
Lecture 2
Solving Problems by Searching

Marco Chiarandini

Deptartment of Mathematics & Computer Science
University of Southern Denmark

Slides by Stuart Russell and Peter Norvig

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemLast Time

Agents are used to provide a consistent viewpoint on various topics in
the field AI

Essential concepts:
Agents intereact with environment by means of sensors and actuators.
A rational agent does “the right thing” ≡ maximizes a performance
measure
è PEAS
Environment types: observable, deterministic, episodic, static, discrete,
single agent
Agent types: table driven, simple reflex, model-based reflex, goal-based,
utility-based, learning agent

2

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemStructure of Agents

Agent = Architecture + Program

Architecture

operating platform of the agent

computer system, specific hardware, possibly OS

Program

function that implements the mapping from percepts to actions

In this course, emphasis on the program,
not on the architecture

3

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemCourse Overview

4 Introduction
4 Artificial Intelligence
4 Intelligent Agents

Search
Uninformed Search
Heuristic Search

Adversarial Search
Minimax search
Alpha-beta pruning

Knowledge representation and
Reasoning

Propositional logic
First order logic
Inference

Uncertain knoweldge and
Reasoning

Probability and Bayesian
approach
Bayesian Networks
Hidden Markov Chains
Kalman Filters

Learning
Decision Trees
Maximum Likelihood
EM Algorithm
Learning Bayesian Networks
Neural Networks
Support vector machines

4

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemOutline

1. Problem Solving and Search

2. Uninformed search algorithms

3. Informed search algorithms
Local search algorithms

4. Constraint Satisfaction Problem

5

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemOutline

1. Problem Solving and Search

2. Uninformed search algorithms

3. Informed search algorithms
Local search algorithms

4. Constraint Satisfaction Problem

6

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemObjectives

Formulate appropriate problems in optimization and planning (sequence
of actions to achive a goal) as search tasks:
initial state, operators, goal test, path cost

Know the fundamental search strategies and algorithms

uninformed search
breadth-first, depth-first, uniform-cost, iterative deepening, bi-

directional

informed search
best-first (greedy, A*), heuristics, memory-bounded

Evaluate the suitability of a search strategy for a problem

completeness, time & space complexity, optimality

7

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemSearch

Search:

process of looking for a (or the best) sequence of actions, that leads to a goal
(specific state of the environment), starting from an initial state

Used in problem solving agent: aka planning

Hypothesis on the environment
Static
Discrete
Deterministic
Fully observable

8

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemExample Problems

Toy problems

vacuum cleaner agent
8-puzzle
8-queens
cryptarithmetic
missionaries and cannibals

Real-world problems

route finding
traveling salesperson
VLSI layout
robot navigation
assembly sequencing

9

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemProblem formulation

Abstraction of real states and actions

A problem is defined by four items:

states and initial state e.g., “at Arad”

successor function S(x) = set of action–state pairs
e.g., S(Arad) = {〈Arad→ Zerind, Zerind〉, . . .}

goal test, can be
explicit, e.g., x = “at Bucharest”
implicit, e.g., NoDirt(x)

path cost (additive)
e.g., sum of distances, number of actions executed, etc.
c(x, a, y) is the step cost, assumed to be ≥ 0

State Space

Graph representation of states and successor function (operators), with the
cost (if any)

A solution is a sequence of actions
leading from the initial state to a goal state 10

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction Problem8-Queens

Incremental formulation

States
arrangement of up to 8 queens on
the board

Operators
add a queen to any square

Goal test
all queens on board no queen
attacked

Path cost
irrelevant (all solutions equally
valid)

Complete-state formulation

States
arrangement of 8 queens on the
board

Operators
move a queen to a different
square

Goal test
no queen attacked

Path cost
irrelevant (all solutions equally
valid)

11

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemSearching for Solutions

Traversal of some search space
from the initial state to a goal state
legal sequence of actions as defined by operators

The search can be performed on

A graph representing
the state space
Graph-Search algorithm

Or on a search tree derived from
expanding the current state using the possible operators
Tree-Search algorithm

12

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemTree search algorithms

Basic idea:
offline, simulated exploration of state space
by generating successors of already-explored states

(a.k.a. expanding states)

function Tree-Search(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do

if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding

solution
else expand the node and add the resulting nodes to the search

tree
end

13

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemImplementation: states vs. nodes

A state is a (representation of) a physical configuration
A node is a data structure constituting part of a search tree

includes parent, children, depth, path cost g(x)
States do not have parents, children, depth, or path cost!

