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Exercise
Uncertainty over Time
Speech Recognition
LearningPerformance of approximation algorithms

Absolute approximation: |P(X |e)− P̂(X |e)| ≤ ε

Relative approximation: |P(X |e)−P̂(X |e)|
P(X |e) ≤ ε

Relative =⇒ absolute since 0 ≤ P ≤ 1 (may be O(2−n))

Randomized algorithms may fail with probability at most δ

Polytime approximation: poly(n, ε−1, log δ−1)

Theorem (Dagum and Luby, 1993): both absolute and relative
approximation for either deterministic or randomized algorithms
are NP-hard for any ε, δ < 0.5
(Absolute approximation polytime with no evidence—Chernoff bounds)
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Exercise
Uncertainty over Time
Speech Recognition
LearningSummary

Exact inference by variable elimination:
– polytime on polytrees, NP-hard on general graphs
– space = time, very sensitive to topology

Approximate inference by Likelihood Weighting (LW), Markov Chain Monte
Carlo Method (MCMC):

– PriorSampling and RejectionSampling unusable as evidence grow
– LW does poorly when there is lots of (late-in-the-order) evidence
– LW, MCMC generally insensitive to topology
– Convergence can be very slow with probabilities close to 1 or 0
– Can handle arbitrary combinations of discrete and continuous variables
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Exercise
Uncertainty over Time
Speech Recognition
LearningOutline

1. Exercise

2. Uncertainty over Time

3. Speech Recognition

4. Learning
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Exercise
Uncertainty over Time
Speech Recognition
LearningWumpus World

OK
 1,1  2,1  3,1  4,1

 1,2  2,2  3,2  4,2

 1,3  2,3  3,3  4,3

 1,4  2,4

OKOK

 3,4  4,4

B

B

Pij = true iff [i , j ] contains a pit
Bij = true iff [i , j ] is breezy
Include only B1,1,B1,2,B2,1 in the probability model
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Exercise
Uncertainty over Time
Speech Recognition
LearningSpecifying the probability model

The full joint distribution is P(P1,1, . . . ,P4,4,B1,1,B1,2,B2,1)

Apply product rule: P(B1,1,B1,2,B2,1 |P1,1, . . . ,P4,4)P(P1,1, . . . ,P4,4)

(Do it this way to get P(Effect|Cause).)

First term: 1 if pits are adjacent to breezes, 0 otherwise

Second term: pits are placed randomly, probability 0.2 per square:

P(P1,1, . . . ,P4,4) =

4,4∏
i,j = 1,1

P(Pi,j) = 0.2n× 0.816−n

for n pits.
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Exercise
Uncertainty over Time
Speech Recognition
LearningObservations and query

We know the following facts:
b = ¬b1,1 ∧ b1,2 ∧ b2,1
known = ¬p1,1 ∧ ¬p1,2 ∧ ¬p2,1

Query is P(P1,3|known, b)

Define Unknown = Pijs other than P1,3 and Known

For inference by enumeration, we have

P(P1,3|known, b) = α
∑

unknown

P(P1,3, unknown, known, b)

Grows exponentially with number of squares!
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Exercise
Uncertainty over Time
Speech Recognition
LearningUsing conditional independence

Basic insight: observations are conditionally independent of other hidden
squares given neighbouring hidden squares

 1,1  2,1  3,1  4,1

 1,2  2,2  3,2  4,2

 1,3  2,3  3,3  4,3

 1,4  2,4  3,4  4,4

KNOWN
FRINGE

QUERY
OTHER

Define Unknown = Fringe ∪ Other
P(b|P1,3,Known,Unknown) = P(b|P1,3,Known,Fringe)
Manipulate query into a form where we can use this!
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Exercise
Uncertainty over Time
Speech Recognition
LearningUsing conditional independence contd.

P(P1,3|known, b) = α
X

unknown

P(P1,3, unknown, known, b)

= α
X

unknown

P(b|P1,3, known, unknown)P(P1,3, known, unknown)

= α
X
fringe

X
other

P(b|known,P1,3, fringe, other)P(P1,3, known, fringe, other)

= α
X
fringe

X
other

P(b|known,P1,3, fringe)P(P1,3, known, fringe, other)

= α
X
fringe

P(b|known,P1,3, fringe)
X
other

P(P1,3, known, fringe, other)

= α
X
fringe

P(b|known,P1,3, fringe)
X
other

P(P1,3)P(known)P(fringe)P(other)

= αP(known)P(P1,3)
X
fringe

P(b|known,P1,3, fringe)P(fringe)
X
other

P(other)

= α′ P(P1,3)
X
fringe

P(b|known,P1,3, fringe)P(fringe)
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Exercise
Uncertainty over Time
Speech Recognition
LearningUsing conditional independence contd.

