Speech Re
Learning

Lecture 11

Dynamic Bayesian Networks and Hidden Markov Models

Decision Trees

Marco Chiarandini

Deptartment of Mathematics \& Computer Science
University of Southern Denmark

- Relative approximation: $\frac{|P(X \mid \mathbf{e})-\hat{P}(X \mid \mathbf{e})|}{P(X \mid \mathbf{e})} \leq \epsilon$
- Relative \Longrightarrow absolute since $0 \leq P \leq 1$ (may be $O\left(2^{-n}\right)$)
- Randomized algorithms may fail with probability at most δ
- Polytime approximation: poly $\left(n, \epsilon^{-1}, \log \delta^{-1}\right)$
- Theorem (Dagum and Luby, 1993): both absolute and relative approximation for either deterministic or randomized algorithms are NP-hard for any $\epsilon, \delta<0.5$
(Absolute approximation polytime with no evidence-Chernoff bounds)
Exercise
Uncertainty over Time
Speech Recognition

- Absolute approximation: $|P(X \mid \mathbf{e})-\hat{P}(X \mid \mathbf{e})| \leq \epsilon$

\checkmark Introduction

\checkmark Artificial Intelligence
\checkmark Intelligent Agents
\checkmark Search
\checkmark Uninformed Search
\checkmark Heuristic Search
\checkmark Adversarial Search
\checkmark Minimax search
\checkmark Alpha-beta pruning
\checkmark Knowledge representation and Reasoning
\checkmark Propositional logic
\checkmark First order logic
\checkmark Inference
\checkmark Uncertain knowledge and Reasoning
\checkmark Probability and Bayesian approach
\checkmark Bayesian Networks

- Hidden Markov Chains
- Kalman Filters
- Learning
- Decision Trees
- Maximum Likelihood
- EM Algorithm
- Learning Bayesian Networks
- Neural Networks
- Support vector machines

Summary

Exact inference by variable elimination:

- polytime on polytrees, NP-hard on general graphs
- space $=$ time, very sensitive to topology

Approximate inference by Likelihood Weighting (LW), Markov Chain Monte Carlo Method (MCMC):

- PriorSampling and RejectionSampling unusable as evidence grow
- LW does poorly when there is lots of (late-in-the-order) evidence
- LW, MCMC generally insensitive to topology
- Convergence can be very slow with probabilities close to 1 or 0
- Can handle arbitrary combinations of discrete and continuous variables

1. Exercise
2. Uncertainty over Time
3. Speech Recognition
4. Learning

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
${ }^{1,2} \mathbf{B}$	2,2	3,2	4,2
OK			
1,1	${ }^{2,1} \mathbf{B}$	3,1	4,1
OK	OK		

$P_{i j}=$ true iff $[i, j]$ contains a pit
$B_{i j}=$ true iff $[i, j]$ is breezy
Include only $B_{1,1}, B_{1,2}, B_{2,1}$ in the probability model

Observations and query

The full joint distribution is $\mathbf{P}\left(P_{1,1}, \ldots, P_{4,4}, B_{1,1}, B_{1,2}, B_{2,1}\right)$
Apply product rule: $\mathbf{P}\left(B_{1,1}, B_{1,2}, B_{2,1} \mid P_{1,1}, \ldots, P_{4,4}\right) \mathbf{P}\left(P_{1,1}, \ldots, P_{4,4}\right)$
(Do it this way to get $P($ Effect \mid Cause).)
First term: 1 if pits are adjacent to breezes, 0 otherwise
Second term: pits are placed randomly, probability 0.2 per square:

$$
\mathbf{P}\left(P_{1,1}, \ldots, P_{4,4}\right)=\prod_{i, j=1,1}^{4,4} \mathbf{P}\left(P_{i, j}\right)=0.2^{n} \times 0.8^{16-n}
$$

for n pits.
We know the following facts:

$$
\begin{aligned}
& b=\neg b_{1,1} \wedge b_{1,2} \wedge b_{2,1} \\
& \text { known }=\neg p_{1,1} \wedge \neg p_{1,2} \wedge \neg p_{2,1}
\end{aligned}
$$

