Lecture 14 Artificial Neural Networks

Marco Chiarandini

Deptartment of Mathematics & Computer Science University of Southern Denmark

Slides by Stuart Russell and Peter Norvig

Course Overview

K Nearest Neighbor Neural Networks

- ✓ Introduction
 - ✔ Artificial Intelligence
 - ✓ Intelligent Agents
- ✓ Search
 - ✔ Uninformed Search
 - ✔ Heuristic Search
- ✔ Adversarial Search
 - ✓ Minimax search
 - ✓ Alpha-beta pruning
- Knowledge representation and Reasoning
 - ✔ Propositional logic
 - ✔ First order logic
 - ✓ Inference

- Uncertain knowledge and Reasoning
 - Probability and Bayesian approach
 - ✓ Bayesian Networks
 - ✔ Hidden Markov Chains
 - ✓ Kalman Filters
- ✓ Learning
 - ✓ Decision Trees
 - ✓ Maximum Likelihood
 - ✓ EM Algorithm
 - ✓ Learning Bayesian Networks
 - k Nearest Neighbor
 - Neural Networks
 - Support vector machines

Outline

K Nearest Neighbor Neural Networks

Non-parametric learning

K Nearest Neighbor Neural Networks 2

- 1. K Nearest Neighbor
- Neural Networks

- When little data available ~parametric learning (restricted from the model selected)
- When massive data we can let hypothesis grow from data →non parametric learning instance based: construct from training instances

3

Predicting Bankruptcy

В

No

No

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes Yes

Yes

7

6

5

3

2

1

0

L4

0.2

0.2

0.3

0.7

1.5

K Nearest Neighbor Neural Networks

• No

Yes

1.5

R

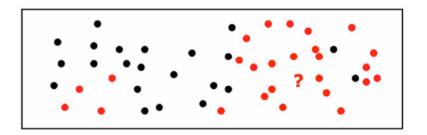
L: #late payments / year R: expenses / income

Nearest Neighbor

K Nearest Neighbor Neural Networks

Basic idea:

- Remember all your data
- When someone asks a question
 - find nearest old data point
 - return answer associated with it



K Nearest Neighbor Neural Networks

Predicting Bankruptcy

K Nearest Neighbor Neural Networks

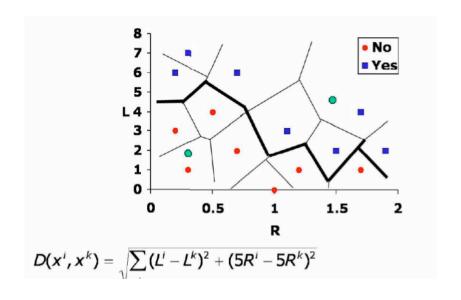
Find k observations closest to x and average the response

0.5

$$\hat{Y} = \frac{1}{k} \sum_{x_i \in N_k(x)} y_i$$

- For qualitative use majority rule
- Needed a distance measure:
 - Euclidean
 - Standardization $x' = \frac{x \bar{x}}{\sigma_x}$ (Mahalanobis, scale invariant)
 - Hamming

 $D(x^{i}, x^{k}) = \sqrt{\sum_{j} (L^{i} - L^{k})^{2} + (5R^{i} - 5R^{k})^{2}}$



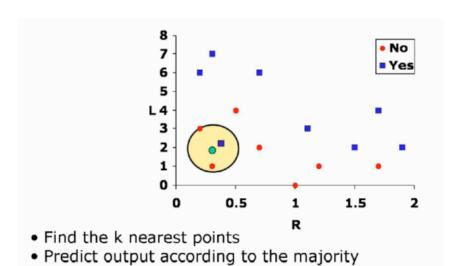
- Learning is fast
- Lookup takes about n computations with k-d trees can be faster
- Memory can fill up with all that data
- Problem: Course of dimensionality $b^d = \frac{k}{N} 1 \implies b = \frac{k}{N} \frac{1}{d}$