OK

 1,1  2,1  3,1

 1,2  2,2

 1,3

OKOK

B

B

OK

 1,1  2,1  3,1

 1,2  2,2

 1,3

OKOK

B

B

OK

 1,1  2,1  3,1

 1,2  2,2

 1,3

OKOK

B

B

0.2 x 0.2 = 0.04 0.2 x 0.8 = 0.16 0.8 x 0.2 = 0.16

OK

 1,1  2,1  3,1

 1,2  2,2

 1,3

OKOK

B

B

OK

 1,1  2,1  3,1

 1,2  2,2

 1,3

OKOK

B

B

0.2 x 0.2 = 0.04 0.2 x 0.8 = 0.16

P(P1,3|known, b) = α′ 〈0.2(0.04 + 0.16 + 0.16), 0.8(0.04 + 0.16)〉
≈ 〈0.31, 0.69〉

P(P2,2|known, b) ≈ 〈0.86, 0.14〉
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1. Exercise

2. Uncertainty over Time

3. Speech Recognition

4. Learning
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Exercise
Uncertainty over Time
Speech Recognition
LearningOutline

♦ Time and uncertainty
♦ Inference: filtering, prediction, smoothing
♦ Hidden Markov models
♦ Kalman filters (a brief mention)
♦ Dynamic Bayesian networks (an even briefer mention)
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Exercise
Uncertainty over Time
Speech Recognition
LearningTime and uncertainty

The world changes; we need to track and predict it

Diabetes management vs vehicle diagnosis

Basic idea: copy state and evidence variables for each time step
Xt = set of unobservable state variables at time t

e.g., BloodSugart , StomachContentst , etc.
Et = set of observable evidence variables at time t

e.g., MeasuredBloodSugart , PulseRatet , FoodEatent

This assumes discrete time; step size depends on problem

Notation: Xa:b = Xa,Xa+1, . . . ,Xb−1,Xb
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Exercise
Uncertainty over Time
Speech Recognition
LearningMarkov processes (Markov chains)

Construct a Bayes net from these variables:

- unbounded number of conditional probability table
- unbounded number of parents

Markov assumption: Xt depends on bounded subset of X0:t−1
First-order Markov process: P(Xt |X0:t−1) = P(Xt |Xt−1)
Second-order Markov process: P(Xt |X0:t−1) = P(Xt |Xt−2,Xt−1)

X t −1 X tX t −2 X t +1 X t +2

X t −1 X tX t −2 X t +1 X t +2First−order

Second−order

Sensor Markov assumption: P(Et |X0:t ,E0:t−1) = P(Et |Xt)
 Stationary process:

transition model P(Xt |Xt−1) and
sensor model P(Et |Xt) fixed for all t

15
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- unbounded number of conditional probability table
- unbounded number of parents

Markov assumption: Xt depends on bounded subset of X0:t−1
First-order Markov process: P(Xt |X0:t−1) = P(Xt |Xt−1)
Second-order Markov process: P(Xt |X0:t−1) = P(Xt |Xt−2,Xt−1)
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Exercise
Uncertainty over Time
Speech Recognition
LearningExample

tRain

tUmbrella

Raint −1

Umbrella t −1

Raint +1

Umbrella t +1

Rt −1 tP(R  )

0.3f
0.7t

tR tP(U  )

0.9t
0.2f

First-order Markov assumption not exactly true in real world!
Possible fixes:

1. Increase order of Markov process
2. Augment state, e.g., add Tempt , Pressuret

Example: robot motion.
Augment position and velocity with Batteryt
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Exercise
Uncertainty over Time
Speech Recognition
LearningInference tasks

1. Filtering: P(Xt |e1:t)
belief state—input to the decision process of a rational agent

2. Prediction: P(Xt+k |e1:t) for k > 0
evaluation of possible action sequences;
like filtering without the evidence

3. Smoothing: P(Xk |e1:t) for 0 ≤ k < t
better estimate of past states, essential for learning

4. Most likely explanation: argmaxx1:t P(x1:t |e1:t)
speech recognition, decoding with a noisy channel

17



Exercise
Uncertainty over Time
Speech Recognition
LearningFiltering

Aim: devise a recursive state estimation algorithm:

P(Xt+1|e1:t+1) = f (et+1,P(Xt |e1:t))

P(Xt+1|e1:t+1) = P(Xt+1|e1:t , et+1)

