Lecture 12 Decision Trees

Marco Chiarandini

Deptartment of Mathematics & Computer Science University of Southern Denmark

Slides by Stuart Russell and Peter Norvig

Summary

- Learning needed for unknown environments, lazy designers
- Learning agent = performance element + learning element
- Learning method depends on type of performance element, available feedback, type of component to be improved, and its representation
- For supervised learning, the aim is to find a simple hypothesis that is approximately consistent with training examples

Course Overview

- ✓ Introduction
 - ✔ Artificial Intelligence
 - ✓ Intelligent Agents
- ✓ Search
 - Uninformed Search
 - ✓ Heuristic Search
- ✔ Adversarial Search
 - ✓ Minimax search
 - ✓ Alpha-beta pruning
- ✓ Knowledge representation and Reasoning
 - ✔ Propositional logic
 - ✓ First order logic
 - ✓ Inference

- Uncertain knowledge and Reasoning
 - Probability and Bayesian approach
 - ✓ Bayesian Networks
 - ✓ Hidden Markov Chains
 - ✓ Kalman Filters
- Learning
 - Decision Trees
 - Maximum Likelihood
 - EM Algorithm
 - Learning Bayesian Networks
 - Neural Networks
 - Support vector machines

Inductive learning

Simplest form: learn a function from examples

f is the target function

Problem: find a(n) hypothesis h such that $h \approx f$

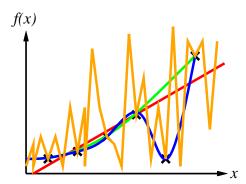
given a training set of examples

(This is a highly simplified model of real learning:

- Ignores prior knowledge
- Assumes a deterministic, observable "environment"
- Assumes examples are given
- Assumes that the agent wants to learn f—why?)

Inductive learning method

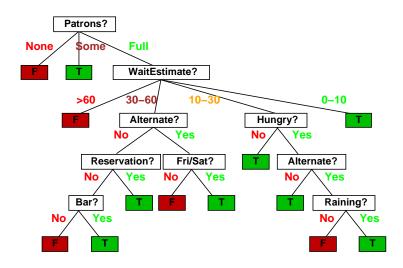
Construct/adjust h to agree with f on training set (h is consistent if it agrees with f on all examples) E.g., curve fitting:



Ockham's razor: maximize a combination of consistency and simplicity

Decision trees

One possible representation for hypotheses E.g., here is the "true" tree for deciding whether to wait:



Attribute-based representations

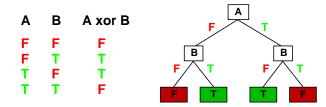
Examples described by attribute values (Boolean, discrete, continuous, etc.) E.g., situations where I will/won't wait for a table:

	Attributes										Target
Example	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Туре	Est	WillWait
X ₁	T	F	F	T	Some	555	F	T	French	0-10	T
X ₂	T	F	F	T	Full	5	F	F	Thai	30-60	F
X ₃	F	T	F	F	Some	5	F	F	Burger	0-10	T
X ₄	T	F	T	T	Full	5	F	F	Thai	10-30	T
X ₅	T	F	T	F	Full	555	F	T	French	>60	F
X ₆	F	T	F	T	Some	\$\$	T	T	Italian	0-10	T
X ₆ X ₇	F	T	F	F	None	5	T	F	Burger	0-10	F
X ₈	F	F	F	T	Some	\$\$	T	T	Thai	0-10	T
X ₈ X ₉	F	T	T	F	Full	5	T	F	Burger	>60	F
X ₁₀	T	T	T	T	Full	555	F	T	Italian	10-30	F
X ₁₁	F	F	F	F	None	5	F	F	Thai	0-10	F
X ₁₂	T	T	T	T	Full	5	F	F	Burger	30-60	T

Classification of examples is positive (T) or negative (F)

Expressiveness

Decision trees can express any function of the input attributes. E.g., for Boolean functions, truth table row \rightarrow path to leaf:



Trivially, there is a consistent decision tree for any training set w/ one path to leaf for each example (unless f nondeterministic in x) but it probably won't generalize to new examples

Prefer to find more **compact** decision trees

8

Hypothesis spaces

How many distinct decision trees with *n* Boolean attributes??

- = number of Boolean functions
- = number of distinct truth tables with 2^n rows = 2^{2^n}

E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 trees

How many purely conjunctive hypotheses (e.g., $Hungry \land \neg Rain$)??

