Lecture 13
 Statistical Learning

Marco Chiarandini
Deptartment of Mathematics \& Computer Science
University of Southern Denmark

Slides by Stuart Russell and Peter Norvig

Course Overview

\checkmark Introduction
\checkmark Artificial Intelligence
\checkmark Intelligent Agents
\checkmark Search
\checkmark Uninformed Search
\checkmark Heuristic Search
\checkmark Adversarial Search
\checkmark Minimax search
\checkmark Alpha-beta pruning
\checkmark Knowledge representation and Reasoning
\checkmark Propositional logic
\checkmark First order logic
\checkmark Inference
\checkmark Uncertain knowledge and Reasoning
\checkmark Probability and Bayesian approach
\checkmark Bayesian Networks
\checkmark Hidden Markov Chains
\checkmark Kalman Filters
\checkmark Learning
\checkmark Decision Trees

- Maximum Likelihood
- EM Algorithm
- Learning Bayesian Networks
- Neural Networks

X Support vector machines

Last Time

- Decision Trees for classification
- entropy, information measure
- Performance evaluation
- overfitting
- cross validation
- peeking
- pruning
- Extensions
- Ensemble learning
- boosting
- bagging

Outline

\diamond Bayesian learning
Maximum a posteriori and maximum likelihood learning
Bayes net learning

- ML parameter learning with complete data
- linear regression

Full Bayesian learning

- View learning as Bayesian updating of a probability distribution over the hypothesis space
- H hypothesis variable, values h_{1}, h_{2}, \ldots, prior $\mathrm{P}(H)$
- d_{j} gives the outcome of random variable D_{j} (the j th observation) training data $\mathbf{d}=d_{1}, \ldots, d_{N}$
- Given the data so far, each hypothesis has a posterior probability:

$$
P\left(h_{i} \mid \mathbf{d}\right)=\alpha P\left(\mathbf{d} \mid h_{i}\right) P\left(h_{i}\right)
$$

where $P\left(\mathbf{d} \mid h_{i}\right)$ is called the likelihood

- Predictions use a likelihood-weighted average over the hypotheses:

$$
\mathbf{P}(X \mid \mathbf{d})=\sum_{i} \mathbf{P}\left(X \mid \mathbf{d}, h_{i}\right) P\left(h_{i} \mid \mathbf{d}\right)=\sum_{i} \mathbf{P}\left(X \mid h_{i}\right) P\left(h_{i} \mid \mathbf{d}\right)
$$

No need to pick one best-guess hypothesis!

Example

Suppose there are five kinds of bags of candies:
10% are $h_{1}: 100 \%$ cherry candies
20% are $h_{2}: 75 \%$ cherry candies $+25 \%$ lime candies 40% are $h_{3}: 50 \%$ cherry candies $+50 \%$ lime candies 20% are $h_{4}: 25 \%$ cherry candies $+75 \%$ lime candies 10% are $h_{5}: 100 \%$ lime candies

Then we observe candies drawn from some bag:
What kind of bag is it? What flavour will the next candy be?

Posterior probability of hypotheses

Prediction probability

MAP approximation

- Summing over the hypothesis space is often intractable (e.g., 18,446,744,073,709,551,616 Boolean functions of 6 attributes)
- Maximum a posteriori (MAP) learning: choose $h_{\text {MAP }}$ maximizing $P\left(h_{i} \mid \mathbf{d}\right)$
I.e., maximize $P\left(\mathbf{d} \mid h_{i}\right) P\left(h_{i}\right)$ or $\log P\left(\mathbf{d} \mid h_{i}\right)+\log P\left(h_{i}\right)$

Log terms can be viewed as (negative of)
bits to encode data given hypothesis + bits to encode hypothesis
This is the basic idea of minimum description length (MDL) learning

- For deterministic hypotheses, $P\left(\mathbf{d} \mid h_{i}\right)$ is 1 if consistent, 0 otherwise \Longrightarrow MAP $=$ simplest consistent hypothesis

ML approximation

- For large data sets, prior becomes irrelevant
- Maximum likelihood (ML) learning: choose $h_{\text {ML }}$ maximizing $P\left(\mathbf{d} \mid h_{i}\right)$ I.e., simply get the best fit to the data; identical to MAP for uniform prior
(which is reasonable if all hypotheses are of the same complexity)
- ML is the "standard" (non-Bayesian) statistical learning method