= αP(et+1|Xt+1, e1:t)P(Xt+1|e1:t)

= αP(et+1|Xt+1)P(Xt+1|e1:t)

I.e., prediction + estimation. Prediction by summing out Xt :

P(Xt+1|e1:t+1) = αP(et+1|Xt+1)
∑
xt

P(Xt+1|xt , e1:t)P(xt |e1:t)

= αP(et+1|Xt+1)
∑
xt

P(Xt+1|xt)P(xt |e1:t)

f1:t+1 = Forward(f1:t , et+1) where f1:t =P(Xt |e1:t)
Time and space constant (independent of t) by keeping track of f
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Exercise
Uncertainty over Time
Speech Recognition
LearningFiltering example

tRain

tUmbrella

Raint −1

Umbrella t −1

Raint +1

Umbrella t +1

Rt −1 tP(R  )

0.3f
0.7t

tR tP(U  )

0.9t
0.2f

Rain1

Umbrella1

Rain2

Umbrella2

Rain0

0.818
0.182

0.627
0.373

0.883
0.117

True
False

0.500
0.500

0.500
0.500
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Exercise
Uncertainty over Time
Speech Recognition
LearningSmoothing

X 0 X 1

1E tE

tXX k

Ek

Divide evidence e1:t into e1:k , ek+1:t :

P(Xk |e1:t) = P(Xk |e1:k , ek+1:t)

= αP(Xk |e1:k)P(ek+1:t |Xk , e1:k)

= αP(Xk |e1:k)P(ek+1:t |Xk)

= αf1:kbk+1:t

Backward message computed by a backwards recursion:

P(ek+1:t |Xk) =
X
xk+1

P(ek+1:t |Xk , xk+1)P(xk+1|Xk)

=
X
xk+1

P(ek+1:t |xk+1)P(xk+1|Xk)

=
X
xk+1

P(ek+1|xk+1)P(ek+2:t |xk+1)P(xk+1|Xk)
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Uncertainty over Time
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Exercise
Uncertainty over Time
Speech Recognition
LearningSmoothing example

Rain1

Umbrella1

Rain2

Umbrella2

Rain0

True
False

0.818
0.182

0.627
0.373

0.883
0.117

0.500
0.500

0.500
0.500

1.000
1.000

0.690
0.410

0.883
0.117

forward

backward

smoothed
0.883
0.117

If we want to smooth the whole sequence:
Forward–backward algorithm: cache forward messages along the way
Time linear in t (polytree inference), space O(t|f|)
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Exercise
Uncertainty over Time
Speech Recognition
LearningMost likely explanation

Most likely sequence 6= sequence of most likely states (joint distr.)!

Most likely path to each xt+1
= most likely path to some xt plus one more step

max
x1...xt

P(x1, . . . , xt ,Xt+1|e1:t+1)

= P(et+1|Xt+1)max
xt

(
P(Xt+1|xt) max

x1...xt−1
P(x1, . . . , xt−1, xt |e1:t)

)
Identical to filtering, except f1:t replaced by

m1:t = max
x1...xt−1

P(x1, . . . , xt−1,Xt |e1:t),

I.e., m1:t(i) gives the probability of the most likely path to state i .

Update has sum replaced by max, giving the Viterbi algorithm:

m1:t+1 = P(et+1|Xt+1)max
xt

(P(Xt+1|xt)m1:t)
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Exercise
Uncertainty over Time
Speech Recognition
LearningViterbi example

Rain1 Rain2 Rain3 Rain4 Rain5

true

false

true

false

true

false

true

false

true

false

.8182 .5155 .0361 .0334 .0210

.1818 .0491 .1237 .0173 .0024

m 1:1 m 1:5m 1:4m 1:3m 1:2

state
space
paths

most
likely
paths

umbrella true truetruefalsetrue
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Exercise
Uncertainty over Time
Speech Recognition
LearningHidden Markov models

Xt is a single, discrete variable (usually Et is too)
Domain of Xt is {1, . . . ,S}

Transition matrix Tij = P(Xt = j |Xt−1 = i), e.g.,
(

0.7 0.3
0.3 0.7

)
Sensor matrix Ot for each time step, diagonal elements P(et |Xt = i)

e.g., with U1 = true, O1 =

(
0.9 0
0 0.2

)
Forward and backward messages as column vectors:

f1:t+1 = αOt+1T>f1:t

bk+1:t = TOk+1bk+2:t

Forward-backward algorithm needs time O(S2t) and space O(St)
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Exercise
Uncertainty over Time
Speech Recognition
LearningKalman filters

