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Course Overview

4 Introduction
4 Artificial Intelligence
4 Intelligent Agents

4 Search
4 Uninformed Search
4 Heuristic Search

4 Adversarial Search
4 Minimax search
4 Alpha-beta pruning

4 Knowledge representation and
Reasoning

4 Propositional logic
4 First order logic
4 Inference

4 Uncertain knowledge and
Reasoning

4 Probability and Bayesian
approach

4 Bayesian Networks
4 Hidden Markov Chains
4 Kalman Filters

4 Learning
4 Decision Trees

Maximum Likelihood
EM Algorithm
Learning Bayesian Networks
Neural Networks

8 Support vector machines
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Last Time

Decision Trees for classification
- entropy, information measure

Performance evaluation
- overfitting
- cross validation
- peeking
- pruning

Extensions
- Ensemble learning
- boosting
- bagging
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Outline

♦ Bayesian learning
♦ Maximum a posteriori and maximum likelihood learning
♦ Bayes net learning

– ML parameter learning with complete data
– linear regression
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Full Bayesian learning

View learning as Bayesian updating of a probability distribution
over the hypothesis space

H hypothesis variable, values h1, h2, . . ., prior P(H)

dj gives the outcome of random variable Dj (the jth observation)
training data d= d1, . . . , dN

Given the data so far, each hypothesis has a posterior probability:

P(hi |d) = αP(d|hi )P(hi )

where P(d|hi ) is called the likelihood

Predictions use a likelihood-weighted average over the hypotheses:

P(X |d) =
∑

i

P(X |d, hi )P(hi |d) =
∑

i

P(X |hi )P(hi |d)

No need to pick one best-guess hypothesis!
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Example

Suppose there are five kinds of bags of candies:
10% are h1: 100% cherry candies
20% are h2: 75% cherry candies + 25% lime candies
40% are h3: 50% cherry candies + 50% lime candies
20% are h4: 25% cherry candies + 75% lime candies
10% are h5: 100% lime candies

Then we observe candies drawn from some bag:
What kind of bag is it? What flavour will the next candy be?
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Posterior probability of hypotheses
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Prediction probability
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MAP approximation

Summing over the hypothesis space is often intractable
(e.g., 18,446,744,073,709,551,616 Boolean functions of 6 attributes)

Maximum a posteriori (MAP) learning: choose hMAP maximizing
P(hi |d)
I.e., maximize P(d|hi )P(hi ) or logP(d|hi ) + logP(hi )
Log terms can be viewed as (negative of)

bits to encode data given hypothesis + bits to encode hypothesis
This is the basic idea of minimum description length (MDL) learning

For deterministic hypotheses, P(d|hi ) is 1 if consistent, 0 otherwise
=⇒ MAP = simplest consistent hypothesis
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ML approximation

For large data sets, prior becomes irrelevant

Maximum likelihood (ML) learning: choose hML maximizing P(d|hi )
I.e., simply get the best fit to the data; identical to MAP for uniform
prior
(which is reasonable if all hypotheses are of the same complexity)

ML is the “standard” (non-Bayesian) statistical learning method
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ML parameter learning in Bayes nets

Bag from a new manufacturer; fraction θ of cherry candies?

Any θ is possible: continuum of hypotheses hθ
θ is a parameter for this simple (binomial) family of models

Suppose we unwrap N candies, c cherries and `= N − c limes
These are i.i.d. (independent, identically distributed)
observations, so

Flavor

P F=cherry( )

θ

P(d|hθ) =
N∏

j = 1

P(dj |hθ) = θc · (1− θ)`

Maximize this w.r.t. θ—which is easier for the log-likelihood:

L(d|hθ) = logP(d|hθ) =
N∑

j = 1

logP(dj |hθ) = c log θ + ` log(1− θ)

dL(d|hθ)
dθ

=
c
θ
− `

1− θ = 0 =⇒ θ =
c

c + `
=

c
N

Seems sensible, but causes problems with 0 counts!
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Multiple parameters

P F=cherry( )

Flavor

Wrapper

P( )W=red | FF

cherry

2
lime θ

1θ

θ
Red/green wrapper depends probabilistically on flavor:
Likelihood for, e.g., cherry candy in green wrapper:

P(F = cherry ,W = green|hθ,θ1,θ2)
= P(F = cherry |hθ,θ1,θ2)P(W = green|F = cherry , hθ,θ1,θ2)
= θ · (1− θ1)

N candies, rc red-wrapped cherry candies, etc.:

P(d|hθ,θ1,θ2) = θc(1− θ)` · θrc
1 (1− θ1)gc · θr`

2 (1− θ2)g`

L = [c log θ + ` log(1− θ)]
+ [rc log θ1 + gc log(1− θ1)]
+ [r` log θ2 + g` log(1− θ2)]
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Multiple parameters contd.

Derivatives of L contain only the relevant parameter:

∂L
∂θ

=
c
θ
− `

1− θ = 0 =⇒ θ =
c

c + `

∂L
∂θ1

=
rc
θ1
− gc

1− θ1 = 0 =⇒ θ1 =
rc

rc + gc

∂L
∂θ2

=
r`
θ2
− g`

1− θ2 = 0 =⇒ θ2 =
r`

r` + g`
With complete data, parameters can be learned separately
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Example: linear Gaussian model
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Maximizing P(y |x) =
1√
2πσ

e−
(y−(θ1x+θ2))2

2σ2 w.r.t. θ1, θ2

= minimizing E =
N∑

j = 1

(yj − (θ1xj + θ2))
2

That is, minimizing the sum of squared errors gives the ML solution
for a linear fit assuming Gaussian noise of fixed variance
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Summary

Full Bayesian learning gives best possible predictions but is intractable

MAP learning balances complexity with accuracy on training data

Maximum likelihood assumes uniform prior, OK for large data sets

1. Choose a parameterized family of models to describe the data
requires substantial insight and sometimes new models

2. Write down the likelihood of the data as a function of the parameters
may require summing over hidden variables, i.e., inference

3. Write down the derivative of the log likelihood w.r.t. each parameter

4. Find the parameter values such that the derivatives are zero
may be hard/impossible; modern optimization techniques help
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