1

23

45

6

7

81

23

45

6

7

8

State Node depth = 6

g = 6

state

parent, action

The Expand function creates new nodes, filling in the various fields and using
the SuccessorFn of the problem to create the corresponding states.

14

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemExample: Route Finding

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

15

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemTree search example

Lugoj AradArad OradeaRimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

16

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemImplementation: general tree search

function Tree-Search(problem, fringe) returns a solution, or failure
fringe← Insert(Make-Node(Initial-State[problem]), fringe)
loop do

if fringe is empty then return failure
node←Remove-Front(fringe)
if Goal-Test(problem, State(node)) then return node
fringe← InsertAll(Expand(node,problem), fringe)

function Expand(node, problem) returns a set of nodes
successors← the empty set
for each action, result in Successor-Fn(problem, State[node]) do

s← a new Node
Parent-Node[s]← node; Action[s]← action; State[s]← result

Path-Cost[s]←Path-Cost[node] + Step-Cost(State[node],
action, result)

Depth[s]←Depth[node] + 1
add s to successors

return successors
17

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemSearch strategies

A strategy is defined by picking the order of node expansion

function Tree-Search(problem, fringe) returns a solution, or failure
fringe← Insert(Make-Node(Initial-State[problem]), fringe)
loop do

if fringe is empty then return failure
node← Remove-Front(fringe)
if Goal-Test(problem, State(node)) then return node
fringe← InsertAll(Expand(node,problem), fringe)

Strategies are evaluated along the following dimensions:
completeness—does it always find a solution if one exists?
time complexity—number of nodes generated/expanded
space complexity—maximum number of nodes in memory
optimality—does it always find a least-cost solution?

Time and space complexity are measured in terms of
b—maximum branching factor of the search tree
d—depth of the least-cost solution
m—maximum depth of the state space (may be ∞)

18

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemOutline

1. Problem Solving and Search

2. Uninformed search algorithms

3. Informed search algorithms
Local search algorithms

4. Constraint Satisfaction Problem

19

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemUninformed search strategies

Uninformed strategies use only the information available
in the problem definition

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening search

Bidirectional Search

20

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemBreadth-first search

Expand shallowest unexpanded node
Implementation:

fringe is a FIFO queue, i.e., new successors go at end

A

B C

D E F G

21

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemBreadth-first search

Expand shallowest unexpanded node
Implementation:

fringe is a FIFO queue, i.e., new successors go at end

A

B C

D E F G

22

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemBreadth-first search

Expand shallowest unexpanded node
Implementation:

fringe is a FIFO queue, i.e., new successors go at end

A

B C

D E F G

23

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemBreadth-first search

Expand shallowest unexpanded node
Implementation:

fringe is a FIFO queue, i.e., new successors go at end

A

B C

D E F G

24

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemProperties of breadth-first search

Complete?? Yes (if b is finite)
Time?? 1 + b+ b2 + b3 + . . .+ bd + b(bd − 1) = O(bd+1), i.e., exp. in d
Space?? O(bd+1) (keeps every node in memory)
Optimal?? Yes (if cost = 1 per step); not optimal in general
Space is the big problem; can easily generate nodes at 100MB/sec

so 24hrs = 8640GB.

25

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemUniform-cost search

Expand least-cost unexpanded node
Implementation:

fringe = queue ordered by path cost, lowest first
Equivalent to breadth-first if step costs all equal
Complete?? Yes, if step cost ≥ ε
Time?? # of nodes with g ≤ cost of optimal solution, O(bdC

∗/εe)
where C∗ is the cost of the optimal solution

Space?? # of nodes with g ≤ cost of optimal solution, O(bdC
∗/εe)

Optimal?? Yes—nodes expanded in increasing order of g(n)

26

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemDepth-first search

Expand deepest unexpanded node
Implementation:

fringe = LIFO queue, i.e., put successors at front
A

B C

D E F G

H I J K L M N O

27

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemProperties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
⇒ complete in finite spaces