Query is $\mathbf{P}\left(P_{1,3} \mid\right.$ known, $\left.b\right)$
Define Unknown $=P_{i j}$ s other than $P_{1,3}$ and Known
For inference by enumeration, we have

$$
\mathbf{P}\left(P_{1,3} \mid \text { known, } b\right)=\alpha \sum_{\text {unknown }} \mathbf{P}\left(P_{1,3}, \text { unknown, known, } b\right)
$$

Grows exponentially with number of squares!

$$
\begin{aligned}
& \mathbf{P}\left(P_{1,3} \mid \text { known, } b\right)=\alpha \sum_{\text {unknown }} \mathbf{P}\left(P_{1,3}, \text { unknown, known, } b\right) \\
& =\alpha \sum \mathbf{P}\left(b \mid P_{1,3}, \text { known, unknown }\right) \mathbf{P}\left(P_{1,3}, \text { known, unknown }\right) \\
& =\alpha \sum_{\text {fringe }} \sum_{\text {other }} \mathbf{P}\left(b \mid \text { known, } P_{1,3}, \text { fringe, other }\right) \mathbf{P}\left(P_{1,3}, \text { known, fringe, other }\right) \\
& =\alpha \sum_{\text {fringe other }} \sum_{\text {o }} \mathbf{P}\left(b \mid \text { known, } P_{1,3} \text {, fringe }\right) \mathbf{P}\left(P_{1,3} \text {, known, fringe, other }\right) \\
& =\alpha \sum_{\text {fringe }} \mathbf{P}\left(b \mid \text { known, } P_{1,3}, \text { fringe }\right) \sum_{\text {other }} \mathbf{P}\left(P_{1,3}, \text { known, fringe, other }\right) \\
& =\alpha \sum_{\text {fringe }} \mathbf{P}\left(b \mid \text { known, } P_{1,3} \text {, fringe }\right) \sum_{\text {other }} \mathbf{P}\left(P_{1,3}\right) P(\text { known }) P(\text { fringe }) P(\text { other }) \\
& =\alpha P(\text { known }) \mathbf{P}\left(P_{1,3}\right) \sum_{\text {fringe }} \mathbf{P}\left(b \mid \text { known, } P_{1,3}, \text { fringe }\right) P(\text { fringe }) \sum_{\text {other }} P(\text { other }) \\
& =\alpha^{\prime} \mathbf{P}\left(P_{1,3}\right) \sum_{\text {fringe }} \mathbf{P}\left(b \mid \text { known, } P_{1,3} \text {, fringe }\right) P(\text { fringe })
\end{aligned}
$$

Using conditional independence contd $\substack{\text { Exercise } \\ \text { s.cectinty over Time } \\ \text { Learninececonition }}$
Speech R
Learning
Using conditional independence contd.

Basic insight: observations are conditionally independent of other hidden squares given neighbouring hidden squares

Define Unknown $=$ Fringe \cup Other
$\mathbf{P}\left(b \mid P_{1,3}\right.$, Known, Unknown $)=\mathbf{P}\left(b \mid P_{1,3}\right.$, Known, Fringe $)$
Manipulate query into a form where we can use this!

Outline

Exercise
Speech R
Learning

1. Exercise
2. Uncertainty over Time
\diamond Time and uncertainty
\diamond Inference: filtering, prediction, smoothing
\diamond Hidden Markov models
\diamond Kalman filters (a brief mention)
\diamond Dynamic Bayesian networks (an even briefer mention)

- The world changes; we need to track and predict it
- Diabetes management vs vehicle diagnosis
- Basic idea: copy state and evidence variables for each time step
$\mathrm{X}_{t}=$ set of unobservable state variables at time t
e.g., BloodSugart, StomachContentst, etc.
$\mathrm{E}_{t}=$ set of observable evidence variables at time t
e.g., MeasuredBloodSugar ${ }_{t}$, PulseRate ${ }_{t}$, FoodEaten ${ }_{t}$
- This assumes discrete time; step size depends on problem
- Notation: $\mathbf{X}_{a: b}=\mathbf{X}_{a}, \mathbf{X}_{a+1}, \ldots, \mathbf{X}_{b-1}, \mathbf{X}_{b}$

