
Lecture 14
Artificial Neural Networks

Marco Chiarandini

Deptartment of Mathematics & Computer Science
University of Southern Denmark

Slides by Stuart Russell and Peter Norvig

K Nearest Neighbor
Neural NetworksCourse Overview

4 Introduction
4 Artificial Intelligence
4 Intelligent Agents

4 Search
4 Uninformed Search
4 Heuristic Search

4 Adversarial Search
4 Minimax search
4 Alpha-beta pruning

4 Knowledge representation and
Reasoning

4 Propositional logic
4 First order logic
4 Inference

4 Uncertain knowledge and
Reasoning

4 Probability and Bayesian
approach

4 Bayesian Networks
4 Hidden Markov Chains
4 Kalman Filters

4 Learning
4 Decision Trees
4 Maximum Likelihood
4 EM Algorithm
4 Learning Bayesian Networks

k Nearest Neighbor
Neural Networks

8 Support vector machines

2

K Nearest Neighbor
Neural NetworksOutline

1. K Nearest Neighbor

2. Neural Networks

3

K Nearest Neighbor
Neural NetworksNon-parametric learning

When little data available parametric learning (restricted from the
model selected)

When massive data we can let hypothesis grow from data non
parametric learning
instance based: construct from training instances

4

K Nearest Neighbor
Neural NetworksPredicting Bankruptcy

5

K Nearest Neighbor
Neural NetworksNearest Neighbor

Basic idea:

Remember all your data

When someone asks a question
find nearest old data point
return answer associated with it

6

K Nearest Neighbor
Neural Networks

Find k observations closest to x and average the response

Ŷ =
1
k

∑
xi∈Nk (x)

yi

For qualitative use majority rule

Needed a distance measure:

Euclidean

Standardization x ′ = x−x̄
σx

(Mahalanobis, scale invariant)

Hamming

7

K Nearest Neighbor
Neural NetworksPredicting Bankruptcy

8

K Nearest Neighbor
Neural NetworksPredicting Bankruptcy

9

K Nearest Neighbor
Neural Networks

Learning is fast

Lookup takes about n computations
with k-d trees can be faster

Memory can fill up with all that data

Problem: Course of dimensionality bd = k
N 1 =⇒ b = k

N

1
d

10

K Nearest Neighbor
Neural Networksk-Nearest Neighbor

11

K Nearest Neighbor
Neural NetworksBackruptcy Example

12

K Nearest Neighbor
Neural Networks1-Nearest Neighbor

13

K Nearest Neighbor
Neural NetworksDecision Trees

14

K Nearest Neighbor
Neural NetworksOutline

1. K Nearest Neighbor

2. Neural Networks

15

K Nearest Neighbor
Neural NetworksOutline

♦ Brains
♦ Neural networks
♦ Perceptrons
♦ Multilayer perceptrons
♦ Applications of neural networks

16

K Nearest Neighbor
Neural NetworksBrains

1011 neurons of > 20 types, 1014 synapses, 1ms–10ms cycle time
Signals are noisy “spike trains” of electrical potential

Axon

Cell body or Soma

Nucleus

Dendrite

Synapses

Axonal arborization

Axon from another cell

Synapse

17

K Nearest Neighbor
Neural NetworksArtificial Neural Networks

Artificial Neuron

Each input is multiplied by a weighting factor.

Output is 1 if sum of weighted inputs exceeds the threshold value; 0
otherwise.

Network is programmed by adjusting weights using feedback from
examples.

18

K Nearest Neighbor
Neural NetworksActivities within a processing unit

19

K Nearest Neighbor
Neural NetworksActivities within a processing unit

19

K Nearest Neighbor
Neural NetworksNeural Network with two layers

20

K Nearest Neighbor
Neural NetworksMcCulloch–Pitts “unit” (1943)

Output is a function of weighted inputs:

ai = g(ini) = g

∑
j

Wj,iaj

Output

Σ
Input
Links

Activation
Function

Input
Function

Output
Links

a0 = −1 ai = g(ini)

ai

g
iniWj,i

W0,i

Bias Weight

aj

A gross oversimplification of real neurons, but its purpose is
to develop understanding of what networks of simple units can do

22

K Nearest Neighbor
Neural NetworksMcCulloch–Pitts “unit” (1943)

Output is a function of weighted inputs:

ai = g(ini) = g

∑
j

Wj,iaj

Output

Σ
Input
Links

Activation
Function

Input
Function

Output
Links

a0 = −1 ai = g(ini)

ai

g
iniWj,i

W0,i

Bias Weight

aj

A gross oversimplification of real neurons, but its purpose is
to develop understanding of what networks of simple units can do