Modelling systems described by a set of continuous variables,
e.g., tracking a bird flying—Xt =X ,Y ,Z , Ẋ , Ẏ , Ż .
Airplanes, robots, ecosystems, economies, chemical plants, planets, . . .

tZ t+1Z

tX t+1X

tX t+1X

Gaussian prior, linear Gaussian transition model and sensor model
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Exercise
Uncertainty over Time
Speech Recognition
LearningUpdating Gaussian distributions

Prediction step: if P(Xt |e1:t) is Gaussian, then prediction

P(Xt+1|e1:t) =

∫
xt

P(Xt+1|xt)P(xt |e1:t) dxt

is Gaussian. If P(Xt+1|e1:t) is Gaussian, then the updated distribution

P(Xt+1|e1:t+1) = αP(et+1|Xt+1)P(Xt+1|e1:t)

is Gaussian

Hence P(Xt |e1:t) is multivariate Gaussian N(µt ,Σt) for all t

General (nonlinear, non-Gaussian) process: description of posterior grows
unboundedly as t →∞
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Exercise
Uncertainty over Time
Speech Recognition
Learning2-D tracking example: filtering

8 10 12 14 16 18 20 22 24 26
6

7

8

9

10

11

12

X

Y

2D filtering

true
observed
filtered
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Exercise
Uncertainty over Time
Speech Recognition
Learning2-D tracking example: smoothing

8 10 12 14 16 18 20 22 24 26
6

7

8

9

10

11

12

X

Y

2D smoothing

true
observed
smoothed
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Exercise
Uncertainty over Time
Speech Recognition
LearningWhere it breaks

Cannot be applied if the transition model is nonlinear
Extended Kalman Filter models transition as locally linear around xt =µt
Fails if systems is locally unsmooth
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Exercise
Uncertainty over Time
Speech Recognition
LearningDynamic Bayesian networks

Xt , Et contain arbitrarily many variables in a replicated Bayes net

0.3f
0.7t

0.9t
0.2f

Rain0 Rain1

Umbrella1

P(U  )1R1

P(R  )1R0

0.7

P(R  )0

Z1

X1

X1tXX 0

X 0

1BatteryBattery 0

1BMeter
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Exercise
Uncertainty over Time
Speech Recognition
LearningDBNs vs. HMMs

Every HMM is a single-variable DBN; every discrete DBN is an HMM

X t Xt+1

tY t+1Y

tZ t+1Z

Sparse dependencies ⇒ exponentially fewer parameters;
e.g., 20 state variables, three parents each
DBN has 20× 23 = 160 parameters, HMM has 220× 220 ≈ 1012
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Exercise
Uncertainty over Time
Speech Recognition
LearningDBNs vs Kalman filters

Every Kalman filter model is a DBN, but few DBNs are KFs;
real world requires non-Gaussian posteriors
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Exercise
Uncertainty over Time
Speech Recognition
LearningSummary

Temporal models use state and sensor variables replicated over time

Markov assumptions and stationarity assumption, so we need
– transition model P(Xt |Xt−1)
– sensor model P(Et |Xt)

Tasks are filtering, prediction, smoothing, most likely sequence;
all done recursively with constant cost per time step

Hidden Markov models have a single discrete state variable; used
for speech recognition

Kalman filters allow n state variables, linear Gaussian, O(n3) update

Dynamic Bayes nets subsume HMMs, Kalman filters; exact update
intractable
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Exercise
Uncertainty over Time
Speech Recognition
LearningOutline

1. Exercise

2. Uncertainty over Time

3. Speech Recognition

4. Learning
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Exercise
Uncertainty over Time
Speech Recognition
LearningOutline

♦ Speech as probabilistic inference
♦ Speech sounds
♦ Word pronunciation
♦ Word sequences

35



Exercise
Uncertainty over Time
Speech Recognition
LearningSpeech as probabilistic inference

Speech signals are noisy, variable, ambiguous

What is the most likely word sequence, given the speech signal?
I.e., choose Words to maximize P(Words|signal)

Use Bayes’ rule:

P(Words|signal) = αP(signal |Words)P(Words)

I.e., decomposes into acoustic model + language model

Words are the hidden state sequence, signal is the observation sequence
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Exercise
Uncertainty over Time
Speech Recognition
LearningPhones

All human speech is composed from 40-50 phones, determined by the
configuration of articulators (lips, teeth, tongue, vocal cords, air flow)
Form an intermediate level of hidden states between words and signal

⇒ acoustic model = pronunciation model + phone model
ARPAbet designed for American English

[iy] beat [b] bet [p] pet
[ih] bit [ch] Chet [r] rat
[ey] bet [d] debt [s] set
[ao] bought [hh] hat [th] thick
[ow] boat [hv] high [dh] that
[er] Bert [l] let [w] wet
[ix] roses [ng] sing [en] button
...