Time?? O(bm): terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-first

Space?? O(bm), i.e., linear space!
Optimal?? No

28

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemDepth-limited search

= depth-first search with depth limit l,
i.e., nodes at depth l have no successors
Recursive implementation:

function Depth-Limited-Search(problem, limit) returns soln/fail/-
cutoff

Recursive-DLS(Make-Node(Initial-State[problem]),problem, limit)

function Recursive-DLS(node,problem, limit) returns soln/fail/cutoff
cutoff-occurred?← false
if Goal-Test(problem, State[node]) then return node
else if Depth[node] = limit then return cutoff
else for each successor in Expand(node,problem) do

result←Recursive-DLS(successor,problem, limit)
if result = cutoff then cutoff-occurred?← true
else if result 6= failure then return result

if cutoff-occurred? then return cutoff else return failure

29

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemIterative deepening search

function Iterative-Deepening-Search(problem) returns a solution
inputs: problem, a problem

for depth← 0 to ∞ do
result←Depth-Limited-Search(problem, depth)
if result 6= cutoff then return result

end

30

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemIterative deepening search l = 0

Limit = 3

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H J K L M N OI

A

B C

D E F G

H I J K L M N O

31

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemProperties of iterative deepening search

Complete?? Yes
Time?? (d+ 1)b0 + db1 + (d− 1)b2 + . . .+ bd = O(bd)
Space?? O(bd)
Optimal?? Yes, if step cost = 1

Can be modified to explore uniform-cost tree

Numerical comparison for b = 10 and d = 5, solution at far right leaf:

N(IDS) = 50 + 400 + 3, 000 + 20, 000 + 100, 000 = 123, 450
N(BFS) = 10 + 100 + 1, 000 + 10, 000 + 100, 000 + 999, 990 = 1, 111, 100

IDS does better because other nodes at depth d are not expanded
BFS can be modified to apply goal test when a node is generated

32

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemSummary of algorithms

Criterion Breadth- Uniform- Depth- Depth- Iterative
First Cost First Limited Deepening

Complete? Yes∗ Yes∗ No Yes, if l ≥ d Yes
Time bd+1 bdC

∗/εe bm bl bd

Space bd+1 bdC
∗/εe bm bl bd

Optimal? Yes∗ Yes No No Yes∗

33

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemRepeated states

Failure to detect repeated states can turn a linear problem into an
exponential one!

A

B

C

D

A

BB

CCCC

34

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemGraph search

function Graph-Search(problem, fringe) returns a solution, or failure

closed← an empty set
fringe← Insert(Make-Node(Initial-State[problem]), fringe)
loop do

if fringe is empty then return failure
node←Remove-Front(fringe)
if Goal-Test(problem, State[node]) then return node
if State[node] is not in closed then

add State[node] to closed
fringe← InsertAll(Expand(node,problem), fringe)

end

35

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemSummary

Problem formulation usually requires abstracting away real-world details
to define a state space that can feasibly be explored

Variety of uninformed search strategies

Iterative deepening search uses only linear space
and not much more time than other uninformed algorithms

Graph search can be exponentially more efficient than tree search

36

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemOutline

1. Problem Solving and Search

2. Uninformed search algorithms

3. Informed search algorithms
Local search algorithms

4. Constraint Satisfaction Problem

37

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemReview: Tree search

function Tree-Search(problem, fringe) returns a solution, or failure
fringe← Insert(Make-Node(Initial-State[problem]), fringe)
loop do

if fringe is empty then return failure
node←Remove-Front(fringe)
if Goal-Test[problem] applied to State(node) succeeds return

node
fringe← InsertAll(Expand(node,problem), fringe)

A strategy is defined by picking the order of node expansion

38

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemInformed search strategy

Informed strategies use agent’s background information about the problem
map, costs of actions, approximation of solutions, ...

best-first search

greedy search
A∗search

local search

Hill-climbing
Simulated annealing
Genetic algorithms (briefly)
Local search in continuous spaces (very briefly)

39

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemBest-first search

Idea: use an evaluation function for each node
– estimate of “desirability”

⇒ Expand most desirable unexpanded node
Implementation:
fringe is a queue sorted in decreasing order of desirability

Special cases:
greedy search
A∗ search

40

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemRomania with step costs in km