22

K Nearest Neighbor
Neural NetworksActivation functions

Non linear activation functions

(a) (b)

+1 +1

iniini

g(ini)g(ini)

(a) is a step function or threshold function
(b) is a sigmoid function 1/(1 + e−x)

Changing the bias weight W0,i moves the threshold location

23

K Nearest Neighbor
Neural NetworksImplementing logical functions

AND

W0 = 1.5

W1 = 1

W2 = 1

OR

W2 = 1

W1 = 1

W0 = 0.5

NOT

W1 = –1

W0 = – 0.5

McCulloch and Pitts: every Boolean function can be implemented

24

K Nearest Neighbor
Neural NetworksNetwork structures

Feed-forward networks:
– single-layer perceptrons
– multi-layer perceptrons

Feed-forward networks implement functions, have no internal state
(acyclic)

Recurrent networks:
– Hopfield networks have symmetric weights (Wi,j = Wj,i)

g(x) = sign(x), ai = {1, 0}; associative memory
– recurrent neural nets have directed cycles with delays

=⇒ have internal state (like flip-flops), can oscillate etc.

25

K Nearest Neighbor
Neural NetworksFeed-forward example

W1,3

1,4W

2,3W

2,4W

W3,5

4,5W

1

2

3

4

5

Feed-forward network = a parameterized family of nonlinear functions:

a5 = g(W3,5 · a3 + W4,5 · a4)

= g(W3,5 · g(W1,3 · a1 + W2,3 · a2) + W4,5 · g(W1,4 · a1 + W2,4 · a2))

Adjusting weights changes the function: do learning this way!

26

K Nearest Neighbor
Neural NetworksUse

Neural Networks are used in classification and regression

Boolean classification:
- value over 0.5 one class
- value below 0.5 other class

k-way classification
- divide single output into k portions
- k separate output unit

Layer arrangement: units receive inputs from preceding layer)

single-layer networks (no hidden layer)

multilayer networks (one or more hidden layers)

27

K Nearest Neighbor
Neural NetworksUse

Neural Networks are used in classification and regression

Boolean classification:
- value over 0.5 one class
- value below 0.5 other class

k-way classification
- divide single output into k portions
- k separate output unit

Layer arrangement: units receive inputs from preceding layer)

single-layer networks (no hidden layer)

multilayer networks (one or more hidden layers)

27

K Nearest Neighbor
Neural NetworksSingle-layer NN (perceptrons)

Input
Units Units

Output
Wj,i

-4 -2 0 2 4x1
-4

-2
0

2
4

x2

0
0.2
0.4
0.6
0.8

1
Perceptron output

Output units all operate separately—no shared weights
Adjusting weights moves the location, orientation, and steepness of cliff

28

K Nearest Neighbor
Neural NetworksExpressiveness of perceptrons

Consider a perceptron with g = step function (Rosenblatt, 1957, 1960)
The output is 1 when: ∑

j

Wjxj > 0 or W · x > 0

Hence, it represents a linear separator in input space:
- hyperplane in multidimensional space
- line in 2 dimensions

Minsky & Papert (1969) pricked the neural network balloon

29

K Nearest Neighbor
Neural NetworksExpressiveness of perceptrons

Consider a perceptron with g = step function (Rosenblatt, 1957, 1960)
The output is 1 when: ∑

j

Wjxj > 0 or W · x > 0

Hence, it represents a linear separator in input space:
- hyperplane in multidimensional space
- line in 2 dimensions

Minsky & Papert (1969) pricked the neural network balloon

29

K Nearest Neighbor
Neural NetworksExpressiveness of perceptrons

Consider a perceptron with g = step function (Rosenblatt, 1957, 1960)
The output is 1 when: ∑

j

Wjxj > 0 or W · x > 0

Hence, it represents a linear separator in input space:
- hyperplane in multidimensional space
- line in 2 dimensions

Minsky & Papert (1969) pricked the neural network balloon

29

K Nearest Neighbor
Neural NetworksPerceptron learning

Learn by adjusting weights to reduce error on training set
The squared error for an example with input x and true output y is

E =
1
2
Err2 ≡ 1

2
(y − hW(x))2 ,

Perform optimization search by gradient descent:

∂E
∂Wj

= Err · ∂Err
∂Wj

= Err · ∂

∂Wj

y − g(
n∑

j = 0

Wjxj)

= −Err · g ′(in) · xj

Simple weight update rule (perceptron learning rule):

W (t + 1)j = W t
j + α · Err · g ′(in) · xj

For threshold perceptron, g ′(in) is undefined.
Original perceptron learning rule (Rosenblatt, 1957) simply omits g ′(in)