k-Nearest Neighbor

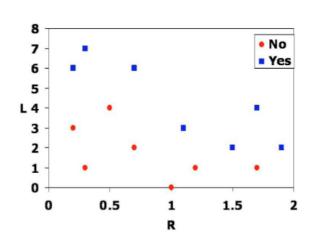
K Nearest Neighbor Neural Networks

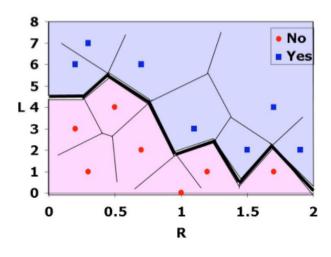
Backruptcy Example

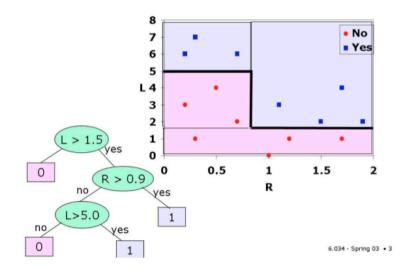
K Nearest Neighbor Neural Networks 10



• Choose k using cross-validation







13

K Nearest Neighbor Neural Networks

Outline

K Nearest Neighbor Neural Networks 14

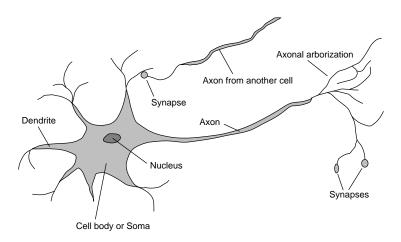
Outline

. K Nearest Neighbor

2. Neural Networks

- ♦ Brains
- ♦ Neural networks
- ♦ Perceptrons
- ♦ Multilayer perceptrons
- ♦ Applications of neural networks

 10^{11} neurons of $\,> 20$ types, 10^{14} synapses, 1ms–10ms cycle time Signals are noisy "spike trains" of electrical potential



Artificial Neuron

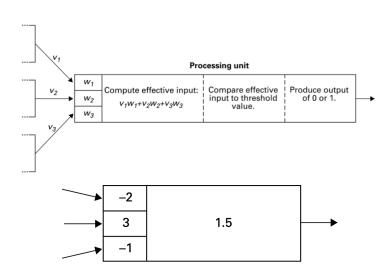
- Each input is multiplied by a weighting factor.
- Output is 1 if sum of weighted inputs exceeds the threshold value; 0 otherwise.
- Network is programmed by adjusting weights using feedback from examples.

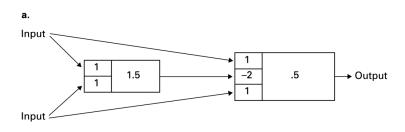
Activities within a processing unit

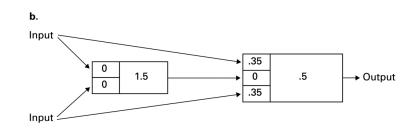
K Nearest Neighbor Neural Networks 17

Neural Network with two layers

K Nearest Neighbor Neural Networks





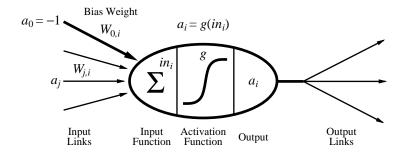


McCulloch-Pitts "unit" (1943)

K Nearest Neighbor Neural Networks

Output is a function of weighted inputs:

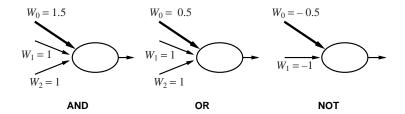
$$a_i = g(in_i) = g\left(\sum_j W_{j,i}a_j\right)$$



A gross oversimplification of real neurons, but its purpose is to develop understanding of what networks of simple units can do