Bucharest

Giurgiu

Urziceni

Hirsova

Eforie

Neamt
Oradea

Zerind

Arad

Timisoara

Lugoj
Mehadia

Dobreta
Craiova

Sibiu

Fagaras

Pitesti
Rimnicu Vilcea

Vaslui

Iasi

Straight−line distance
to Bucharest

 0
160
242
161

77
151

241

366

193

178

253
329
80

199

244

380

226

234

374

98

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75
120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

41

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemGreedy search

Evaluation function h(n) (heuristic)
= estimate of cost from n to the closest goal

E.g., hSLD(n) = straight-line distance from n to Bucharest

Greedy search expands the node that appears to be closest to goal

42

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemGreedy search example

Arad

366

Zerind

Arad

Sibiu Timisoara

253 329 374

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

329 374

366 176 380 193

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

Sibiu Bucharest

329 374

366 380 193

253 0

43

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemProperties of greedy search

Complete?? No–can get stuck in loops, e.g., from Iasi to Fargas
Iasi → Neamt → Iasi → Neamt →

Complete in finite space with repeated-state checking
Time?? O(bm), but a good heuristic can give dramatic improvement
Space?? O(bm)—keeps all nodes in memory
Optimal?? No

44

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemA∗ search

Idea: avoid expanding paths that are already expensive
Evaluation function f(n) = g(n) + h(n)

g(n) = cost so far to reach n
h(n) = estimated cost to goal from n
f(n) = estimated total cost of path through n to goal

A∗ search uses an admissible heuristic
i.e., h(n) ≤ h∗(n) where h∗(n) is the true cost from n.
(Also require h(n) ≥ 0, so h(G) = 0 for any goal G.)

E.g., hSLD(n) never overestimates the actual road distance

Theorem: A∗ search is optimal

45

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemA∗ search example

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Rimnicu VilceaFagaras Oradea

Craiova Pitesti Sibiu

Bucharest Craiova Rimnicu Vilcea

418=418+0

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253

615=455+160 607=414+193

671=291+380

46

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemOptimality of A∗ (standard proof)

Suppose some suboptimal goal G2 has been generated and is in the queue.
Let n be an unexpanded node on a shortest path to an optimal goal G1.

G

n

G2

Start

f(G2) = g(G2) since h(G2) = 0
> g(G1) since G2 is suboptimal
≥ f(n) since h is admissible

Since f(G2) > f(n), A∗ will never select G2 for expansion

47

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemOptimality of A∗ (more useful)

Lemma: A∗ expands nodes in order of increasing f value∗

Gradually adds “f -contours” of nodes (cf. breadth-first adds layers)
Contour i has all nodes with f = fi, where fi < fi+1

O

Z

A

T

L

M

D
C

R

F

P

G

B
U

H

E

V

I

N

380

400

420

S

48

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemAstar vs. Depth search

49

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemProperties of A∗

Complete?? Yes, unless there are infinitely many nodes with f ≤ f(G)
Time?? Exponential in [relative error in h × length of soln.]
Space?? Keeps all nodes in memory
Optimal?? Yes—cannot expand fi+1 until fi is finished

A∗ expands all nodes with f(n) < C∗

A∗ expands some nodes with f(n) = C∗

A∗ expands no nodes with f(n) > C∗

50

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemProof of lemma: Consistency

A heuristic is consistent if

n

c(n,a,n’)

h(n’)

h(n)

G

n’

h(n) ≤ c(n, a, n′) + h(n′)

If h is consistent, we have

f(n′) = g(n′) + h(n′)
= g(n) + c(n, a, n′) + h(n′)
≥ g(n) + h(n)
= f(n)

I.e., f(n) is nondecreasing along any path.

51

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemAdmissible heuristics

E.g., for the 8-puzzle:

h1(n) = number of misplaced tiles
h2(n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

h1(S) =??
h2(S) =??

52

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemAdmissible heuristics

E.g., for the 8-puzzle:

h1(n) = number of misplaced tiles
h2(n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

h1(S) =?? 6
h2(S) =?? 4+0+3+3+1+0+2+1 = 14

53

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemDominance

If h2(n) ≥ h1(n) for all n (both admissible)
then h2 dominates h1 and is better for search

Typical search costs:

d = 14 IDS = 3,473,941 nodes
A∗(h1) = 539 nodes
A∗(h2) = 113 nodes

d = 24 IDS ≈ 54,000,000,000 nodes
A∗(h1) = 39,135 nodes
A∗(h2) = 1,641 nodes

Given any admissible heuristics ha, hb,

h(n) = max(ha(n), hb(n))

is also admissible and dominates ha, hb

54

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemRelaxed problems

Admissible heuristics can be derived from the exact
solution cost of a relaxed version of the problem

If the rules of the 8-puzzle are relaxed so that a tile can move
anywhere, then h1(n) gives the shortest solution

If the rules are relaxed so that a tile can move to any adjacent square,
then h2(n) gives the shortest solution

Key point: the optimal solution cost of a relaxed problem
is no greater than the optimal solution cost of the real problem

55

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemRelaxed problems contd.