30

K Nearest Neighbor
Neural NetworksPerceptron learning

Learn by adjusting weights to reduce error on training set
The squared error for an example with input x and true output y is

E =
1
2
Err2 ≡ 1

2
(y − hW(x))2 ,

Perform optimization search by gradient descent:

∂E
∂Wj

= Err · ∂Err
∂Wj

= Err · ∂

∂Wj

y − g(
n∑

j = 0

Wjxj)

= −Err · g ′(in) · xj

Simple weight update rule (perceptron learning rule):

W (t + 1)j = W t
j + α · Err · g ′(in) · xj

For threshold perceptron, g ′(in) is undefined.
Original perceptron learning rule (Rosenblatt, 1957) simply omits g ′(in)

30

K Nearest Neighbor
Neural NetworksPerceptron learning

Learn by adjusting weights to reduce error on training set
The squared error for an example with input x and true output y is

E =
1
2
Err2 ≡ 1

2
(y − hW(x))2 ,

Perform optimization search by gradient descent:

∂E
∂Wj

= Err · ∂Err
∂Wj

= Err · ∂

∂Wj

y − g(
n∑

j = 0

Wjxj)

= −Err · g ′(in) · xj

Simple weight update rule (perceptron learning rule):

W (t + 1)j = W t
j + α · Err · g ′(in) · xj

For threshold perceptron, g ′(in) is undefined.
Original perceptron learning rule (Rosenblatt, 1957) simply omits g ′(in)

30

K Nearest Neighbor
Neural NetworksPerceptron learning

Learn by adjusting weights to reduce error on training set
The squared error for an example with input x and true output y is

E =
1
2
Err2 ≡ 1

2
(y − hW(x))2 ,

Perform optimization search by gradient descent:

∂E
∂Wj

= Err · ∂Err
∂Wj

= Err · ∂

∂Wj

y − g(
n∑

j = 0

Wjxj)

= −Err · g ′(in) · xj

Simple weight update rule (perceptron learning rule):

W (t + 1)j = W t
j + α · Err · g ′(in) · xj

For threshold perceptron, g ′(in) is undefined.
Original perceptron learning rule (Rosenblatt, 1957) simply omits g ′(in)

30

K Nearest Neighbor
Neural NetworksPerceptron learning contd.

function Perceptron-Learning(examples,network) returns perceptron
weights
inputs: examples, a set of examples, each with input
x = x1, x2, . . . , xn and output y

inputs: network, a perceptron with weights Wj , j = 0, . . . , n and
activation function g

repeat
for each e in examples do

in←
Pn

j=0 Wjxj [e]
Err← y [e]− g(in)
Wj←Wj + α · Err · g ′(in) · xj [e]

end
until all examples correctly predicted or stopping criterion is reached
return network

Perceptron learning rule converges to a consistent function
for any linearly separable data set

31

K Nearest Neighbor
Neural NetworksPerceptron learning contd.

function Perceptron-Learning(examples,network) returns perceptron
weights
inputs: examples, a set of examples, each with input
x = x1, x2, . . . , xn and output y

inputs: network, a perceptron with weights Wj , j = 0, . . . , n and
activation function g

repeat
for each e in examples do

in←
Pn

j=0 Wjxj [e]
Err← y [e]− g(in)
Wj←Wj + α · Err · g ′(in) · xj [e]

end
until all examples correctly predicted or stopping criterion is reached
return network

Perceptron learning rule converges to a consistent function
for any linearly separable data set

31

K Nearest Neighbor
Neural NetworksExpressiveness of MLPs

All continuous functions with 2 layers, all functions with 3 layers

-4 -2 0 2 4x1
-4

-2
0

2
4

x2

0
0.2
0.4
0.6
0.8

1

hW(x1, x2)

-4 -2 0 2 4x1
-4

-2
0

2
4

x2

0
0.2
0.4
0.6
0.8

1

hW(x1, x2)

Combine two opposite-facing threshold functions to make a ridge
Combine two perpendicular ridges to make a bump
Add bumps of various sizes and locations to fit any surface
Proof requires exponentially many hidden units (cf DTL proof)

32

K Nearest Neighbor
Neural NetworksExpressiveness of MLPs

All continuous functions w/ 2 layers, all functions w/ 3 layers

-4 -2 0 2 4x1
-4

-2
0

2
4

x2

0
0.2
0.4
0.6
0.8

1

hW(x1, x2)

-4 -2 0 2 4x1
-4

-2
0

2
4

x2

0
0.2
0.4
0.6
0.8

1

hW(x1, x2)

Combine two opposite-facing threshold functions to make a ridge
Combine two perpendicular ridges to make a bump
Add bumps of various sizes and locations to fit any surface
Proof requires exponentially many hidden units (cf DTL proof)

33

K Nearest Neighbor
Neural NetworksBack-propagation learning

Output layer: same as for single-layer perceptron,

Wj,i ←Wj,i + α× aj ×∆i

where ∆i = Err i × g ′(ini)
Hidden layer: back-propagate the error from the output layer:

∆j = g ′(inj)
∑

i

Wj,i∆i .