Implementing logical functions

K Nearest Neighbor Neural Networks 22

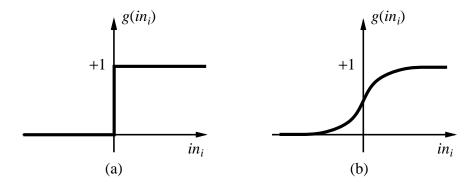


McCulloch and Pitts: every Boolean function can be implemented

Activation functions

K Nearest Neighbor Neural Networks

Non linear activation functions



- (a) is a step function or threshold function
- (b) is a sigmoid function $1/(1+e^{-x})$

Changing the bias weight $W_{0,i}$ moves the threshold location

Network structures

K Nearest Neighbor Neural Networks

- Feed-forward networks:
 - single-layer perceptrons
 - multi-layer perceptrons

Feed-forward networks implement functions, have no internal state (acyclic)

- Recurrent networks:
 - Hopfield networks have symmetric weights $(W_{i,j} = W_{j,i})$
 - g(x) = sign(x), $a_i = \{1, 0\}$; associative memory recurrent neural nets have directed cycles with delays
 - ⇒ have internal state (like flip-flops), can oscillate etc.

Feed-forward example

K Nearest Neighbor Neural Networks

Use

K Nearest Neighbor Neural Networks

 $\label{eq:Feed-forward} Feed-forward\ network = a\ parameterized\ family\ of\ nonlinear\ functions:$

$$a_5 = g(W_{3,5} \cdot a_3 + W_{4,5} \cdot a_4)$$

= $g(W_{3,5} \cdot g(W_{1,3} \cdot a_1 + W_{2,3} \cdot a_2) + W_{4,5} \cdot g(W_{1,4} \cdot a_1 + W_{2,4} \cdot a_2))$

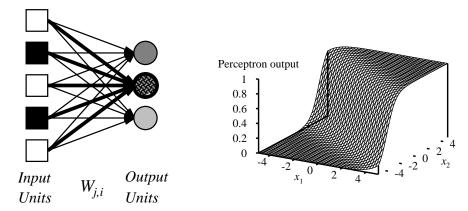
Adjusting weights changes the function: do learning this way!

26

28

Single-layer NN (perceptrons)

K Nearest Neighbor Neural Networks



Output units all operate separately—no shared weights Adjusting weights moves the location, orientation, and steepness of cliff Neural Networks are used in classification and regression

- Boolean classification:
 - value over 0.5 one class
 - value below 0.5 other class
- k-way classification
 - divide single output into k portions
 - *k* separate output unit

Layer arrangement: units receive inputs from preceding layer)

- single-layer networks (no hidden layer)
- multilayer networks (one or more hidden layers)

Expressiveness of perceptrons

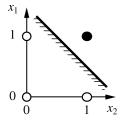
K Nearest Neighbor Neural Networks

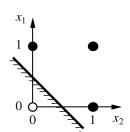
Consider a perceptron with g= step function (Rosenblatt, 1957, 1960) The output is 1 when:

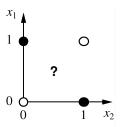
$$\sum_{i} W_{j} x_{j} > 0 \quad \text{or} \quad \mathbf{W} \cdot \mathbf{x} > 0$$

Hence, it represents a linear separator in input space:

- hyperplane in multidimensional space
- line in 2 dimensions







Minsky & Papert (1969) pricked the neural network balloon

Learn by adjusting weights to reduce error on training set The squared error for an example with input \mathbf{x} and true output y is

$$E = \frac{1}{2} Err^2 \equiv \frac{1}{2} (y - h_{W}(x))^2$$
,

Perform optimization search by gradient descent:

$$\frac{\partial E}{\partial W_j} = Err \cdot \frac{\partial Err}{\partial W_j} = Err \cdot \frac{\partial}{\partial W_j} \left(y - g(\sum_{j=0}^n W_j x_j) \right)$$
$$= -Err \cdot g'(in) \cdot x_j$$

