Dynamic Bayesian Networks and Hidden Markov Models Decision Trees

Marco Chiarandini

Deptartment of Mathematics & Computer Science University of Southern Denmark

Course Overview

- ✓ Introduction
 - ✔ Artificial Intelligence
 - ✓ Intelligent Agents
- ✓ Search
 - ✔ Uninformed Search
 - ✔ Heuristic Search
- ✓ Adversarial Search
 - ✓ Minimax search
 - Alpha-beta pruning
- Knowledge representation and Reasoning
 - ✔ Propositional logic
 - ✔ First order logic
 - ✓ Inference

- Uncertain knowledge and Reasoning
 - Probability and Bayesian approach
 - ✓ Bayesian Networks
 - Hidden Markov Chains
 - Kalman Filters
 - Learning
 - Decision Trees
 - Maximum Likelihood
 - EM Algorithm
 - Learning Bayesian Networks
 - Neural Networks
 - Support vector machines

Performance of approximation algorithms ning

• Absolute approximation: $|P(X|\mathbf{e}) - \hat{P}(X|\mathbf{e})| \le \epsilon$

Performance of approximation algorithmsning

- Absolute approximation: $|P(X|\mathbf{e}) \hat{P}(X|\mathbf{e})| \le \epsilon$
- Relative approximation: $\frac{|P(X|\mathbf{e}) \hat{P}(X|\mathbf{e})|}{P(X|\mathbf{e})} \le \epsilon$

Performance of approximation algorithmsning

- Absolute approximation: $|P(X|\mathbf{e}) \hat{P}(X|\mathbf{e})| \le \epsilon$
- \bullet Relative approximation: $\frac{|P(X|\mathbf{e}) \hat{P}(X|\mathbf{e})|}{P(X|\mathbf{e})} \leq \epsilon$
- Relative \implies absolute since $0 \le P \le 1$ (may be $O(2^{-n})$)

Performance of approximation algorithms in a speech Recognition

- Absolute approximation: $|P(X|\mathbf{e}) \hat{P}(X|\mathbf{e})| \le \epsilon$
- Relative approximation: $\frac{|P(X|\mathbf{e}) \hat{P}(X|\mathbf{e})|}{P(X|\mathbf{e})} \le \epsilon$
- Relative \implies absolute since $0 \le P \le 1$ (may be $O(2^{-n})$)
- ullet Randomized algorithms may fail with probability at most δ

Performance of approximation algorithms algorithms

- Absolute approximation: $|P(X|\mathbf{e}) \hat{P}(X|\mathbf{e})| \le \epsilon$
- Relative approximation: $\frac{|P(X|\mathbf{e}) \hat{P}(X|\mathbf{e})|}{P(X|\mathbf{e})} \le \epsilon$
- Relative \implies absolute since $0 \le P \le 1$ (may be $O(2^{-n})$)
- ullet Randomized algorithms may fail with probability at most δ
- Polytime approximation: $\operatorname{poly}(n, \epsilon^{-1}, \log \delta^{-1})$

Performance of approximation algorithms algorithms

- Absolute approximation: $|P(X|\mathbf{e}) \hat{P}(X|\mathbf{e})| \le \epsilon$
- \bullet Relative approximation: $\frac{|P(X|\mathbf{e}) \hat{P}(X|\mathbf{e})|}{P(X|\mathbf{e})} \leq \epsilon$
- Relative \implies absolute since $0 \le P \le 1$ (may be $O(2^{-n})$)
- ullet Randomized algorithms may fail with probability at most δ
- Polytime approximation: $poly(n, \epsilon^{-1}, \log \delta^{-1})$
- Theorem (Dagum and Luby, 1993): both absolute and relative approximation for either deterministic or randomized algorithms are NP-hard for any $\epsilon, \delta < 0.5$ (Absolute approximation polytime with no evidence—Chernoff bounds)

Summary

Exact inference by variable elimination:

- polytime on polytrees, NP-hard on general graphs
- space = time, very sensitive to topology

Approximate inference by Likelihood Weighting (LW), Markov Chain Monte Carlo Method (MCMC):

- PriorSampling and RejectionSampling unusable as evidence grow
 - LW does poorly when there is lots of (late-in-the-order) evidence
 - LW, MCMC generally insensitive to topology
 - Convergence can be very slow with probabilities close to 1 or 0
 - Can handle arbitrary combinations of discrete and continuous variables

Outline

Exercise Uncertainty over Time Speech Recognition Learning

- 1. Exercise
- 2. Uncertainty over Time
- 3. Speech Recognition
- 4. Learning

Wumpus World

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2 B OK	2,2	3,2	4,2
1,1	2,1 B	3,1	4,1

OK

OK

 $P_{ij} = true$ iff [i,j] contains a pit $B_{ij} = true$ iff [i,j] is breezy Include only $B_{1,1}, B_{1,2}, B_{2,1}$ in the probability model

Exercise

Uncertainty over Time Speech Recognition Learning

The full joint distribution is
$$\mathbf{P}(P_{1,1},\ldots,P_{4,4},B_{1,1},B_{1,2},B_{2,1})$$

Apply product rule: $\mathbf{P}(B_{1,1},B_{1,2},B_{2,1}\,|\,P_{1,1},\ldots,P_{4,4})\mathbf{P}(P_{1,1},\ldots,P_{4,4})$
(Do it this way to get $P(\textit{Effect}|\,\textit{Cause})$.)

Specifying the probability model

The full joint distribution is $P(P_{1,1},...,P_{4,4},B_{1,1},B_{1,2},B_{2,1})$

Apply product rule:
$$P(B_{1,1}, B_{1,2}, B_{2,1} | P_{1,1}, \dots, P_{4,4}) P(P_{1,1}, \dots, P_{4,4})$$

(Do it this way to get P(Effect | Cause).)