Each attribute can be in (positive), in (negative), or out

 \implies 3ⁿ distinct conjunctive hypotheses

More expressive hypothesis space

- increases chance that target function can be expressed
- increases number of hypotheses consistent w/ training set

if examples is empty then return default else if all examples have the same classification then return the classification

else if attributes is empty **then return** Mode(examples)

Aim: find a small tree consistent with the training examples

function DTL(examples, attributes, default) returns a decision tree

Idea: (recursively) choose "most significant" attribute as root of (sub)tree

best ← Choose-Attribute(attributes, examples) tree ← a new decision tree with root test best

for each value v: of best do

 $examples_i \leftarrow \{elements of examples with best = v_i\}$ $subtree \leftarrow DTL(examples_i, attributes - best, Mode(examples))$

add a branch to tree with label v_i and subtree subtree

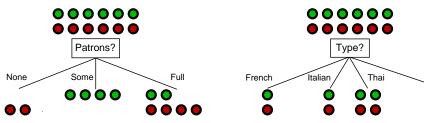
10

return tree

Decision tree learning

Choosing an attribute

Idea: a good attribute splits the examples into subsets that are (ideally) "all positive" or "all negative"



Patrons? is a better choice—gives information about the classification

Information

Burger

 \circ

Information answers questions

The more clueless I am about the answer initially, the more information is contained in the answer

Scale: 1 bit = answer to Boolean question with prior (0.5, 0.5)Information in an answer when prior is $\langle P_1, \dots, P_n \rangle$ is

$$H(\langle P_1, \dots, P_n \rangle) = \sum_{i=1}^n -P_i \log_2 P_i$$

(also called entropy of the prior)

Information contd.

• Suppose we have p positive and n negative examples at the root $\implies H(\langle p/(p+n), n/(p+n)\rangle)$ bits needed to classify a new example

information of the table

E.g., for 12 restaurant examples, p = n = 6 so we need 1 bit

- An attribute splits the examples E into subsets E_i , each of which (we hope) needs less information to complete the classification
- Let E_i have p_i positive and n_i negative examples $\Longrightarrow H(\langle p_i/(p_i+n_i), n_i/(p_i+n_i)\rangle)$ bits needed to classify a new example

⇒ **expected** number of bits per example over all branches is

$$\sum_{i} \frac{p_{i} + n_{i}}{p + n} H(\langle p_{i}/(p_{i} + n_{i}), n_{i}/(p_{i} + n_{i}) \rangle)$$

For Patrons?, this is 0.459 bits, for Type this is (still) 1 bit
 choose the attribute that minimizes the remaining information needed

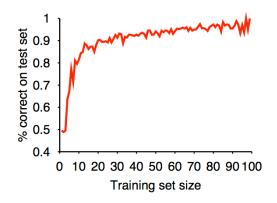
Performance measurement

How do we know that $h \approx f$? (Hume's **Problem of Induction**)

- 1) Use theorems of computational/statistical learning theory
- 2) Try h on a new test set of examples

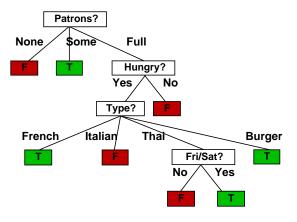
(use same distribution over example space as training set)

Learning curve = % correct on test set as a function of training set size



Example contd.

Decision tree learned from the 12 examples:



Substantially simpler than "true" tree—a more complex hypothesis isn't justified by small amount of data

14

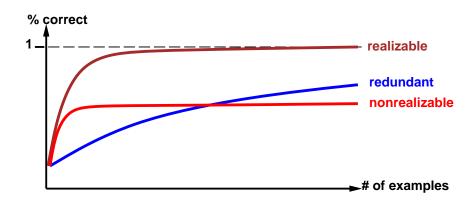
16

Performance measurement contd.

Learning curve depends on

13

- realizable (can express target function) vs. non-realizable non-realizability can be due to missing attributes or restricted hypothesis class (e.g., thresholded linear function)
- redundant expressiveness (e.g., loads of irrelevant attributes)



Decision Tree Types

- Classification tree analysis is when the predicted outcome is the class to which the data belongs. Iterative Dichotomiser 3 (ID3), C4.5, (Quinlan, 1986)
- Regression tree analysis is when the predicted outcome can be considered a real number (e.g. the price of a house, or a patient's length of stay in a hospital).
- Classification And Regression Tree (CART) analysis is used to refer to both of the above procedures, first introduced by (Breiman et al., 1984)
- CHi-squared Automatic Interaction Detector (CHAID). Performs multi-level splits when computing classification trees. (Kass, G. V. 1980).
- A Random Forest classifier uses a number of decision trees, in order to improve the classification rate.
- Boosting Trees can be used for regression-type and classification-type problems.

Used in data mining (most are included in R, see rpart and party packages, and in Weka, Waikato Environment for Knowledge Analysis)