Well-known example: travelling salesperson problem (TSP)
Find the shortest tour visiting all cities exactly once

Minimum spanning tree can be computed in O(n2)
and is a lower bound on the shortest (open) tour

56

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemMemory-Bounded Heuristic Search

Try to reduce memory needs

Take advantage of heuristic to improve performance

Iterative-deepening A∗(IDA∗)

SMA∗

57

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemIterative Deepening A∗

Uniformed Iterative Deepening (repetition)

depth-first search where the max depth is iteratively increased

IDA∗

depth-first search, but only nodes with f -cost less than or equal to
smallest f -cost of nodes expanded at last iteration

was the "best" search algorithm for many practical problems

58

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemProperties of IDA∗

Complete?? Yes
Time complexity?? Still exponential
Space complexity?? linear
Optimal?? Yes. Also optimal in the absence of monotonicity

59

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemSimple Memory-Bounded A∗

Use all available memory

Follow A∗algorithm and fill memory with new expanded nodes

If new node does not fit
remove stored node with worst f -value
propagate f -value of removed node to parent

SMA∗will regenerate a subtree only when it is needed
the path through subtree is unknown, but cost is known

60

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemPropeties of SMA∗

Complete?? yes, if there is enough memory for the shortest solution path
Time?? same as A∗if enough memory to store the tree
Space?? use available memory
Optimal?? yes, if enough memory to store the best solution path

In practice, often better than A∗and IDA∗trade-off between time and space
requirements

61

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemOutline

♦ Hill-climbing
♦ Simulated annealing
♦ Genetic algorithms (briefly)
♦ Local search in continuous spaces (very briefly)

64

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemIterative improvement algorithms

Then state space = set of “complete” configurations;
find optimal configuration, e.g., TSP
or, find configuration satisfying constraints, e.g., timetable

In such cases, can use iterative improvement algorithms;
keep a single “current” state, try to improve it

Constant space, suitable for online as well as offline search

65

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemExample: Travelling Salesperson Problem

Start with any complete tour, perform pairwise exchanges

Variants of this approach get within 1% of optimal very quickly with
thousands of cities

66

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemExample: n-queens

Put n queens on an n× n board with no two queens on the same
row, column, or diagonal
Move a queen to reduce number of conflicts

h = 5 h = 2 h = 0

Almost always solves n-queens problems almost instantaneously
for very large n, e.g., n= 1million

67

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemHill-climbing (or gradient ascent/descent)

function Hill-Climbing(problem) returns a state that is a local max-
imum

inputs: problem, a problem
local variables: current, a node

neighbor, a node

current←Make-Node(Initial-State[problem])
loop do

neighbor← a highest-valued successor of current
if Value[neighbor] ≤ Value[current] then return State[current]
current← neighbor

end

68

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemExample: n-queens

Current cost 17

8 possible successor

69

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemHill-climbing contd.

Useful to consider state space landscape

current
state

objective function

state space

global maximum

local maximum

"flat" local maximum

shoulder

Random-restart hill climbing overcomes local maxima—trivially complete
Random sideways moves escape from shoulders loop on flat maxima

70

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemSimulated annealing

Idea: escape local maxima by allowing some “bad” moves
but gradually decrease their size and frequency

function Simulated-Annealing(problem, schedule) returns a solution
state

inputs: problem, a problem
schedule, a mapping from time to “temperature”

local variables: current, a node
next, a node
T, temp. controlling prob. of downward steps

current←Make-Node(Initial-State[problem])
for t← 1 to ∞ do

T← schedule[t]
if T = 0 then return current
next← a randomly selected successor of current
∆E←Value[next] – Value[current]
if ∆E > 0 then current← next
else current← next only with probability e∆ E/T

71

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemProperties of simulated annealing

At fixed “temperature” T , state occupation probability reaches
Boltzman distribution

p(x) = αe
E(x)
kT

T decreased slowly enough =⇒ always reach best state x∗

because e
E(x∗)

kT /e
E(x)
kT = e

E(x∗)−E(x)
kT � 1 for small T

Is this necessarily an interesting guarantee??
Devised by Metropolis et al., 1953, for physical process modelling
Widely used in VLSI layout, airline scheduling, etc.