First term: 1 if pits are adjacent to breezes, 0 otherwise

Second term: pits are placed randomly, probability 0.2 per square:

$$\mathbf{P}(P_{1,1},\ldots,P_{4,4}) = \prod_{i,j=1,1}^{4,4} \mathbf{P}(P_{i,j}) = 0.2^n \times 0.8^{16-n}$$

for n pits.

Observations and query

Exercise

Uncertainty over Time Speech Recognition Learning

We know the following facts:

$$b = \neg b_{1,1} \wedge b_{1,2} \wedge b_{2,1}$$

 $known = \neg p_{1,1} \wedge \neg p_{1,2} \wedge \neg p_{2,1}$

Query is
$$P(P_{1,3}|known, b)$$

Define $Unknown = P_{ij}s$ other than $P_{1,3}$ and Known

8

Observations and query

We know the following facts:

$$b = \neg b_{1,1} \wedge b_{1,2} \wedge b_{2,1}$$

 $known = \neg p_{1,1} \wedge \neg p_{1,2} \wedge \neg p_{2,1}$

Query is $P(P_{1,3}|known,b)$

Define $Unknown = P_{ij}$ s other than $P_{1,3}$ and Known

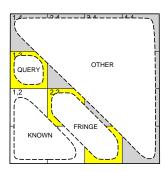
For inference by enumeration, we have

$$\mathbf{P}(P_{1,3}|known,b) = \alpha \sum_{unknown} \mathbf{P}(P_{1,3}, unknown, known, b)$$

Grows exponentially with number of squares!

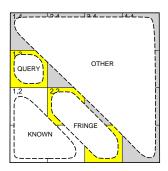
Using conditional independence

Basic insight: observations are conditionally independent of other hidden squares given neighbouring hidden squares



Using conditional independence

Basic insight: observations are conditionally independent of other hidden squares given neighbouring hidden squares



Define $Unknown = Fringe \cup Other$ $P(b|P_{1.3}, Known, Unknown) = P(b|P_{1.3}, Known, Fringe)$ Manipulate query into a form where we can use this!

Exercise

Uncertainty over Time Speech Recognition Learning

$$P(P_{1,3}|known,b) = \alpha \sum_{unknown} P(P_{1,3}, unknown, known, b)$$

$$\begin{aligned} \mathbf{P}(P_{1,3}|known,b) &= \alpha \sum_{unknown} \mathbf{P}(P_{1,3},unknown,known,b) \\ &= \alpha \sum_{unknown} \mathbf{P}(b|P_{1,3},known,unknown) \mathbf{P}(P_{1,3},known,unknown) \end{aligned}$$

$$\begin{split} \mathbf{P}(P_{1,3}|known,b) &= \alpha \sum_{unknown} \mathbf{P}(P_{1,3},unknown,known,b) \\ &= \alpha \sum_{unknown} \mathbf{P}(b|P_{1,3},known,unknown) \mathbf{P}(P_{1,3},known,unknown) \\ &= \alpha \sum_{fringe other} \sum_{fringe other} \mathbf{P}(b|known,P_{1,3},fringe,other) \mathbf{P}(P_{1,3},known,fringe,other) \end{split}$$

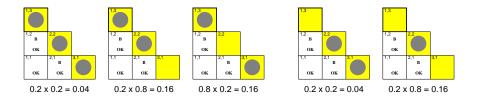
$$\begin{split} &\mathsf{P}(P_{1,3}|\mathit{known},b) = \alpha \sum_{\mathit{unknown}} \mathsf{P}(P_{1,3},\mathit{unknown},\mathit{known},b) \\ &= \alpha \sum_{\mathit{unknown}} \mathsf{P}(b|P_{1,3},\mathit{known},\mathit{unknown}) \mathsf{P}(P_{1,3},\mathit{known},\mathit{unknown}) \\ &= \alpha \sum_{\mathit{fringe other}} \sum_{\mathit{other}} \mathsf{P}(b|\mathit{known},P_{1,3},\mathit{fringe},\mathit{other}) \mathsf{P}(P_{1,3},\mathit{known},\mathit{fringe},\mathit{other}) \\ &= \alpha \sum_{\mathit{fringe other}} \sum_{\mathit{fringe other}} \mathsf{P}(b|\mathit{known},P_{1,3},\mathit{fringe}) \mathsf{P}(P_{1,3},\mathit{known},\mathit{fringe},\mathit{other}) \end{split}$$

$$\begin{split} \mathbf{P}(P_{1,3}|known,b) &= \alpha \sum_{unknown} \mathbf{P}(P_{1,3},unknown,known,b) \\ &= \alpha \sum_{unknown} \mathbf{P}(b|P_{1,3},known,unknown) \mathbf{P}(P_{1,3},known,unknown) \\ &= \alpha \sum_{fringe} \sum_{other} \mathbf{P}(b|known,P_{1,3},fringe,other) \mathbf{P}(P_{1,3},known,fringe,other) \\ &= \alpha \sum_{fringe} \sum_{other} \mathbf{P}(b|known,P_{1,3},fringe) \mathbf{P}(P_{1,3},known,fringe,other) \\ &= \alpha \sum_{fringe} \sum_{other} \mathbf{P}(b|known,P_{1,3},fringe) \sum_{other} \mathbf{P}(P_{1,3},known,fringe,other) \end{split}$$