...
...

...
...

...
E.g., “ceiling” is [s iy l ih ng] / [s iy l ix ng] / [s iy l en]
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Exercise
Uncertainty over Time
Speech Recognition
LearningWord pronunciation models

Each word is described as a distribution over phone sequences
Distribution represented as an HMM transition model

0.5

0.5

0.2

0.8

[m]

[ey]

[ow][t]

[aa]

[t]

[ah]

[ow]

1.0

1.0

1.0

1.0

1.0

P([towmeytow ]|“tomato”) = P([towmaatow ]|“tomato”) = 0.1
P([tahmeytow ]|“tomato”) = P([tahmaatow ]|“tomato”) = 0.4

Structure is created manually, transition probabilities learned from data
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Exercise
Uncertainty over Time
Speech Recognition
LearningIsolated words

Phone models + word models fix likelihood P(e1:t |word) for isolated
word

P(word |e1:t) = αP(e1:t |word)P(word)

Prior probability P(word) obtained simply by counting word frequencies
P(e1:t |word) can be computed recursively: define

`1:t =P(Xt , e1:t)

and use the recursive update

`1:t+1 = Forward(`1:t , et+1)

and then P(e1:t |word) =
∑

xt
`1:t(xt)

Isolated-word dictation systems with training reach 95–99% accuracy
42



Exercise
Uncertainty over Time
Speech Recognition
LearningContinuous speech

Not just a sequence of isolated-word recognition problems!
– Adjacent words highly correlated
– Sequence of most likely words 6= most likely sequence of words
– Segmentation: there are few gaps in speech
– Cross-word coarticulation—e.g., “next thing”

Continuous speech systems manage 60–80% accuracy on a good day
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Exercise
Uncertainty over Time
Speech Recognition
LearningLanguage model

Prior probability of a word sequence is given by chain rule:

P(w1 · · ·wn) =
n∏

i=1

P(wi |w1 · · ·wi−1)

Bigram model:

P(wi |w1 · · ·wi−1) ≈ P(wi |wi−1)

Train by counting all word pairs in a large text corpus
More sophisticated models (trigrams, grammars, etc.) help a little bit
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Exercise
Uncertainty over Time
Speech Recognition
LearningCombined HMM

States of the combined language+word+phone model are labelled by
the word we’re in + the phone in that word + the phone state in that
phone

Viterbi algorithm finds the most likely phone state sequence

Does segmentation by considering all possible word sequences and
boundaries

Doesn’t always give the most likely word sequence because
each word sequence is the sum over many state sequences

Jelinek invented A∗ in 1969 a way to find most likely word sequence
where “step cost” is − logP(wi |wi−1)
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Exercise
Uncertainty over Time
Speech Recognition
LearningOutline

1. Exercise

2. Uncertainty over Time

3. Speech Recognition

4. Learning
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Exercise
Uncertainty over Time
Speech Recognition
LearningOutline

♦ Learning agents
♦ Inductive learning
♦ Decision tree learning
♦ Measuring learning performance
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Exercise
Uncertainty over Time
Speech Recognition
LearningLearning

Back to Turing’s article:
- child mind program
- education

Reward & Punishment

Learning is essential for unknown environments,
i.e., when designer lacks omniscience

Learning is useful as a system construction method,
i.e., expose the agent to reality rather than trying to write it down

Learning modifies the agent’s decision mechanisms to improve
performance
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Exercise
Uncertainty over Time
Speech Recognition
LearningLearning agents

Performance standard

Agent

E
n

viro
n

m
en

t

Sensors

Effectors

Performance
   element

changes

knowledge
learning
  goals

  Problem
 generator 

feedback

  Learning  
   element

Critic

experiments
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Exercise
Uncertainty over Time
Speech Recognition
LearningLearning element

Design of learning element is dictated by
♦ what type of performance element is used
♦ which functional component is to be learned
♦ how that functional compoent is represented
♦ what kind of feedback is available

Example scenarios:

Performance element

Alpha−beta search

Logical agent

Simple reflex agent

Component

Eval. fn.

Transition model

Transition model

Representation

Weighted linear function

Successor−state axioms

Neural net

Dynamic Bayes netUtility−based agent

Percept−action fn

Feedback

Outcome

Outcome

Win/loss

Correct action

Supervised learning: correct answers for each instance
Reinforcement learning: occasional rewards
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