ML parameter learning in Bayes nets

Bag from a new manufacturer; fraction θ of cherry candies?
Any θ is possible: continuum of hypotheses h_{θ}
θ is a parameter for this simple (binomial) family of models
Suppose we unwrap N candies, c cherries and $\ell=N-c$ limes These are i.i.d. (independent, identically distributed)
 observations, so

$$
P\left(\mathbf{d} \mid h_{\theta}\right)=\prod_{j=1}^{N} P\left(d_{j} \mid h_{\theta}\right)=\theta^{c} \cdot(1-\theta)^{\ell}
$$

Maximize this w.r.t. θ-which is easier for the log-likelihood:

$$
\begin{aligned}
L\left(\mathbf{d} \mid h_{\theta}\right) & =\log P\left(\mathbf{d} \mid h_{\theta}\right)=\sum_{j=1}^{N} \log P\left(d_{j} \mid h_{\theta}\right)=c \log \theta+\ell \log (1-\theta) \\
\frac{d L\left(\mathbf{d} \mid h_{\theta}\right)}{d \theta} & =\frac{c}{\theta}-\frac{\ell}{1-\theta}=0 \quad \Longrightarrow \quad \theta=\frac{c}{c+\ell}=\frac{c}{N}
\end{aligned}
$$

Seems sensible, but causes problems with 0 counts!

Multiple parameters

Red/green wrapper depends probabilistically on flavor: Likelihood for, e.g., cherry candy in green wrapper:

$$
\begin{aligned}
& P\left(F=\text { cherry, } W=\text { green } \mid h_{\theta, \theta_{\mathbf{1}}, \theta_{\mathbf{2}}}\right) \\
& \quad=P\left(F=\text { cherry } \mid h_{\theta, \theta_{\mathbf{1}}, \theta_{\mathbf{2}}}\right) P(W=\text { green } \mid F=\text { cherry } \\
& \quad=\theta \cdot\left(1-\theta_{1}\right)
\end{aligned}
$$

N candies, r_{c} red-wrapped cherry candies, etc.:

$$
\begin{aligned}
& P\left(\mathbf{d} \mid h_{\theta, \theta_{1}, \theta_{2}}\right)=\theta^{c}(1-\theta)^{\ell} \cdot \theta_{1}^{r_{c}}\left(1-\theta_{1}\right)^{g_{c}} \cdot \theta_{2}^{r_{\ell}}\left(1-\theta_{2}\right)^{g_{\ell}} \\
& L=[c \log \theta+\ell \log (1-\theta)] \\
&+\left[r_{c} \log \theta_{1}+g_{c} \log \left(1-\theta_{1}\right)\right] \\
&+\left[r_{\ell} \log \theta_{2}+g_{\ell} \log \left(1-\theta_{2}\right)\right]
\end{aligned}
$$

Multiple parameters contd.

Derivatives of L contain only the relevant parameter:

$$
\begin{aligned}
& \frac{\partial L}{\partial \theta}=\frac{c}{\theta}-\frac{\ell}{1-\theta}=0 \quad \Longrightarrow \theta=\frac{c}{c+\ell} \\
& \frac{\partial L}{\partial \theta_{1}}=\frac{r_{c}}{\theta_{1}}-\frac{g_{c}}{1-\theta_{1}}=0 \quad \Longrightarrow \theta_{1}=\frac{r_{c}}{r_{c}+g_{c}} \\
& \frac{\partial L}{\partial \theta_{2}}=\frac{r_{\ell}}{\theta_{2}}-\frac{g_{\ell}}{1-\theta_{2}}=0 \quad \Longrightarrow \theta_{2}=\frac{r_{\ell}}{r_{\ell}+g_{\ell}}
\end{aligned}
$$

With complete data, parameters can be learned separately

Example: linear Gaussian model

Maximizing $P(y \mid x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{\left(y-\left(\theta_{1} x+\theta_{2}\right)\right)^{2}}{2 \sigma^{2}}}$ w.r.t. θ_{1}, θ_{2}
$=\operatorname{minimizing} E=\sum_{j=1}^{N}\left(y_{j}-\left(\theta_{1} x_{j}+\theta_{2}\right)\right)^{2}$
That is, minimizing the sum of squared errors gives the ML solution for a linear fit assuming Gaussian noise of fixed variance

Summary

- Full Bayesian learning gives best possible predictions but is intractable
- MAP learning balances complexity with accuracy on training data
- Maximum likelihood assumes uniform prior, OK for large data sets

1. Choose a parameterized family of models to describe the data requires substantial insight and sometimes new models
2. Write down the likelihood of the data as a function of the parameters may require summing over hidden variables, i.e., inference
3. Write down the derivative of the log likelihood w.r.t. each parameter
4. Find the parameter values such that the derivatives are zero may be hard/impossible; modern optimization techniques help
