
Lecture 6
Logical Agents

First Order Logic

Marco Chiarandini

Deptartment of Mathematics & Computer Science
University of Southern Denmark

Slides by Stuart Russell and Peter Norvig

First Order LogicCourse Overview

4 Introduction
4 Artificial Intelligence
4 Intelligent Agents

4 Search
4 Uninformed Search
4 Heuristic Search

4 Adversarial Search
4 Minimax search
4 Alpha-beta pruning

Knowledge representation and
Reasoning

Propositional logic
First order logic
Inference

Uncertain knoweldge and
Reasoning

Probability and Bayesian
approach
Bayesian Networks
Hidden Markov Chains
Kalman Filters

Learning
Decision Trees
Maximum Likelihood
EM Algorithm
Learning Bayesian Networks
Neural Networks
Support vector machines

2

First Order LogicLast Time

♦ Knowledge-based agents
♦ Wumpus world
♦ Logic in general—models and entailment
♦ Propositional (Boolean) logic
♦ Equivalence, validity, satisfiability
♦ Inference rules and theorem proving

– resolution – forward chaining
– backward chaining

♦ Model checking

3

First Order LogicOutline

1. First Order Logic

4

First Order LogicOutline

♦ Why FOL?
♦ Syntax and semantics of FOL
♦ Fun with sentences
♦ Wumpus world in FOL

5

First Order LogicPros and cons of propositional logic

Propositional logic is declarative: pieces of syntax correspond to facts

Propositional logic allows partial/disjunctive/negated information
(unlike most data structures and databases)

Propositional logic is compositional:
meaning of B1,1 ∧ P1,2 is derived from meaning of B1,1 and of P1,2

Meaning in propositional logic is context-independent
(unlike natural language, where meaning depends on context)

Propositional logic has very limited expressive power
(unlike natural language)
E.g., cannot say “pits cause breezes in adjacent squares”

except by writing one sentence for each square

6

First Order LogicFirst-order logic

Whereas propositional logic assumes world contains facts,
first-order logic (like natural language) assumes the world contains

Objects: people, houses, numbers, theories, Ronald McDonald, colors,
baseball games, wars, centuries . . .

Relations/Predicates: red, round, bogus, prime, multistoried . . .,
brother of, bigger than, inside, part of, has color, occurred after, owns,
comes between, likes, friends, . . .

Functions: father of, best friend, successor, one more than, times, end of
. . .

7

First Order LogicLogics in general

Language Ontological Epistemological
Commitment Commitment

Propositional logic facts true/false/unknown
First-order logic facts, objects, relations true/false/unknown
Temporal logic facts, objects, relations, times true/false/unknown
Probability theory facts degree of belief
Fuzzy logic facts + degree of truth known interval value

8

First Order LogicSyntax of FOL: Basic elements

Constants KingJohn, 2, UCB, . . .
Variables x, y, a, b, . . .
Functions Sqrt, Father . . .
Predicates BrotherOf, >, . . .
Connectives ∧ ∨ ¬ =⇒ ⇔
Equality =
Quantifiers ∀ ∃

Note: constants, variables, predicates are distinguished typically by the case
of the letters. Every system/book has differnt conventions in this regard.
PROLOG: costants in lower case and variables in upper case.

9

First Order LogicAtomic sentences

Atomic sentence = predicate(term1, . . . , termn)
or term1 = term2

Term = function(term1, . . . , termn)
or constant or variable

E.g., Brother(KingJohn,RichardTheLionheart)

> (Length(LeftLegOf(Richard)), Length(LeftLegOf(KingJohn)))

But: E.g., Plus(2, 3) is a function, not an atomic sentence.

10

First Order LogicComplex sentences

Complex sentences are made from atomic sentences using connectives

¬S, S1 ∧ S2, S1 ∨ S2, S1 =⇒ S2, S1 ⇔ S2

E.g. Sibling(KingJohn,Richard) =⇒ Sibling(Richard,KingJohn)

>(1, 2) ∨ ≤(1, 2)

>(1, 2) ∧ ¬>(1, 2)

E.g., Equal(Plus(2, 3), Seven))

11

First Order LogicSemantics in first-order logic

Sentences are true with respect to an interpretation over a domain D.

12

First Order LogicTruth Value Assignment

Symbols in FOL are assigned values from the domain D as determined by the
interpretation. Each precise assignment is a model

An atomic sentence predicate(term1, . . . , termn) is true
iff the objects referred to by term1, . . . , termn

are in the relation referred to by predicate in the interpretation
Example:
Consider the interpretation in which

Richard → Richard the Lionheart
John → the evil King John
Brother → the brotherhood relation

Under this interpretation, Brother(Richard, John) is true
just in case Richard the Lionheart and the evil King John
are in the brotherhood relation in the model (the assignment of values of the
world to objects according to the interpretation)

13

First Order LogicModels for FOL: Lots!

Entailment in propositional logic can be computed by enumerating models
We can enumerate the FOL models for a given KB vocabulary.

But:

Sentences with quantifiers:
Eg. ∀X(p(X) ∨ q(Y)) =⇒ r(X))
It requires checking truth by substituting all values that X can take in the
subset of D assigned to X in the interpretation

Since the set maybe infinite predicate calculus is said to be undecidable

Existential quantifiers are not easier to check

15

First Order LogicUniversal quantification

∀ 〈variables〉 〈sentence〉
Everyone at Berkeley is smart:
∀x At(x,Berkeley) =⇒ Smart(x)

∀x P is true in a model iff P is true with x being
each possible object in the model
(Roughly speaking, equivalent to the conjunction of instantiations of P)

(At(KingJohn,Berkeley) =⇒ Smart(KingJohn))
∧ (At(Richard,Berkeley) =⇒ Smart(Richard))
∧ (At(Berkeley,Berkeley) =⇒ Smart(Berkeley))
∧ . . .