$$\begin{split} &\mathsf{P}(P_{1,3}|known,b) = \alpha \sum_{unknown} \mathsf{P}(P_{1,3},unknown,known,b) \\ &= \alpha \sum_{unknown} \mathsf{P}(b|P_{1,3},known,unknown) \mathsf{P}(P_{1,3},known,unknown) \\ &= \alpha \sum_{fringe} \sum_{other} \mathsf{P}(b|known,P_{1,3},fringe,other) \mathsf{P}(P_{1,3},known,fringe,other) \\ &= \alpha \sum_{fringe} \sum_{other} \mathsf{P}(b|known,P_{1,3},fringe) \mathsf{P}(P_{1,3},known,fringe,other) \\ &= \alpha \sum_{fringe} \mathsf{P}(b|known,P_{1,3},fringe) \sum_{other} \mathsf{P}(P_{1,3},known,fringe,other) \\ &= \alpha \sum_{fringe} \mathsf{P}(b|known,P_{1,3},fringe) \sum_{other} \mathsf{P}(P_{1,3}) P(known) P(fringe) P(other) \end{split}$$

$$\begin{split} &\mathsf{P}(P_{1,3}|known,b) = \alpha \sum_{unknown} \mathsf{P}(P_{1,3},unknown,known,b) \\ &= \alpha \sum_{unknown} \mathsf{P}(b|P_{1,3},known,unknown) \mathsf{P}(P_{1,3},known,unknown) \\ &= \alpha \sum_{infinge} \sum_{other} \mathsf{P}(b|known,P_{1,3},fringe,other) \mathsf{P}(P_{1,3},known,fringe,other) \\ &= \alpha \sum_{fringe} \sum_{other} \mathsf{P}(b|known,P_{1,3},fringe) \mathsf{P}(P_{1,3},known,fringe,other) \\ &= \alpha \sum_{fringe} \mathsf{P}(b|known,P_{1,3},fringe) \sum_{other} \mathsf{P}(P_{1,3},known,fringe,other) \\ &= \alpha \sum_{fringe} \mathsf{P}(b|known,P_{1,3},fringe) \sum_{other} \mathsf{P}(P_{1,3}) P(known) P(fringe) P(other) \\ &= \alpha P(known) \mathsf{P}(P_{1,3}) \sum_{fringe} \mathsf{P}(b|known,P_{1,3},fringe) P(fringe) \sum_{other} \mathsf{P}(other) \end{split}$$

$$\begin{split} &\mathsf{P}(P_{1,3}|known,b) = \alpha \sum_{unknown} \mathsf{P}(P_{1,3},unknown,known,b) \\ &= \alpha \sum_{unknown} \mathsf{P}(b|P_{1,3},known,unknown) \mathsf{P}(P_{1,3},known,unknown) \\ &= \alpha \sum_{fringe} \sum_{other} \mathsf{P}(b|known,P_{1,3},fringe,other) \mathsf{P}(P_{1,3},known,fringe,other) \\ &= \alpha \sum_{fringe} \sum_{other} \mathsf{P}(b|known,P_{1,3},fringe) \mathsf{P}(P_{1,3},known,fringe,other) \\ &= \alpha \sum_{fringe} \mathsf{P}(b|known,P_{1,3},fringe) \sum_{other} \mathsf{P}(P_{1,3},known,fringe,other) \\ &= \alpha \sum_{fringe} \mathsf{P}(b|known,P_{1,3},fringe) \sum_{other} \mathsf{P}(P_{1,3}) P(known) P(fringe) P(other) \\ &= \alpha P(known) \mathsf{P}(P_{1,3}) \sum_{fringe} \mathsf{P}(b|known,P_{1,3},fringe) P(fringe) \sum_{other} \mathsf{P}(other) \\ &= \alpha' \mathsf{P}(P_{1,3}) \sum_{fringe} \mathsf{P}(b|known,P_{1,3},fringe) P(fringe) \end{split}$$



$$\mathbf{P}(P_{1,3}|known,b) = \alpha' \langle 0.2(0.04 + 0.16 + 0.16), \ 0.8(0.04 + 0.16) \rangle$$

$$\approx \langle 0.31, 0.69 \rangle$$

$$P(P_{2,2}|known,b) \approx \langle 0.86, 0.14 \rangle$$

Outline

- 1. Exercise
- 2. Uncertainty over Time
- 3. Speech Recognition
- 4. Learning

Outline

- ♦ Time and uncertainty
- Inference: filtering, prediction, smoothing
- ♦ Hidden Markov models
- ♦ Kalman filters (a brief mention)
- ♦ Dynamic Bayesian networks (an even briefer mention)

Time and uncertainty

• The world changes; we need to track and predict it

Time and uncertainty

- The world changes; we need to track and predict it
- Diabetes management vs vehicle diagnosis

Time and uncertainty

- The world changes; we need to track and predict it
- Diabetes management vs vehicle diagnosis
- Basic idea: copy state and evidence variables for each time step
 X_t = set of unobservable state variables at time t

e.g., $BloodSugar_t$, $StomachContents_t$, etc.

