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Course Overview
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Non-parametric learning

@ When little data available ~~parametric learning (restricted from the
model selected)

@ When massive data we can let hypothesis grow from data ~~non
parametric learning
instance based: construct from training instances



Predicting Bankruptcy
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o Find k observations closest to x and average the response

~ 1
Y:E Z Yi

x; €Ny (x)

o For qualitative use majority rule
@ Needed a distance measure:

o Euclidean

o Standardization x" = % (Mahalanobis, scale invariant)

o Hamming
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Nearest Neighbor

Basic idea:

@ Remember all your data

@ When someone asks a question

o find nearest old data point
e return answer associated with it
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Predicting Bankruptcy
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e Find the k nearest points
* Predict output according to the majority
e Choose k using cross-validation
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Brains

Neural networks

Perceptrons

Multilayer perceptrons
Applications of neural networks

SO

2. Neural Networks

15 16



K Nearest Neighbor

. agpe ® K Nearest Neighbor
Brains Neural Networks Artificial Neural Networks Neural Networks

10* neurons of > 20 types, 10* synapses, 1ms—10ms cycle time
Signals are noisy “spike trains" of electrical potential

@ Artificial Neuron

Axonal arborization o Each input is multiplied by a weighting factor.

Axon from another cell

\

o Output is 1 if sum of weighted inputs exceeds the threshold value; 0
Synapse

otherwise.
Dendrite

o Network is programmed by adjusting weights using feedback from

value.

examples.
Nucleus /
Synapses
Cell body or Soma
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. e . . . . K Nearest Neighbor . K Nearest Neighbor
Activities within a processing unit Neural Networks Neural Network with two layers Naursl Netwerks
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Neural Networks

McCulloch—Pitts “unit” (1943)

Output is a function of weighted inputs:

aj=g(in)=g|> W.a
Jj

Bias Weight

2= ~1 W, a,=g(in)

Output
Links

Input  Activation

Function  Function Output

Input
Links

A gross oversimplification of real neurons, but its purpose is
to develop understanding of what networks of simple units can do

Neural Networks

Implementing logical functions

W,=-0.5

NOT

AND OR

McCulloch and Pitts: every Boolean function can be implemented

Neural Networks

Activation functions

Non linear activation functions

, 9(im) qin)

+1 +1

in
@ (b)

(a) is a step function or threshold function
(b) is a sigmoid function 1/(1 + e )
Changing the bias weight 1/, ; moves the threshold location

Neural Networks

Network structures

o Feed-forward networks:
— single-layer perceptrons

— multi-layer perceptrons
Feed-forward networks implement functions, have no internal state

(acyclic)

@ Recurrent networks:
— Hopfield networks have symmetric weights (W j = W, ;)

g(x)=sign(x), a; ={1,0}; associative memory
— recurrent neural nets have directed cycles with delays
== have internal state (like flip-flops), can oscillate etc.
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Neural Networks

Feed-forward example

Feed-forward network = a parameterized family of nonlinear functions:

g(Ws5-as+ Wy - as)
= g(Wss-g(Wiz- a1+ Woz-ax)+ Was-g(Wia-ar+ Wos-a2))

ds =

Adjusting weights changes the function: do learning this way!
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Single-layer NN (perceptrons)

Perceptron output
1

0.8
0.6
0.4
0.2

Output
Units

Input 3
Units 3

Output units all operate separately—no shared weights
Adjusting weights moves the location, orientation, and steepness of cliff
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Use

Neural Networks are used in classification and regression

@ Boolean classification:
- value over 0.5 one class
- value below 0.5 other class

@ k-way classification
- divide single output into k portions
- k separate output unit

Layer arrangement: units receive inputs from preceding layer)

@ single-layer networks (no hidden layer)

e multilayer networks (one or more hidden layers)
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Expressiveness of perceptrons

Consider a perceptron with g = step function (Rosenblatt, 1957, 1960)
The output is 1 when:

ZV\/j><j>O or W-x>0
J

Hence, it represents a linear separator in input space:
- hyperplane in multidimensional space
- line in 2 dimensions

X1 X
1 ® 1 ©)
?
0 0
0 1 X 0 1 X

Minsky & Papert (1969) pricked the neural network balloon

29



Neural Networks

Perceptron learning

Learn by adjusting weights to reduce error on training set
The squared error for an example with input x and true output y is
Err? =

E- (v — hw(x)) .