Exercise
Uncertainty over Time Uncertainty over Time
Speech Recognition Learning

Markov processes (Markov chains)

Example
Exercise
Uncertainty over Time
Speech Recognition
Speech
Learning

Construct a Bayes net from these variables:

- unbounded number of conditional probability table
- unbounded number of parents

Markov assumption: \mathbf{X}_{t} depends on bounded subset of $\mathbf{X}_{0: t-1}$
First-order Markov process: $\mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{X}_{0: t-1}\right)=\mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{X}_{t-1}\right)$
Second-order Markov process: $\mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{X}_{0: t-1}\right)=\mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{X}_{t-2}, \mathbf{X}_{t-1}\right)$

First-order

Second-order

Sensor Markov assumption: $\mathbf{P}\left(\mathbf{E}_{t} \mid \mathbf{X}_{0: t}, \mathbf{E}_{0: t-1}\right)=\mathbf{P}\left(\mathbf{E}_{t} \mid \mathbf{X}_{t}\right)$
\rightsquigarrow Stationary process:

- transition model $\mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{X}_{t-1}\right)$ and
- sensor model $\mathbf{P}\left(\mathbf{E}_{t} \mid \mathbf{X}_{t}\right)$ fixed for all t

First-order Markov assumption not exactly true in real world! Possible fixes:

1. Increase order of Markov process
2. Augment state, e.g., add Temp ${ }_{t}$, Pressure ${ }_{t}$ Example: robot motion.

Augment position and velocity with Battery ${ }_{t}$

Aim: devise a recursive state estimation algorithm:

$$
\begin{aligned}
& \mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{e}_{1: t+1}\right)=f\left(\mathbf{e}_{t+1}, \mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{e}_{1: t}\right)\right) \\
& \mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{e}_{1: t+1}\right)=\mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{e}_{1: t}, \mathbf{e}_{t+1}\right) \\
& \quad=\alpha \mathbf{P}\left(\mathbf{e}_{t+1} \mid \mathbf{X}_{t+1}, \mathbf{e}_{1: t}\right) \mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{e}_{1: t}\right) \\
& \quad=\alpha \mathbf{P}\left(\mathbf{e}_{t+1} \mid \mathbf{X}_{t+1}\right) \mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{e}_{1: t}\right)
\end{aligned}
$$

I.e., prediction + estimation. Prediction by summing out X_{t} :

$$
\begin{aligned}
& \mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{e}_{1: t+1}\right)=\alpha \mathbf{P}\left(\mathbf{e}_{t+1} \mid \mathbf{X}_{t+1}\right) \sum_{\mathbf{x}_{t}} \mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{x}_{t}, \mathbf{e}_{1: t}\right) P\left(\mathbf{x}_{t} \mid \mathbf{e}_{1: t}\right) \\
& \quad=\alpha \mathbf{P}\left(\mathbf{e}_{t+1} \mid \mathbf{X}_{t+1}\right) \sum_{\mathbf{x}_{\mathbf{t}}} \mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{x}_{t}\right) P\left(\mathbf{x}_{t} \mid \mathbf{e}_{1: t}\right)
\end{aligned}
$$

$\mathbf{f}_{1: t+1}=\operatorname{Forward}\left(\mathbf{f}_{1: t}, \mathbf{e}_{t+1}\right)$ where $\mathbf{f}_{1: t}=\mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{e}_{1: t}\right)$
Time and space constant (independent of t) by keeping track of f