 $\mathbf{E}_t = \text{set of observable evidence variables at time } t$

e.g., $MeasuredBloodSugar_t$, $PulseRate_t$, $FoodEaten_t$

Time and uncertainty

- The world changes; we need to track and predict it
- Diabetes management vs vehicle diagnosis
- Basic idea: copy state and evidence variables for each time step X_t = set of unobservable state variables at time t e.g., BloodSugar_t, StomachContents_t, etc.
 E_t = set of observable evidence variables at time t e.g., MeasuredBloodSugar_t, PulseRate_t, FoodEaten_t
- This assumes discrete time; step size depends on problem

Time and uncertainty

- The world changes; we need to track and predict it
- Diabetes management vs vehicle diagnosis
- Basic idea: copy state and evidence variables for each time step X_t = set of unobservable state variables at time t e.g., BloodSugar_t, StomachContents_t, etc.
 E_t = set of observable evidence variables at time t e.g., MeasuredBloodSugar_t, PulseRate_t, FoodEaten_t
- This assumes discrete time; step size depends on problem
- Notation: $X_{a:b} = X_a, X_{a+1}, \dots, X_{b-1}, X_b$

Markov processes (Markov chains)

Construct a Bayes net from these variables:

Markov processes (Markov chains)

Construct a Bayes net from these variables:

- unbounded number of conditional probability table
- unbounded number of parents

Markov processes (Markov chains)

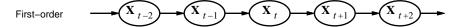
Construct a Bayes net from these variables:

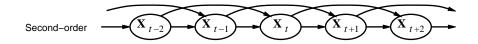
- unbounded number of conditional probability table
- unbounded number of parents

Markov assumption: X_t depends on **bounded** subset of $X_{0:t-1}$

First-order Markov process: $P(X_t|X_{0:t-1}) = P(X_t|X_{t-1})$

Second-order Markov process: $P(X_t|X_{0:t-1}) = P(X_t|X_{t-2},X_{t-1})$





Markov processes (Markov chains)

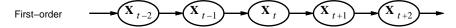
Construct a Bayes net from these variables:

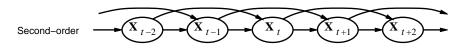
- unbounded number of conditional probability table
- unbounded number of parents

Markov assumption: X_t depends on **bounded** subset of $X_{0:t-1}$

First-order Markov process: $P(X_t|X_{0:t-1}) = P(X_t|X_{t-1})$

Second-order Markov process: $P(X_t|X_{0:t-1}) = P(X_t|X_{t-2},X_{t-1})$





Sensor Markov assumption: $P(E_t|X_{0:t}, E_{0:t-1}) = P(E_t|X_t)$

Markov processes (Markov chains)

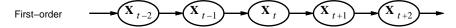
Construct a Bayes net from these variables:

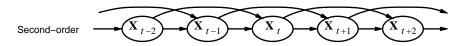
- unbounded number of conditional probability table
- unbounded number of parents

Markov assumption: X_t depends on **bounded** subset of $X_{0:t-1}$

First-order Markov process: $P(X_t|X_{0:t-1}) = P(X_t|X_{t-1})$

Second-order Markov process: $P(X_t|X_{0:t-1}) = P(X_t|X_{t-2},X_{t-1})$

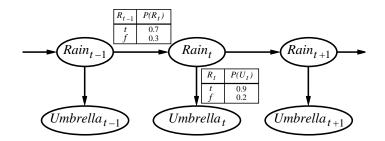




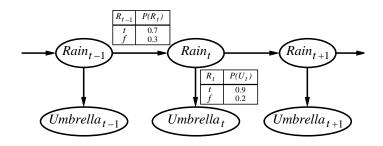
Sensor Markov assumption: $P(\mathbf{E}_t|\mathbf{X}_{0:t},\mathbf{E}_{0:t-1}) = P(\mathbf{E}_t|\mathbf{X}_t)$ \rightsquigarrow Stationary process:

- transition model $P(X_t|X_{t-1})$ and
- sensor model $P(E_t|X_t)$ fixed for all t

Example



Example



First-order Markov assumption not exactly true in real world! Possible fixes:

- 1. Increase order of Markov process
- 2. Augment state, e.g., add Tempt, Pressuret

Example: robot motion.

Augment position and velocity with Battery_t

Inference tasks

- 1. Filtering: $P(X_t|e_{1:t})$ belief state—input to the decision process of a rational agent
- 2. Prediction: $P(X_{t+k}|e_{1:t})$ for k > 0 evaluation of possible action sequences; like filtering without the evidence
- 3. Smoothing: $P(X_k|e_{1:t})$ for $0 \le k < t$ better estimate of past states, essential for learning
- 4. Most likely explanation: $\arg \max_{\mathbf{x}_{1:t}} P(\mathbf{x}_{1:t}|\mathbf{e}_{1:t})$ speech recognition, decoding with a noisy channel

Filtering

Aim: devise a **recursive** state estimation algorithm:

$$\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) = f(\mathbf{e}_{t+1},\mathbf{P}(\mathbf{X}_t|\mathbf{e}_{1:t}))$$

Filtering

Aim: devise a **recursive** state estimation algorithm:

$$\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) = f(\mathbf{e}_{t+1},\mathbf{P}(\mathbf{X}_t|\mathbf{e}_{1:t}))$$

$$\begin{aligned} & \mathsf{P}(\mathsf{X}_{t+1}|\mathsf{e}_{1:t+1}) = \mathsf{P}(\mathsf{X}_{t+1}|\mathsf{e}_{1:t},\mathsf{e}_{t+1}) \\ & = & \alpha \mathsf{P}(\mathsf{e}_{t+1}|\mathsf{X}_{t+1},\mathsf{e}_{1:t}) \mathsf{P}(\mathsf{X}_{t+1}|\mathsf{e}_{1:t}) \\ & = & \alpha \mathsf{P}(\mathsf{e}_{t+1}|\mathsf{X}_{t+1}) \mathsf{P}(\mathsf{X}_{t+1}|\mathsf{e}_{1:t}) \end{aligned}$$

I.e., prediction + estimation.

