copy state and evidence variables for each time step $\mathrm{X}_{t}=$ set of unobservable state variables at time $t$ e.g., BloodSugart, StomachContents ${ }_{t}$, etc.
$\mathrm{E}_{t}=$ set of observable evidence variables at time $t$
e.g., MeasuredBloodSugar ${ }_{t}$, PulseRate ${ }_{t}$, FoodEaten ${ }_{t}$


## Time and uncertainty

- The world changes; we need to track and predict it
- Diabetes management vs vehicle diagnosis
- Basic idea: copy state and evidence variables for each time step $\mathrm{X}_{t}=$ set of unobservable state variables at time $t$ e.g., BloodSugart, StomachContents ${ }_{t}$, etc. $\mathrm{E}_{t}=$ set of observable evidence variables at time $t$ e.g., MeasuredBloodSugar ${ }_{t}$, PulseRate ${ }_{t}$, FoodEaten ${ }_{t}$
- This assumes discrete time; step size depends on problem


## Time and uncertainty

- The world changes; we need to track and predict it
- Diabetes management vs vehicle diagnosis
- Basic idea: copy state and evidence variables for each time step $\mathrm{X}_{t}=$ set of unobservable state variables at time $t$ e.g., BloodSugart, StomachContents ${ }_{t}$, etc.
$\mathrm{E}_{t}=$ set of observable evidence variables at time $t$
e.g., MeasuredBloodSugar ${ }_{t}$, PulseRate ${ }_{t}$, FoodEaten ${ }_{t}$
- This assumes discrete time; step size depends on problem
- Notation: $\mathbf{X}_{a: b}=\mathbf{X}_{a}, \mathbf{X}_{a+1}, \ldots, \mathbf{X}_{b-1}, \mathbf{X}_{b}$


## Markov processes (Markov chains)

Construct a Bayes net from these variables:

## Markov processes (Markov chains)

Construct a Bayes net from these variables:

- unbounded number of conditional probability table
- unbounded number of parents


## Markov processes (Markov chains)

Construct a Bayes net from these variables:

- unbounded number of conditional probability table
- unbounded number of parents

Markov assumption: $\mathbf{X}_{t}$ depends on bounded subset of $\mathbf{X}_{0: t-1}$
First-order Markov process: $\mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{X}_{0: t-1}\right)=\mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{X}_{t-1}\right)$
Second-order Markov process: $\mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{X}_{0: t-1}\right)=\mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{X}_{t-2}, \mathbf{X}_{t-1}\right)$

First-order


Second-order


## Markov processes (Markov chains)

Construct a Bayes net from these variables:

- unbounded number of conditional probability table
- unbounded number of parents

Markov assumption: $\mathbf{X}_{t}$ depends on bounded subset of $\mathbf{X}_{0: t-1}$
First-order Markov process: $\mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{X}_{0: t-1}\right)=\mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{X}_{t-1}\right)$
Second-order Markov process: $\mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{X}_{0: t-1}\right)=\mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{X}_{t-2}, \mathbf{X}_{t-1}\right)$

First-order


Second-order


Sensor Markov assumption: $\mathbf{P}\left(\mathbf{E}_{t} \mid \mathbf{X}_{0: t}, \mathbf{E}_{0: t-1}\right)=\mathbf{P}\left(\mathbf{E}_{t} \mid \mathbf{X}_{t}\right)$

## Markov processes (Markov chains)

Construct a Bayes net from these variables:

- unbounded number of conditional probability table
- unbounded number of parents

Markov assumption: $\mathbf{X}_{t}$ depends on bounded subset of $\mathbf{X}_{0: t-1}$
First-order Markov process: $\mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{X}_{0: t-1}\right)=\mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{X}_{t-1}\right)$
Second-order Markov process: $\mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{X}_{0: t-1}\right)=\mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{X}_{t-2}, \mathbf{X}_{t-1}\right)$

First-order


Second-order


Sensor Markov assumption: $\mathbf{P}\left(\mathbf{E}_{t} \mid \mathbf{X}_{0: t}, \mathbf{E}_{0: t-1}\right)=\mathbf{P}\left(\mathbf{E}_{t} \mid \mathbf{X}_{t}\right)$
$\rightsquigarrow$ Stationary process:

- transition model $\mathrm{P}\left(\mathbf{X}_{t} \mid \mathbf{X}_{t-1}\right)$ and
- sensor model $\mathbf{P}\left(\mathbf{E}_{t} \mid \mathbf{X}_{t}\right)$ fixed for all $t$


## Example



## Example



First-order Markov assumption not exactly true in real world! Possible fixes:

1. Increase order of Markov process
2. Augment state, e.g., add Temp $_{t}$, Pressure ${ }_{t}$

Example: robot motion.
Augment position and velocity with Batteryt

## Inference tasks

1. Filtering: $\mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{e}_{1: t}\right)$
belief state-input to the decision process of a rational agent
2. Prediction: $\mathbf{P}\left(\mathbf{X}_{t+k} \mid \mathbf{e}_{1: t}\right)$ for $k>0$
evaluation of possible action sequences;
like filtering without the evidence
3. Smoothing: $\mathbf{P}\left(\mathbf{X}_{k} \mid \mathbf{e}_{1: t}\right)$ for $0 \leq k<t$ better estimate of past states, essential for learning
4. Most likely explanation: $\arg \max _{\mathrm{x}_{1: t}} P\left(\mathrm{x}_{1: t} \mid \mathbf{e}_{1: t}\right)$ speech recognition, decoding with a noisy channel