Filtering example

Smoothing

Exercise Uncertaint
Uncertainty over Time peech Recognition Speech R Learning

Divide evidence $\mathbf{e}_{1: t}$ into $\mathbf{e}_{1: k}, \mathbf{e}_{k+1: t}$:

$$
\begin{aligned}
\mathbf{P}\left(\mathbf{X}_{k} \mid \mathbf{e}_{1: t}\right) & =\mathbf{P}\left(\mathbf{X}_{k} \mid \mathbf{e}_{1: k}, \mathbf{e}_{k+1: t}\right) \\
& =\alpha \mathbf{P}\left(\mathbf{X}_{k} \mid \mathbf{e}_{1: k}\right) \mathbf{P}\left(\mathbf{e}_{k+1: t} \mid \mathbf{X}_{k}, \mathbf{e}_{1: k}\right) \\
& =\alpha \mathbf{P}\left(\mathbf{X}_{k} \mid \mathbf{e}_{1: k}\right) \mathbf{P}\left(\mathbf{e}_{k+1: t} \mid \mathbf{X}_{k}\right) \\
& =\alpha \mathbf{f}_{1: k} \mathbf{b}_{k+1: t}
\end{aligned}
$$

Backward message computed by a backwards recursion:

$$
\begin{aligned}
\mathbf{P}\left(\mathbf{e}_{k+1: t} \mid \mathbf{X}_{k}\right) & =\sum_{\mathbf{x}_{k+1}} \mathbf{P}\left(\mathbf{e}_{k+1: t} \mid \mathbf{X}_{k}, \mathbf{x}_{k+1}\right) \mathbf{P}\left(\mathbf{x}_{k+1} \mid \mathbf{X}_{k}\right) \\
& =\sum_{\mathbf{x}_{k+1}} P\left(\mathbf{e}_{k+1: t} \mid \mathbf{x}_{k+1}\right) \mathbf{P}\left(\mathbf{x}_{k+1} \mid \mathbf{X}_{k}\right) \\
& =\sum P\left(\mathbf{e}_{k+1} \mid \mathbf{x}_{k+1}\right) P\left(\mathbf{e}_{k+2: t} \mid \mathbf{x}_{k+1}\right) \mathbf{P}\left(\mathbf{x}_{k+1} \mid \mathbf{X}_{k}\right)
\end{aligned}
$$

If we want to smooth the whole sequence:
Forward-backward algorithm: cache forward messages along the way Time linear in t (polytree inference), space $O(t|\mathbf{f}|)$

Hidden Markov models

Exercise
Uncertaint
Uncertainty over Time Speech Re
Learning
X_{t} is a single, discrete variable (usually E_{t} is too)
Domain of X_{t} is $\{1, \ldots, S\}$
Transition matrix $\mathbf{T}_{i j}=P\left(X_{t}=j \mid X_{t-1}=i\right)$, e.g., $\left(\begin{array}{ll}0.7 & 0.3 \\ 0.3 & 0.7\end{array}\right)$
Sensor matrix \mathbf{O}_{t} for each time step, diagonal elements $P\left(e_{t} \mid X_{t}=i\right)$
e.g., with $U_{1}=$ true, $\mathbf{O}_{1}=\left(\begin{array}{cc}0.9 & 0 \\ 0 & 0.2\end{array}\right)$

Forward and backward messages as column vectors:

$$
\begin{aligned}
\mathbf{f}_{1: t+1} & =\alpha \mathbf{O}_{t+1} \mathbf{T}^{\top} \mathbf{f}_{1: t} \\
\mathbf{b}_{k+1: t} & =\mathbf{T} \mathbf{O}_{k+1} \mathbf{b}_{k+2: t}
\end{aligned}
$$

Forward-backward algorithm needs time $O\left(S^{2} t\right)$ and space $O(S t)$

Modelling systems described by a set of continuous variables, e.g., tracking a bird flying- $\mathbf{X}_{t}=X, Y, Z, \dot{X}, \dot{Y}, \dot{Z}$.