Filtering

Aim: devise a recursive state estimation algorithm:

$$\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) = f(\mathbf{e}_{t+1},\mathbf{P}(\mathbf{X}_t|\mathbf{e}_{1:t}))$$

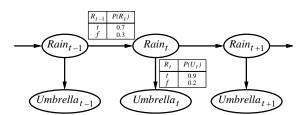
$$\begin{aligned} & \mathsf{P}(\mathsf{X}_{t+1}|\mathsf{e}_{1:t+1}) = \mathsf{P}(\mathsf{X}_{t+1}|\mathsf{e}_{1:t},\mathsf{e}_{t+1}) \\ & = & \alpha \mathsf{P}(\mathsf{e}_{t+1}|\mathsf{X}_{t+1},\mathsf{e}_{1:t}) \mathsf{P}(\mathsf{X}_{t+1}|\mathsf{e}_{1:t}) \\ & = & \alpha \mathsf{P}(\mathsf{e}_{t+1}|\mathsf{X}_{t+1}) \mathsf{P}(\mathsf{X}_{t+1}|\mathsf{e}_{1:t}) \end{aligned}$$

I.e., prediction + estimation. Prediction by summing out X_t :

$$\begin{aligned} \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) &= \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \sum_{\mathbf{x}_t} \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{x}_t, \mathbf{e}_{1:t}) P(\mathbf{x}_t|\mathbf{e}_{1:t}) \\ &= \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \sum_{\mathbf{x}_t} \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{x}_t) P(\mathbf{x}_t|\mathbf{e}_{1:t}) \end{aligned}$$

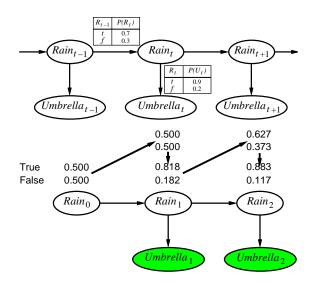
 $\mathbf{f}_{1:t+1} = \mathsf{Forward}(\mathbf{f}_{1:t}, \mathbf{e}_{t+1})$ where $\mathbf{f}_{1:t} = \mathbf{P}(\mathbf{X}_t | \mathbf{e}_{1:t})$ Time and space **constant** (independent of t) by keeping track of \mathbf{f}

Filtering example

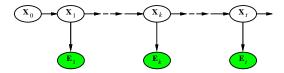


Exercise
Uncertainty over Time
Speech Recognition
Learning

Filtering example

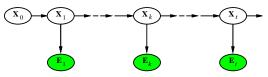


Smoothing



Exercise
Uncertainty over Time
Speech Recognition
Learning

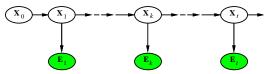
Smoothing



Divide evidence $\mathbf{e}_{1:t}$ into $\mathbf{e}_{1:k}$, $\mathbf{e}_{k+1:t}$:

$$\begin{aligned} \mathbf{P}(\mathbf{X}_k|\mathbf{e}_{1:t}) &= \mathbf{P}(\mathbf{X}_k|\mathbf{e}_{1:k},\mathbf{e}_{k+1:t}) \\ &= \alpha \mathbf{P}(\mathbf{X}_k|\mathbf{e}_{1:k}) \mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_k,\mathbf{e}_{1:k}) \\ &= \alpha \mathbf{P}(\mathbf{X}_k|\mathbf{e}_{1:k}) \mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_k) \\ &= \alpha \mathbf{f}_{1:k} \mathbf{b}_{k+1:t} \end{aligned}$$

Smoothing



Divide evidence $\mathbf{e}_{1:t}$ into $\mathbf{e}_{1:k}$, $\mathbf{e}_{k+1:t}$:

$$\begin{aligned} \mathbf{P}(\mathbf{X}_k|\mathbf{e}_{1:t}) &= \mathbf{P}(\mathbf{X}_k|\mathbf{e}_{1:k},\mathbf{e}_{k+1:t}) \\ &= \alpha \mathbf{P}(\mathbf{X}_k|\mathbf{e}_{1:k}) \mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_k,\mathbf{e}_{1:k}) \\ &= \alpha \mathbf{P}(\mathbf{X}_k|\mathbf{e}_{1:k}) \mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_k) \\ &= \alpha \mathbf{f}_{1:k} \mathbf{b}_{k+1:t} \end{aligned}$$

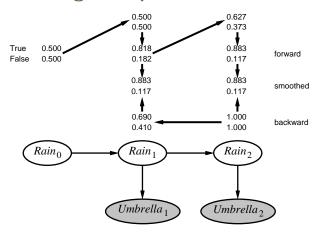
Backward message computed by a backwards recursion:

$$P(e_{k+1:t}|X_k) = \sum_{x_{k+1}} P(e_{k+1:t}|X_k, x_{k+1}) P(x_{k+1}|X_k)$$

$$= \sum_{x_{k+1}} P(e_{k+1:t}|x_{k+1}) P(x_{k+1}|X_k)$$

$$= \sum_{x_{k+1}} P(e_{k+1}|x_{k+1}) P(e_{k+2:t}|x_{k+1}) P(x_{k+1}|X_k)$$

Smoothing example



If we want to smooth the whole sequence: Forward-backward algorithm: cache forward messages along the way Time linear in t (polytree inference), space $O(t|\mathbf{f}|)$

Most likely sequence \neq sequence of most likely states (joint distr.)!