72

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemGenetic algorithms

32252124

Selection Cross−Over Mutation

24748552

32752411

24415124

24

23

20

32543213 11

29%

31%

26%

14%

32752411

24748552

32752411

24415124

32748552

24752411

32752124

24415411

24752411

32748152

24415417

Fitness Pairs

74

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemGenetic algorithms contd.

GAs require states encoded as strings (GPs use programs)
Crossover helps iff substrings are meaningful components

+ =

GAs 6= evolution: e.g., real genes encode replication machinery!

75

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemContinuous state spaces

Suppose we want to site three airports in Romania:
– 6-D state space defined by (x1, y2), (x2, y2), (x3, y3)
– objective function f(x1, y2, x2, y2, x3, y3) =

sum of squared distances from each city to nearest airport
Discretization methods turn continuous space into discrete space,
e.g., empirical gradient considers ±δ change in each coordinate
Gradient methods compute

∇f =
(
∂f

∂x1
,
∂f

∂y1
,
∂f

∂x2
,
∂f

∂y2
,
∂f

∂x3
,
∂f

∂y3

)
to increase/reduce f , e.g., by x← x + α∇f(x)
Sometimes can solve for ∇f(x) = 0 exactly (e.g., with one city).
Newton–Raphson (1664, 1690) iterates x← x−H−1

f (x)∇f(x)
to solve ∇f(x) = 0, where Hij = ∂2f/∂xi∂xj

76

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemOutline

1. Problem Solving and Search

2. Uninformed search algorithms

3. Informed search algorithms
Local search algorithms

4. Constraint Satisfaction Problem

77

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemConstraint Satisfaction Problem (CSP)

Standard search problem:
state is a “black box”—any old data structure

that supports goal test, eval, successor

CSP:
state is defined by variables Xi with values from domain Di

goal test is a set of constraints specifying
allowable combinations of values for subsets of variables

Simple example of a formal representation language

Allows useful general-purpose algorithms with more power
than standard search algorithms

78

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemStandard search formulation

States are defined by the values assigned so far

♦ Initial state: the empty assignment, { }
♦ Successor function: assign a value to an unassigned variable

that does not conflict with current assignment.
=⇒ fail if no legal assignments (not fixable!)

♦ Goal test: the current assignment is complete

1) This is the same for all CSPs!
2) Every solution appears at depth n with n variables

=⇒ use depth-first search
3) Path is irrelevant, so can also use complete-state formulation
4) b= (n− `)d at depth `, hence n!dn leaves!!!!

79

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemBacktracking search

Variable assignments are commutative, i.e.,
[WA= red then NT = green] same as
[NT = green then WA= red]

Only need to consider assignments to a single variable at each node
=⇒ b= d and there are dn leaves

Depth-first search for CSPs with single-variable assignments
is called backtracking search
Backtracking search is the basic uninformed algorithm for CSPs
Can solve n-queens for n ≈ 25

80

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemBacktracking search

function Backtracking-Search(csp) returns solution/failure
return Recursive-Backtracking({ }, csp)

function Recursive-Backtracking(assignment, csp) returns soln/fail-
ure

if assignment is complete then return assignment
var← Select-Unassigned-Variable(Variables[csp], assignment, csp)
for each value in Order-Domain-Values(var, assignment, csp) do

if value is consistent with assignment given Constraints[csp]
then

add {var = value} to assignment
result←Recursive-Backtracking(assignment, csp)
if result 6= failure then return result
remove {var = value} from assignment

return failure

81

Problem Solving and Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemSummary

Uninformed Search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening search

Bidirectional Search

Informed Search
best-first search

greedy search
A∗search
Iterative Deepening A∗

Memory bounded A∗

local search

Hill-climbing
Simulated annealing
Genetic algorithms (briefly)
Local search in continuous
spaces (very briefly)

Constraint Satisfaction and Backtracking

82