## Filtering

Aim: devise a recursive state estimation algorithm:

$$
\mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{e}_{1: t+1}\right)=f\left(\mathbf{e}_{t+1}, \mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{e}_{1: t}\right)\right)
$$

## Filtering

Aim: devise a recursive state estimation algorithm:

$$
\mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{e}_{1: t+1}\right)=f\left(\mathbf{e}_{t+1}, \mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{e}_{1: t}\right)\right)
$$

$$
\begin{aligned}
& \mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{e}_{1: t+1}\right)=\mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{e}_{1: t}, \mathbf{e}_{t+1}\right) \\
& \quad=\alpha \mathbf{P}\left(\mathbf{e}_{t+1} \mid \mathbf{X}_{t+1}, \mathbf{e}_{1: t}\right) \mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{e}_{1: t}\right) \\
& \quad=\alpha \mathbf{P}\left(\mathbf{e}_{t+1} \mid \mathbf{X}_{t+1}\right) \mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{e}_{1: t}\right)
\end{aligned}
$$

I.e., prediction + estimation.

## Filtering

Aim: devise a recursive state estimation algorithm:

$$
\mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{e}_{1: t+1}\right)=f\left(\mathbf{e}_{t+1}, \mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{e}_{1: t}\right)\right)
$$

$$
\begin{aligned}
& \mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{e}_{1: t+1}\right)=\mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{e}_{1: t}, \mathbf{e}_{t+1}\right) \\
& \quad=\alpha \mathbf{P}\left(\mathbf{e}_{t+1} \mid \mathbf{X}_{t+1}, \mathbf{e}_{1: t}\right) \mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{e}_{1: t}\right) \\
& \quad=\alpha \mathbf{P}\left(\mathbf{e}_{t+1} \mid \mathbf{X}_{t+1}\right) \mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{e}_{1: t}\right)
\end{aligned}
$$

I.e., prediction + estimation. Prediction by summing out $X_{t}$ :

$$
\begin{aligned}
& \mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{e}_{1: t+1}\right)=\alpha \mathbf{P}\left(\mathbf{e}_{t+1} \mid \mathbf{X}_{t+1}\right) \sum_{\mathbf{x}_{\mathbf{t}}} \mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{x}_{t}, \mathbf{e}_{1: t}\right) P\left(\mathbf{x}_{t} \mid \mathbf{e}_{1: t}\right) \\
& \quad=\alpha \mathbf{P}\left(\mathbf{e}_{t+1} \mid \mathbf{X}_{t+1}\right) \sum_{\mathbf{x}_{\mathbf{t}}} \mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{x}_{t}\right) P\left(\mathbf{x}_{t} \mid \mathbf{e}_{1: t}\right)
\end{aligned}
$$

$\mathbf{f}_{1: t+1}=\operatorname{Forward}\left(\mathbf{f}_{1: t}, \mathbf{e}_{t+1}\right)$ where $\mathbf{f}_{1: t}=\mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{e}_{1: t}\right)$
Time and space constant (independent of $t$ )

## Filtering example



## Filtering example



## Smoothing



## Smoothing



Divide evidence $\mathbf{e}_{1: t}$ into $\mathbf{e}_{1: k}, \mathbf{e}_{k+1: t}$ :

$$
\begin{aligned}
\mathbf{P}\left(\mathbf{X}_{k} \mid \mathbf{e}_{1: t}\right) & =\mathbf{P}\left(\mathbf{X}_{k} \mid \mathbf{e}_{1: k}, \mathbf{e}_{k+1: t}\right) \\
& =\alpha \mathbf{P}\left(\mathbf{X}_{k} \mid \mathbf{e}_{1: k}\right) \mathbf{P}\left(\mathbf{e}_{k+1: t} \mid \mathbf{X}_{k}, \mathbf{e}_{1: k}\right) \\
& =\alpha \mathbf{P}\left(\mathbf{X}_{k} \mid \mathbf{e}_{1: k}\right) \mathbf{P}\left(\mathbf{e}_{k+1: t} \mid \mathbf{X}_{k}\right) \\
& =\alpha \mathbf{f}_{1: k} \mathbf{b}_{k+1: t}
\end{aligned}
$$

Backward message computed by a backwards recursion:

$$
\begin{aligned}
\mathbf{P}\left(\mathbf{e}_{k+1: t} \mid \mathbf{X}_{k}\right) & =\sum_{x_{k+1}} \mathrm{P}\left(\mathbf{e}_{k+1: t} \mid \mathbf{X}_{k}, \mathbf{x}_{k+1}\right) \mathrm{P}\left(\mathbf{x}_{k+1} \mid \mathbf{X}_{k}\right) \\
& =\sum_{x_{k+1}} P\left(\mathbf{e}_{k+1: t} \mid \mathbf{x}_{k+1}\right) \mathbf{P}\left(\mathbf{x}_{k+1} \mid \mathbf{X}_{k}\right) \\
& =\sum_{x_{k+1}} P\left(\mathbf{e}_{k+1} \mid \mathbf{x}_{k+1}\right) P\left(\mathbf{e}_{k+2: t} \mid \mathbf{x}_{k+1}\right) \mathbf{P}\left(\mathbf{x}_{k+1} \mid \mathbf{X}_{k}\right)
\end{aligned}
$$

## Smoothing example



Forward-backward algorithm: cache forward messages along the way Time linear in $t$ (polytree inference), space $O(t|\mathbf{f}|)$