Most likely sequence \neq sequence of most likely states (joint distr.)! Most likely path to each \mathbf{x}_{t+1}

= most likely path to some x_t plus one more step

$$\begin{aligned} \max_{\mathbf{x}_1...\mathbf{x}_t} \mathbf{P}(\mathbf{x}_1, \dots, \mathbf{x}_t, \mathbf{X}_{t+1} | \mathbf{e}_{1:t+1}) \\ &= \mathbf{P}(\mathbf{e}_{t+1} | \mathbf{X}_{t+1}) \max_{\mathbf{x}_t} \left(\mathbf{P}(\mathbf{X}_{t+1} | \mathbf{x}_t) \max_{\mathbf{x}_1...\mathbf{x}_{t-1}} P(\mathbf{x}_1, \dots, \mathbf{x}_{t-1}, \mathbf{x}_t | \mathbf{e}_{1:t}) \right) \end{aligned}$$

Most likely sequence \neq sequence of most likely states (joint distr.)! Most likely path to each \mathbf{x}_{t+1}

= most likely path to some x_t plus one more step

$$\max_{\mathbf{x}_{1}...\mathbf{x}_{t}} \mathbf{P}(\mathbf{x}_{1},...,\mathbf{x}_{t},\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1})$$

$$= \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \max_{\mathbf{x}_{t}} \left(\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{x}_{t}) \max_{\mathbf{x}_{1}...\mathbf{X}_{t-1}} P(\mathbf{x}_{1},...,\mathbf{x}_{t-1},\mathbf{x}_{t}|\mathbf{e}_{1:t}) \right)$$

Identical to filtering, except $\mathbf{f}_{1:t}$ replaced by

$$\mathbf{m}_{1:t} = \max_{\mathbf{x}_1 \dots \mathbf{x}_{t-1}} \mathbf{P}(\mathbf{x}_1, \dots, \mathbf{x}_{t-1}, \mathbf{X}_t | \mathbf{e}_{1:t}),$$

I.e., $\mathbf{m}_{1:t}(i)$ gives the probability of the most likely path to state i.

Most likely sequence \neq sequence of most likely states (joint distr.)! Most likely path to each \mathbf{x}_{t+1}

= most likely path to some x_t plus one more step

$$\max_{\mathbf{x}_{1}...\mathbf{x}_{t}} \mathbf{P}(\mathbf{x}_{1},...,\mathbf{x}_{t},\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1})$$

$$= \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \max_{\mathbf{x}_{t}} \left(\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{x}_{t}) \max_{\mathbf{x}_{1}...\mathbf{x}_{t-1}} P(\mathbf{x}_{1},...,\mathbf{x}_{t-1},\mathbf{x}_{t}|\mathbf{e}_{1:t}) \right)$$

Identical to filtering, except $\mathbf{f}_{1:t}$ replaced by

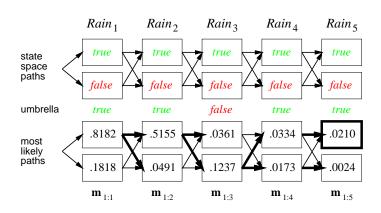
$$\mathbf{m}_{1:t} = \max_{\mathbf{x}_1, \dots, \mathbf{x}_{t-1}} \mathbf{P}(\mathbf{x}_1, \dots, \mathbf{x}_{t-1}, \mathbf{X}_t | \mathbf{e}_{1:t}),$$

I.e., $\mathbf{m}_{1:t}(i)$ gives the probability of the most likely path to state i.

Update has sum replaced by max, giving the Viterbi algorithm:

$$\mathbf{m}_{1:t+1} = \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \max_{\mathbf{x}_t} (\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{x}_t)\mathbf{m}_{1:t})$$

Viterbi example



Hidden Markov models

 \mathbf{X}_t is a single, discrete variable (usually \mathbf{E}_t is too) Domain of X_t is $\{1,\ldots,S\}$

Transition matrix
$$T_{ij} = P(X_t = j | X_{t-1} = i)$$
, e.g., $\begin{pmatrix} 0.7 & 0.3 \\ 0.3 & 0.7 \end{pmatrix}$

Sensor matrix \mathbf{O}_t for each time step, diagonal elements $P(e_t|X_t=i)$

e.g., with
$$U_1 = true$$
, $\mathbf{O}_1 = \begin{pmatrix} 0.9 & 0 \\ 0 & 0.2 \end{pmatrix}$

Forward and backward messages as column vectors:

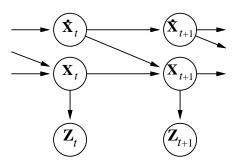
$$\mathbf{f}_{1:t+1} = \alpha \mathbf{O}_{t+1} \mathbf{T}^{\top} \mathbf{f}_{1:t}$$

 $\mathbf{b}_{k+1:t} = \mathbf{T} \mathbf{O}_{k+1} \mathbf{b}_{k+2:t}$

Forward-backward algorithm needs time $O(S^2t)$ and space O(St)

Kalman filters

Modelling systems described by a set of continuous variables, e.g., tracking a bird flying— $\mathbf{X}_t = X, Y, Z, \dot{X}, \dot{Y}, \dot{Z}$. Airplanes, robots, ecosystems, economies, chemical plants, planets, . . .



Gaussian prior, linear Gaussian transition model and sensor model

Updating Gaussian distributions

Prediction step: if $P(X_t|e_{1:t})$ is Gaussian, then prediction

$$\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t}) = \int_{\mathbf{x}_t} \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{x}_t) P(\mathbf{x}_t|\mathbf{e}_{1:t}) \, d\mathbf{x}_t$$

is Gaussian. If $P(X_{t+1}|e_{1:t})$ is Gaussian, then the updated distribution

$$P(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) = \alpha P(\mathbf{e}_{t+1}|\mathbf{X}_{t+1})P(\mathbf{X}_{t+1}|\mathbf{e}_{1:t})$$

is Gaussian

Hence $P(X_t|e_{1:t})$ is multivariate Gaussian $N(\mu_t, \Sigma_t)$ for all t

Updating Gaussian distributions

Prediction step: if $P(X_t|e_{1:t})$ is Gaussian, then prediction

$$\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t}) = \int_{\mathbf{x}_t} \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{x}_t) P(\mathbf{x}_t|\mathbf{e}_{1:t}) \, d\mathbf{x}_t$$