Update rule for weights in hidden layer:

Wk,j ←Wk,j + α× ak ×∆j .

(Most neuroscientists deny that back-propagation occurs in the brain)

34

K Nearest Neighbor
Neural NetworksBack-propagation derivation

The squared error on a single example is defined as

E =
1
2

∑
i

(yi − ai)
2 ,

where the sum is over the nodes in the output layer.

∂E
∂Wj,i

= −(yi − ai)
∂ai

∂Wj,i
= −(yi − ai)

∂g(ini)

∂Wj,i

= −(yi − ai)g ′(ini)
∂ini

∂Wj,i
= −(yi − ai)g ′(ini)

∂

∂Wj,i

∑
j

Wj,iaj

= −(yi − ai)g ′(ini)aj = −aj∆i

35

K Nearest Neighbor
Neural NetworksBack-propagation derivation contd.

∂E
∂Wk,j

= −
∑

i

(yi − ai)
∂ai

∂Wk,j
= −

∑
i

(yi − ai)
∂g(ini)

∂Wk,j

= −
∑

i

(yi − ai)g ′(ini)
∂ini

∂Wk,j
= −

∑
i

∆i
∂

∂Wk,j

∑
j

Wj,iaj

= −

∑
i

∆iWj,i
∂aj

∂Wk,j
= −

∑
i

∆iWj,i
∂g(inj)

∂Wk,j

= −
∑

i

∆iWj,ig ′(inj)
∂inj

∂Wk,j

= −
∑

i

∆iWj,ig ′(inj)
∂

∂Wk,j

(∑
k

Wk,jak

)
= −

∑
i

∆iWj,ig ′(inj)ak = −ak∆j

36

K Nearest Neighbor
Neural NetworksBack-propagation learning contd.

At each epoch, sum gradient updates for all examples and apply
Training curve for 100 restaurant examples: finds exact fit

Typical problems: slow convergence, local minima

37

K Nearest Neighbor
Neural NetworksBack-propagation learning contd.

Learning curve for MLP with 4 hidden units:

MLPs are quite good for complex pattern recognition tasks,
but resulting hypotheses cannot be understood easily

38

K Nearest Neighbor
Neural NetworksNeural Network with two layers

39

K Nearest Neighbor
Neural NetworksHandwritten digit recognition

400–300–10 unit MLP = 1.6% error

LeNet: 768–192–30–10 unit MLP = 0.9% error

Current best (kernel machines, vision algorithms) ≈ 0.6% error

Humans are at 0.2% – 2.5 % error

40

K Nearest Neighbor
Neural NetworksSummary

Perceptrons (one-layer networks) insufficiently expressive

Multi-layer networks are sufficiently expressive; can be trained by
gradient descent, i.e., error back-propagation

Many applications: speech, driving, handwriting, fraud detection, etc.

41

K Nearest Neighbor
Neural NetworksSummary on Learning

Decision Trees and k-NN have problems with high dimensions

Decision Tree are easily understandable to humans

Naive Baysian Network is fast to train and update incrementally but
often less accurate than k-NN

For regression problems neural nets with linear output functions,
regression trees or locally weighted nearest neighbors are all appropriate
choices.

42

K Nearest Neighbor
Neural NetworksAI State of the Art

http://www.aaai.org
once “American Association for Artificial Intelligence”, now “Association
for the Advancement of Artificial Intelligence”

http://www.aaai.org/Conferences/IAAI/iaai.php
Innovative Applications of Artificial Intelligence Conference (IAAI)

http://www.ijcai.org/
International Joint Conferences on Artificial Intelligence

http://www.eccai.org/
European Coordinating Committee for Artificial Intelligence

http://www.eccai.org/ecai.shtml
European Conference on AI

http://www.daimi.au.dk/~bmayoh/dais.html
http://www.cs.au.dk/~bmayoh/dais.html
Danish Artificial Intelligence Society

43

http://www.aaai.org
http://www.aaai.org/Conferences/IAAI/iaai.php
http://www.ijcai.org/
http://www.eccai.org/
http://www.eccai.org/ecai.shtml
http://www.daimi.au.dk/~bmayoh/dais.html
http://www.cs.au.dk/~bmayoh/dais.html

	K Nearest Neighbor
	Neural Networks