Simple weight update rule (perceptron learning rule):

$$W^{(t+1)}_i = W_i^t + \alpha \cdot Err \cdot g'(in) \cdot x_i$$

For threshold perceptron, g'(in) is undefined. Original perceptron learning rule (Rosenblatt, 1957) simply omits g'(in)

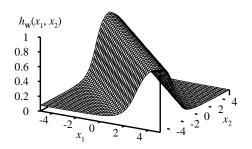
30

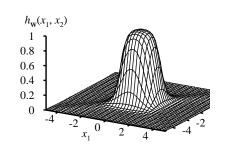
32

Expressiveness of MLPs

K Nearest Neighbor Neural Networks

All continuous functions with 2 layers, all functions with 3 layers





Combine two opposite-facing threshold functions to make a ridge Combine two perpendicular ridges to make a bump Add bumps of various sizes and locations to fit any surface Proof requires exponentially many hidden units (cf DTL proof)

Perceptron learning contd.

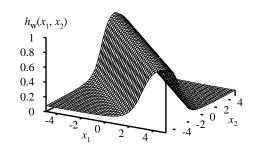
```
function Perceptron-Learning(examples, network) returns perceptron weights inputs: examples, a set of examples, each with input \mathbf{x} = x_1, x_2, \ldots, x_n and output y inputs: network, a perceptron with weights W_j, \ j = 0, \ldots, n and activation function g repeat for each e in examples do  in \leftarrow \sum_{j=0}^n W_j x_j [e] \\  Err \leftarrow y[e] - g(in) \\  W_j \leftarrow W_j + \alpha \cdot Err \cdot g'(in) \cdot x_j [e]  end until all examples correctly predicted or stopping criterion is reached return etwork
```

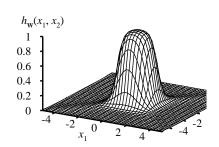
Perceptron learning rule converges to a consistent function for any linearly separable data set

Expressiveness of MLPs

K Nearest Neighbor Neural Networks

All continuous functions w/ 2 layers, all functions w/ 3 layers





Combine two opposite-facing threshold functions to make a ridge Combine two perpendicular ridges to make a bump Add bumps of various sizes and locations to fit any surface Proof requires exponentially many hidden units (cf DTL proof) 31

Output layer: same as for single-layer perceptron,

$$W_{i,i} \leftarrow W_{i,i} + \alpha \times a_i \times \Delta_i$$

where $\Delta_i = Err_i \times g'(in_i)$

Hidden layer: **back-propagate** the error from the output layer:

$$\Delta_j = g'(\textit{in}_j) \sum_i W_{j,i} \Delta_i$$
 .

Update rule for weights in hidden layer:

$$W_{k,j} \leftarrow W_{k,j} + \alpha \times a_k \times \Delta_j$$
.

(Most neuroscientists deny that back-propagation occurs in the brain)

The squared error on a single example is defined as

$$E=\frac{1}{2}\sum_{i}(y_i-a_i)^2\;,$$

where the sum is over the nodes in the output layer.

$$\frac{\partial E}{\partial W_{j,i}} = -(y_i - a_i) \frac{\partial a_i}{\partial W_{j,i}} = -(y_i - a_i) \frac{\partial g(in_i)}{\partial W_{j,i}}$$

$$= -(y_i - a_i)g'(in_i) \frac{\partial in_i}{\partial W_{j,i}} = -(y_i - a_i)g'(in_i) \frac{\partial}{\partial W_{j,i}} \left(\sum_j W_{j,i} a_j\right)$$

$$= -(y_i - a_i)g'(in_i)a_i = -a_i\Delta_i$$

34

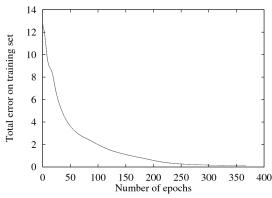
Back-propagation derivation contd.