is Gaussian. If $P(X_{t+1}|e_{1:t})$ is Gaussian, then the updated distribution

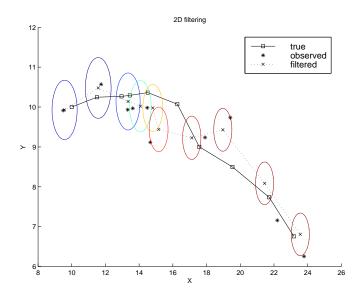
$$P(X_{t+1}|\mathbf{e}_{1:t+1}) = \alpha P(\mathbf{e}_{t+1}|X_{t+1})P(X_{t+1}|\mathbf{e}_{1:t})$$

is Gaussian

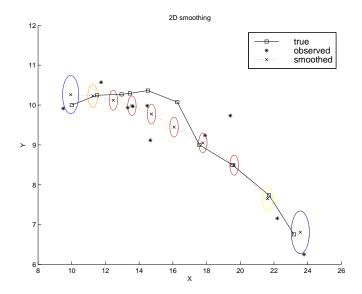
Hence $P(X_t|e_{1:t})$ is multivariate Gaussian $N(\mu_t, \Sigma_t)$ for all t

General (nonlinear, non-Gaussian) process: description of posterior grows **unboundedly** as $t \to \infty$

2-D tracking example: filtering

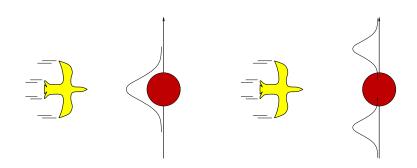


2-D tracking example: smoothing



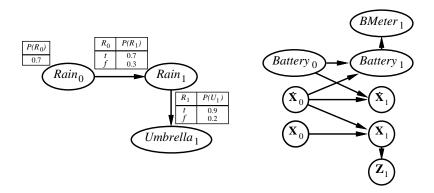
Where it breaks

Cannot be applied if the transition model is nonlinear Extended Kalman Filter models transition as locally linear around $\mathbf{x}_t = \boldsymbol{\mu}_t$ Fails if systems is locally unsmooth



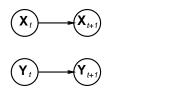
Dynamic Bayesian networks

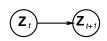
 X_t , E_t contain arbitrarily many variables in a replicated Bayes net

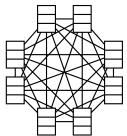


DBNs vs. HMMs

Every HMM is a single-variable DBN; every discrete DBN is an HMM







Sparse dependencies \Rightarrow exponentially fewer parameters; e.g., 20 state variables, three parents each DBN has $20\times2^3=160$ parameters, HMM has $2^{20}\times2^{20}\approx10^{12}$

Exercise
Uncertainty over Time
Speech Recognition
Learning

DBNs vs Kalman filters

Every Kalman filter model is a DBN, but few DBNs are KFs; real world requires non-Gaussian posteriors

Summary

- Temporal models use state and sensor variables replicated over time
- Markov assumptions and stationarity assumption, so we need
 - transition model $P(X_t|X_{t-1})$
 - sensor model $P(E_t|X_t)$
- Tasks are filtering, prediction, smoothing, most likely sequence;
 all done recursively with constant cost per time step
- Hidden Markov models have a single discrete state variable; used for speech recognition
- Kalman filters allow n state variables, linear Gaussian, $O(n^3)$ update
- Dynamic Bayes nets subsume HMMs, Kalman filters; exact update intractable

Exercise Uncertainty over Time Speech Recognition Learning

Outline

Exercise

- 2. Uncertainty over Time
- 3. Speech Recognition
- 4. Learning

Outline

Exercise
Uncertainty over Time
Speech Recognition
Learning

- ♦ Speech as probabilistic inference
- \Diamond Speech sounds
- ♦ Word pronunciation
- ♦ Word sequences

Exercise Uncertainty over Time Speech Recognition Learning

Speech as probabilistic inference

• Speech signals are noisy, variable, ambiguous

Speech as probabilistic inference

- Speech signals are noisy, variable, ambiguous
- What is the most likely word sequence, given the speech signal?
 I.e., choose Words to maximize P(Words|signal)

Speech as probabilistic inference

- Speech signals are noisy, variable, ambiguous
- What is the most likely word sequence, given the speech signal?
 I.e., choose Words to maximize P(Words|signal)
- Use Bayes' rule:

$$P(Words|signal) = \alpha P(signal|Words)P(Words)$$

I.e., decomposes into acoustic model + language model

Speech as probabilistic inference

- Speech signals are noisy, variable, ambiguous
- What is the most likely word sequence, given the speech signal?
 I.e., choose Words to maximize P(Words|signal)
- Use Bayes' rule:

$$P(Words|signal) = \alpha P(signal|Words)P(Words)$$

I.e., decomposes into acoustic model + language model

• Words are the hidden state sequence, signal is the observation sequence

Phones

All human speech is composed from 40-50 phones, determined by the configuration of articulators (lips, teeth, tongue, vocal cords, air flow) Form an intermediate level of hidden states between words and signal \Rightarrow acoustic model = pronunciation model + phone model