N~
N~

Perform optimization search by gradient descent:

OE £ OErr 0

R : —E W,
oW, Tow, T aw | gjzo %)

= —Err-g'(in) - x
Simple weight update rule (perceptron learning rule):
Wit + 1)j = W/ 4+ a- Err-g'(in) - x;

For threshold perceptron, g’(in) is undefined.
Original perceptron learning rule (Rosenblatt, 1957) simply omits g’(in)
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Expressiveness of MLPs

All continuous functions with 2 layers, all functions with 3 layers

h,, (x, %,) h,, (X, %)
1 1
Vil
0.8 ,/ / I . 0.8
) {/
0.6 / 7 //{////’Z;”//ZM/:/% / 0.6
0.4 ,,;/,:;;,,,o,,f ! 0.4
/,’/4,/,//,/ ,/
0 0

Combine two opposite-facing threshold functions to make a ridge
Combine two perpendicular ridges to make a bump

Add bumps of various sizes and locations to fit any surface
Proof requires exponentially many hidden units (cf DTL proof)
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Perceptron learning contd.

function  Perceptron-Learning(examples,network)  returns  perceptron
weights
inputs: examples, a set of examples, each with input
X = X1, X2, ..., X, and output y
inputs: network, a perceptron with weights W;, j =0,...,n and

activation function g

repeat
for each e in examples do
in— 320y Wixgle]
Err —yle] — g(in)
Wy =W +a - Err - g'(in)- xle]
end
until all examples correctly predicted or stopping criterion is reached
return network

Perceptron learning rule converges to a consistent function
for any linearly separable data set
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Expressiveness of MLPs

All continuous functions w/ 2 layers, all functions w/ 3 layers

M0, %)
1

Combine two opposite-facing threshold functions to make a ridge
Combine two perpendicular ridges to make a bump

Add bumps of various sizes and locations to fit any surface
Proof requires exponentially many hidden units (cf DTL proof)
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Back-propagation learning

Output layer: same as for single-layer perceptron,
VVJ",'H VVJ",'—F(,YX aj NAY,

where A; = Err; x g'(in;)
Hidden layer: back-propagate the error from the output layer:

= g'(in)) Y Wi .
Update rule for weights in hidden layer:

WkJ — WkJ—F(,Y X ay X Aj .

(Most neuroscientists deny that back-propagation occurs in the brain)
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Back-propagation derivation contd.

oE 0a; og(in;)
W, Z(y, a’)OWkJ > i —a) Wi,
, ain; 0
= - Z:()/i —ai)g (m’)8W - ZA’OW’” zj: Wi iaj
B ' Oaj dg(/nj)
. ZA,WJ,aWkJ ==Y AW W
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Back-propagation derivation

The squared error on a single example is defined as
1 2
) Z(Yi —ai)°,
i

where the sum is over the nodes in the output layer.

9E 0aj . 0g(in)

0VVj,i - (.y’ a’)aVVj’,' - (.yl a’) av‘/j’i
= - g i) 2P~ (- ang (i) [ w,
— Y g i 8V|/j7,- = Vi i)8 i dVVJ, i
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Back-propagation learning contd.

At each epoch, sum gradient updates for all examples and apply
Training curve for 100 restaurant examples: finds exact fit

14 T T T T T T T

12

10 |

Total error on training set

150 200 250
Number of epochs

0 50 100 300 350 400

Typical problems: slow convergence, local minima
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Back-propagation learning contd.

Learning curve for MLP with 4 hidden units:

Neural Networks

Neural Network with two layers

Neural Networks
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MLPs are quite good for complex pattern recognition tasks,

but resulting hypotheses cannot be understood easily
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Neural Networks

0
Input /

Neural Networks
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Handwritten digit recognition Summary

1,

s

3

v

5
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2

(&

7

#

9)

@ Perceptrons (one-layer networks) insufficiently expressive

o Multi-layer networks are sufficiently expressive; can be trained by

@ 400-300-10 unit MLP = 1.6% error gradient descent, i.e., error back-propagation

o LeNet: 768-192-30-10 unit MLP = 0.9% error e Many applications: speech, driving, handwriting, fraud detection, etc.

@ Current best (kernel machines, vision algorithms) ~ 0.6% error

@ Humans are at 0.2% — 2.5 % error
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Summary On Learning Neural Networks

@ Decision Trees and k-NN have problems with high dimensions
@ Decision Tree are easily understandable to humans

@ Naive Baysian Network is fast to train and update incrementally but
often less accurate than k-NN

@ For regression problems neural nets with linear output functions,
regression trees or locally weighted nearest neighbors are all appropriate
choices.
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Al State of the Art Neural Networks

http://www.aaai.org
once “American Association for Artificial Intelligence”, now “Association
for the Advancement of Artificial Intelligence”

http://www.aaai.org/Conferences/IAAI/iaai.php
Innovative Applications of Artificial Intelligence Conference (IAAI)

http://www.ijcai.org/
International Joint Conferences on Artificial Intelligence

http://www.eccai.org/
European Coordinating Committee for Artificial Intelligence

http://www.eccai.org/ecai.shtml
European Conference on Al

http://www.daimi.au.dk/ bmayoh/dais.html
http://www.cs.au.dk/“bmayoh/dais.html
Danish Atrtificial Intelligence Society

43