Airplanes, robots, ecosystems, economies, chemical plants, planets,

Gaussian prior, linear Gaussian transition model and sensor model

Uncertainty over Time
Speech Recognition Speech Recognition
Learning

Prediction step: if $\mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{e}_{1: t}\right)$ is Gaussian, then prediction

$$
\mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{e}_{1: t}\right)=\int_{\mathbf{x}_{\mathbf{t}}} \mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{x}_{t}\right) P\left(\mathbf{x}_{t} \mid \mathbf{e}_{1: t}\right) d \mathbf{x}_{t}
$$

is Gaussian. If $\mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{e}_{1: t}\right)$ is Gaussian, then the updated distribution

$$
\mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{e}_{1: t+1}\right)=\alpha \mathbf{P}\left(\mathbf{e}_{t+1} \mid \mathbf{X}_{t+1}\right) \mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{e}_{1: t}\right)
$$

is Gaussian
Hence $\mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{e}_{1: t}\right)$ is multivariate Gaussian $N\left(\mu_{t}, \Sigma_{t}\right)$ for all t
General (nonlinear, non-Gaussian) process: description of posterior grows unboundedly as $t \rightarrow \infty$

25
tracking example: filtering

2-D tracking example: smoothing
Exercise. Uncertainty over Time
Speech Recognition Speech R
Learning

Cannot be applied if the transition model is nonlinear
Extended Kalman Filter models transition as locally linear around $x_{t}=\mu_{t}$ Fails if systems is locally unsmooth

DBNs vs. HMMs

29
$\mathrm{X}_{t}, \mathrm{E}_{t}$ contain arbitrarily many variables in a replicated Bayes net

DBNs vs Kalman filters

[^0] Learning

Every HMM is a single-variable DBN; every discrete DBN is an HMM

Sparse dependencies \Rightarrow exponentially fewer parameters;
e.g., 20 state variables, three parents each

DBN has $20 \times 2^{3}=160$ parameters, HMM has $2^{20} \times 2^{20} \approx 10^{12}$
Every Kalman filter model is a DBN, but few DBNs are KFs; real world requires non-Gaussian posteriors

Exercise
Uncertainty over Time Uncertainty over Time
Speech Recognition Learning
f
.

- Temporal models use state and sensor variables replicated over time
- Markov assumptions and stationarity assumption, so we need
- transition model $\mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{X}_{t-1}\right)$
- sensor model $\mathbf{P}\left(\mathrm{E}_{t} \mid \mathbf{X}_{t}\right)$
- Tasks are filtering, prediction, smoothing, most likely sequence; all done recursively with constant cost per time step
- Hidden Markov models have a single discrete state variable; used for speech recognition
- Kalman filters allow n state variables, linear Gaussian, $O\left(n^{3}\right)$ update
- Dynamic Bayes nets subsume HMMs, Kalman filters; exact update intractable

Outline

Speech as probabilistic inference
\diamond Speech sounds
\diamond Word pronunciation
\diamond Word sequences

Outline
Exercise
Uncertainty over Time Uncerch Recognition
Learning

1. Exercise
2. Uncertainty over Time
3. Speech Recognition
4. Learning

Speech as probabilistic inference

- Speech signals are noisy, variable, ambiguous
- What is the most likely word sequence, given the speech signal?
I.e., choose Words to maximize $P($ Words|signal $)$
- Use Bayes' rule:

$$
P(\text { Words } \mid \text { signal })=\alpha P(\text { signal } \mid \text { Words }) P(\text { Words })
$$

I.e., decomposes into acoustic model + language model

- Words are the hidden state sequence, signal is the observation sequence

Phones

All human speech is composed from 40-50 phones, determined by the configuration of articulators (lips, teeth, tongue, vocal cords, air flow) Form an intermediate level of hidden states between words and signal
\Rightarrow acoustic model $=$ pronunciation model + phone model
ARPAbet designed for American English

[iy]	beat	[b]	$\underline{\text { bet }}$	[p]	pet
[ih]	bit	[ch]	Chet	[r]	$\underline{\text { rat }}$
[ey]	bet	[d]	debt	[s]	set
[ao]	bought	[hh]	hat	[th]	thick
[ow]	boat	[hv]	high	[dh]	that
[er]	Bert	[l]	let	[w]	wet
[ix]	roses	[ng]	sing	[en]	button
:					

Isolated words

Exercise Uncertainty over Time
 Uncertainty over Time Speech Recognition
 $\underset{\substack{\text { Speech Recognition } \\ \text { Learning }}}{ }$