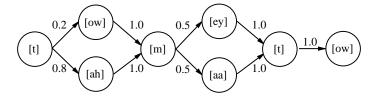
ARPAbet designed for American English

[iy]	b <u>ea</u> t	[b]	<u>b</u> et	[p]	p et
[ih]	b <u>i</u> t	[ch]	<u>Ch</u> et	[r]	_ <u>r</u> at
[ey]	b <u>e</u> t	[d]	<u>d</u> ebt	[s]	<u>s</u> et
[ao]	b ough t	[hh]	<u>h</u> at	[th]	<u>th</u> ick
[ow]	b <u>oa</u> t	[hv]	<u>h</u> igh	[dh]	<u>th</u> at
[er]	B <u>er</u> t	[1]	<u>l</u> et	[w]	<u>w</u> et
[ix]	ros <u>e</u> s	[ng]	si ng	[en]	butt <u>on</u>
	:	:	:		:
:	:	:	:	:	:

E.g., "ceiling" is [s iy | ih ng] / [s iy | ix ng] / [s iy | en]

Word pronunciation models

Each word is described as a distribution over phone sequences Distribution represented as an HMM transition model



$$P([towmeytow]|"tomato") = P([towmaatow]|"tomato") = 0.1$$

 $P([tahmeytow]|"tomato") = P([tahmaatow]|"tomato") = 0.4$

Structure is created manually, transition probabilities learned from data

Isolated words

• Phone models + word models fix likelihood $P(e_{1:t}|word)$ for isolated word

$$P(word|e_{1:t}) = \alpha P(e_{1:t}|word)P(word)$$

• Prior probability P(word) obtained simply by counting word frequencies $P(e_{1:t}|word)$ can be computed recursively: define

$$\ell_{1:t} = \mathsf{P}(\mathsf{X}_t, \mathsf{e}_{1:t})$$

and use the recursive update

$$\ell_{1:t+1} = \mathsf{Forward}(\ell_{1:t}, \mathbf{e}_{t+1})$$
 and then $P(e_{1:t}|\mathit{word}) = \sum_{\mathbf{x_t}} \ell_{1:t}(\mathbf{x}_t)$

• Isolated-word dictation systems with training reach 95–99% accuracy

Continuous speech

Not just a sequence of isolated-word recognition problems!

- Adjacent words highly correlated
- Sequence of most likely words \neq most likely sequence of words
- Segmentation: there are few gaps in speech
- Cross-word coarticulation—e.g., "next thing"

Continuous speech systems manage 60–80% accuracy on a good day

Language model

Prior probability of a word sequence is given by chain rule:

$$P(w_1\cdots w_n)=\prod_{i=1}^n P(w_i|w_1\cdots w_{i-1})$$

Bigram model:

$$P(w_i|w_1\cdots w_{i-1})\approx P(w_i|w_{i-1})$$

Train by counting all word pairs in a large text corpus More sophisticated models (trigrams, grammars, etc.) help a little bit

Combined HMM

- States of the combined language+word+phone model are labelled by the word we're in + the phone in that word + the phone state in that phone
- Viterbi algorithm finds the most likely **phone state** sequence
- Does segmentation by considering all possible word sequences and boundaries
- Doesn't always give the most likely word sequence because each word sequence is the sum over many state sequences
- Jelinek invented A* in 1969 a way to find most likely word sequence where "step cost" is $-\log P(w_i|w_{i-1})$

Exercise Uncertainty over Time Speech Recognition Learning

Outline

1. Exercise

- 2. Uncertainty over Time
- 3. Speech Recognition
- 4. Learning

Outline

Exercise
Uncertainty over Time
Speech Recognition
Learning

- ♦ Learning agents
- ♦ Inductive learning
- ♦ Decision tree learning
- ♦ Measuring learning performance

Exercise
Uncertainty over Time
Speech Recognition
Learning

Learning

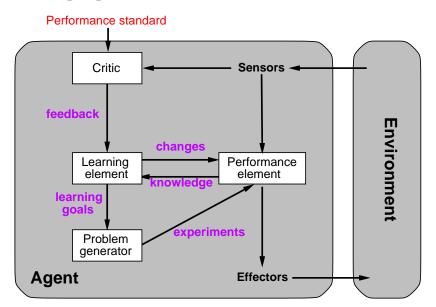
Back to Turing's article:

- child mind program
- education

Reward & Punishment

- Learning is essential for unknown environments, i.e., when designer lacks omniscience
- Learning is useful as a system construction method, i.e., expose the agent to reality rather than trying to write it down
- Learning modifies the agent's decision mechanisms to improve performance

Learning agents



Exercise
Uncertainty over Time
Speech Recognition
Learning

Learning element

Design of learning element is dictated by

- $\diamondsuit\;$ what type of performance element is used
- \Diamond which functional component is to be learned
- ♦ how that functional compoent is represented
- what kind of feedback is available

Learning element

Design of learning element is dictated by

- ♦ what type of performance element is used
- which functional component is to be learned
- how that functional compoent is represented
- ♦ what kind of feedback is available

Example scenarios:

Performance element	Component Representation		Feedback
Alpha-beta search	Eval. fn.	Weighted linear function	Win/loss
Logical agent	Transition model	Successor-state axioms	Outcome
Utility-based agent	Transition model	Dynamic Bayes net	Outcome
Simple reflex agent	Percept-action fn	Neural net	Correct action

Learning element

Design of learning element is dictated by

- what type of performance element is used
- which functional component is to be learned
- ♦ how that functional compoent is represented
- what kind of feedback is available

Example scenarios:

Performance element	Component	Representation	Feedback
Alpha-beta search	Eval. fn.	Weighted linear function	Win/loss
Logical agent	Transition model	Successor-state axioms	Outcome
Utility-based agent	Transition model	Dynamic Bayes net	Outcome
Simple reflex agent	Percept-action fn	Neural net	Correct action

Supervised learning: correct answers for each instance Reinforcement learning: occasional rewards