K Nearest Neighbor Neural Networks

Back-propagation learning contd.

K Nearest Neighbor Neural Networks 35

At each epoch, sum gradient updates for all examples and apply Training curve for 100 restaurant examples: finds exact fit



Typical problems: slow convergence, local minima

ck-propagation derivation contd.

 $= -\sum_{i} \Delta_{i} W_{j,i} g'(in_{j}) a_{k} = -a_{k} \Delta_{j}$

 $\frac{\partial E}{\partial W_{k,j}} = -\sum_{i} (y_i - a_i) \frac{\partial a_i}{\partial W_{k,j}} = -\sum_{i} (y_i - a_i) \frac{\partial g(in_i)}{\partial W_{k,j}}$ $= -\sum_{i} (y_i - a_i) g'(in_i) \frac{\partial in_i}{\partial W_{k,j}} = -\sum_{i} \Delta_i \frac{\partial}{\partial W_{k,j}} \left(\sum_{j} W_{j,i} a_j \right)$ $= -\sum_{i} \Delta_i W_{j,i} \frac{\partial a_j}{\partial W_{k,j}} = -\sum_{i} \Delta_i W_{j,i} \frac{\partial g(in_j)}{\partial W_{k,j}}$ $= -\sum_{i} \Delta_i W_{j,i} g'(in_j) \frac{\partial in_j}{\partial W_{k,j}}$ $= -\sum_{i} \Delta_i W_{j,i} g'(in_j) \frac{\partial}{\partial W_{k,j}} \left(\sum_{k} W_{k,j} a_k \right)$

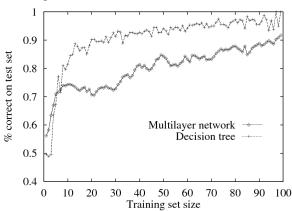
36

Back-propagation learning contd.

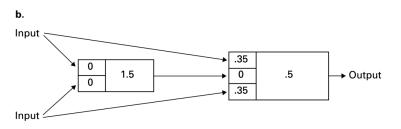
K Nearest Neighbor Neural Networks

Neural Network with two layers

Learning curve for MLP with 4 hidden units:



MLPs are quite good for complex pattern recognition tasks, but resulting hypotheses cannot be understood easily



38

Handwritten digit recognition

K Nearest Neighbor Neural Networks

Summary

K Nearest Neighbor Neural Networks

- 0123456789
 - 400-300-10 unit MLP = 1.6% error
 - LeNet: 768-192-30-10 unit MLP = 0.9% error
 - ullet Current best (kernel machines, vision algorithms) pprox 0.6% error
 - Humans are at 0.2% 2.5% error

- Perceptrons (one-layer networks) insufficiently expressive
- Multi-layer networks are sufficiently expressive; can be trained by gradient descent, i.e., error back-propagation
- Many applications: speech, driving, handwriting, fraud detection, etc.

- Decision Trees and k-NN have problems with high dimensions
- Decision Tree are easily understandable to humans
- Naive Baysian Network is fast to train and update incrementally but often less accurate than k-NN
- For regression problems neural nets with linear output functions, regression trees or locally weighted nearest neighbors are all appropriate choices.

Al State of the Art

 http://www.aaai.org
 once "American Association for Artificial Intelligence", now "Association for the Advancement of Artificial Intelligence"

http://www.aaai.org/Conferences/IAAI/iaai.php Innovative Applications of Artificial Intelligence Conference (IAAI)

- http://www.ijcai.org/ International Joint Conferences on Artificial Intelligence
- http://www.eccai.org/
 European Coordinating Committee for Artificial Intelligence
 http://www.eccai.org/ecai.shtml
 European Conference on Al
- http://www.daimi.au.dk/~bmayoh/dais.html
 http://www.cs.au.dk/~bmayoh/dais.html
 Danish Artificial Intelligence Society