- Phone models + word models fix likelihood $P\left(e_{1: t} \mid\right.$ word $)$ for isolated word

$$
P\left(\text { word } \mid e_{1: t}\right)=\alpha P\left(e_{1: t} \mid \text { word }\right) P(\text { word })
$$

- Prior probability P (word) obtained simply by counting word frequencies $P\left(e_{1: t} \mid\right.$ word $)$ can be computed recursively: define

$$
\ell_{1: t}=\mathbf{P}\left(\mathbf{X}_{t}, \mathbf{e}_{1: t}\right)
$$

and use the recursive update

$$
\ell_{1: t+1}=\operatorname{Forward}\left(\ell_{1: t}, \mathbf{e}_{t+1}\right)
$$

and then $P\left(e_{1: t} \mid\right.$ word $)=\sum_{\mathbf{x}_{t}} \ell_{1: t}\left(\mathbf{x}_{t}\right)$

- Isolated-word dictation systems with training reach 95-99\% accuracy

Each word is described as a distribution over phone sequences Distribution represented as an HMM transition model

$P([$ towmeytow $]$ "tomato" $)=P([$ towmaatow $] \mid$ "tomato" $)=0.1$
$P([$ tahmeytow $] \mid$ "tomato" $)=P([$ tahmaatow $] \mid$ tomato" $)=0.4$

Structure is created manually, transition probabilities learned from data

Continuous speech

Exercise Uncertainty over Time Nes.
 Speech Recognition
 Speech R Learning

Not just a sequence of isolated-word recognition problems!

- Adjacent words highly correlated
- Sequence of most likely words \neq most likely sequence of words
- Segmentation: there are few gaps in speech
- Cross-word coarticulation-e.g., "next thing"

Continuous speech systems manage 60-80\% accuracy on a good day

Prior probability of a word sequence is given by chain rule:

$$
P\left(w_{1} \cdots w_{n}\right)=\prod_{i=1}^{n} P\left(w_{i} \mid w_{1} \cdots w_{i-1}\right)
$$

Bigram model:

$$
P\left(w_{i} \mid w_{1} \cdots w_{i-1}\right) \approx P\left(w_{i} \mid w_{i-1}\right)
$$

Train by counting all word pairs in a large text corpus
More sophisticated models (trigrams, grammars, etc.) help a little bit

- States of the combined language+word+phone model are labelled by the word we're in + the phone in that word + the phone state in that phone
- Viterbi algorithm finds the most likely phone state sequence
- Does segmentation by considering all possible word sequences and boundaries
- Doesn't always give the most likely word sequence because each word sequence is the sum over many state sequences
- Jelinek invented A^{*} in 1969 a way to find most likely word sequence where "step cost" is $-\log P\left(w_{i} \mid w_{i-1}\right)$

Outline

Exercise Uncertainty over Time Speat

Speech Re
Learning

Outline

1. Exercise
2. Uncertainty over Time
3. Speech Recognition
\diamond Learning agents
\diamond Inductive learning
\diamond Decision tree learning
\diamond Measuring learning performance

Back to Turing's article:

- child mind program
- education

Reward \& Punishment

- Learning is essential for unknown environments, i.e., when designer lacks omniscience
- Learning is useful as a system construction method, i.e., expose the agent to reality rather than trying to write it down
- Learning modifies the agent's decision mechanisms to improve performance

Learning element

$$
\begin{aligned}
& \text { Exercise } \\
& \text { Uncertainty over Time } \\
& \text { Speech Recognition } \\
& \text { Learning }
\end{aligned}
$$

Design of learning element is dictated by
\diamond what type of performance element is used
\diamond which functional component is to be learned
\diamond how that functional compoent is represented
\diamond what kind of feedback is available
Example scenarios:

Performance element	Component	Representation	Feedback
Alpha-beta search	Eval. fn.	Weighted linear function	Win/loss
Logical agent	Transition model	Successor-state axioms	Outcome
Utility-based agent	Transition model	Dynamic Bayes net	Outcome
Simple reflex agent	Percept-action fn	Neural net	Correct action

Supervised learning: correct answers for each instance
Reinforcement learning: occasional rewards

[^0]: Exercise
 Uncertainty over Time
 Speech Recognition