Note: quantifiers are only on objects and variables, not on predicates and
functions. This is done in higher order logic.
Eg.: ∀(Likes)Likes(Geroge,Kate)

16

First Order LogicA common mistake to avoid

Typically, =⇒ is the main connective with ∀
Common mistake: using ∧ as the main connective with ∀:

∀x At(x,Berkeley) ∧ Smart(x)

means “Everyone is at Berkeley and everyone is smart”

17

First Order LogicExistential quantification

∃ 〈variables〉 〈sentence〉
Someone at Stanford is smart:
∃x At(x, Stanford) ∧ Smart(x)
∃x P is true in a model iff P is true with x being
some possible object in the model
(Roughly speaking, equivalent to the disjunction of instantiations of P)

(At(KingJohn, Stanford) ∧ Smart(KingJohn))
∨ (At(Richard, Stanford) ∧ Smart(Richard))
∨ (At(Stanford, Stanford) ∧ Smart(Stanford))
∨ . . .

18

First Order LogicAnother common mistake to avoid

Typically, ∧ is the main connective with ∃
Common mistake: using =⇒ as the main connective with ∃:

∃x At(x, Stanford) =⇒ Smart(x)

is true if there is anyone who is not at Stanford!

19

First Order LogicProperties of quantifiers

∀x ∀ y is the same as ∀ y ∀x

∃x ∃ y is the same as ∃ y ∃x

∃x ∀ y is not the same as ∀ y ∃x

∃x ∀ y Loves(x, y)
“There is a person who loves everyone in the world”
∀ y ∃x Loves(x, y)
“Everyone in the world is loved by at least one person”

Quantifier duality: each can be expressed using the other
∀x Likes(x, IceCream) ¬∃x ¬Likes(x, IceCream)
∃x Likes(x,Broccoli) ¬∀x ¬Likes(x,Broccoli)

20

First Order LogicExercise

Translating natural language in FOL

Brothers are siblings
∀x, y Brother(x, y) =⇒ Sibling(x, y).

“Sibling” is symmetric
∀x, y Sibling(x, y) ⇔ Sibling(y, x).

One’s mother is one’s female parent
∀x, y Mother(x, y) ⇔ (Female(x) ∧ Parent(x, y)).
A first cousin is a child of a parent’s sibling
∀x, y F irstCousin(x, y) ⇔ ∃ p, ps Parent(p, x) ∧ Sibling(ps, p) ∧
Parent(ps, y)

Note: there is not an unique way of translating
If it does not rain on Monday, Tom will go to the mountains
¬weather(rain,mountain) =⇒ go(tom,mountains)

21

First Order LogicEquality

term1 = term2 is true under a given interpretation
if and only if term1 and term2 refer to the same object

E.g., 1 = 2 and ∀x ×(Sqrt(x), Sqrt(x)) = x are satisfiable
2 = 2 is valid

E.g., definition of (full) Sibling in terms of Parent:
∀x, y Sibling(x, y) ⇔ [¬(x= y) ∧ ∃m, f ¬(m= f) ∧

Parent(m,x) ∧ Parent(f, x) ∧ Parent(m, y) ∧ Parent(f, y)]

22

First Order LogicInteracting with FOL KBs

Suppose a wumpus-world agent is using an FOL KB
and perceives a smell and a breeze (but no glitter) at t = 5:

Tell(KB,Percept([Smell, Breeze,None], 5))
Ask(KB,∃ a Action(a, 5))

I.e., does KB entail any particular actions at t = 5?

Answer: Y es, {a/Shoot} ← substitution (binding list)

Given a sentence S and a substitution σ,
Sσ denotes the result of plugging σ into S; e.g.,
S = Smarter(x, y)
σ = {x/Hillary, y/Bill}
Sσ = Smarter(Hillary,Bill)
Ask(KB,S) returns some/all σ such that KB |= Sσ

23

First Order LogicDeducing hidden properties

Properties of locations:
∀x, t At(Agent, x, t) ∧ Smelt(t) =⇒ Smelly(x)
∀x, t At(Agent, x, t) ∧Breeze(t) =⇒ Breezy(x)

Squares are breezy near a pit:
Diagnostic rule—infer cause from effect

∀ y Breezy(y) =⇒ ∃x Pit(x) ∧Adjacent(x, y)
Causal rule—infer effect from cause

∀x, y P it(x) ∧Adjacent(x, y) =⇒ Breezy(y)
Neither of these is complete—e.g., the causal rule doesn’t say whether
squares far away from pits can be breezy

Definition for the Breezy predicate:
∀ y Breezy(y) ⇔ [∃x Pit(x) ∧Adjacent(x, y)]

24

First Order LogicKnowledge base for the wumpus world

“Perception”
∀ b, g, t Percept([Smell, b, g], t) =⇒ Smelt(t)
∀ s, b, t Percept([s, b,Glitter], t) =⇒ AtGold(t)

Reflex: ∀ t AtGold(t) =⇒ Action(Grab, t)

Reflex with internal state: do we have the gold already?
∀ t AtGold(t) ∧ ¬Holding(Gold, t) =⇒ Action(Grab, t)

Holding(Gold, t) cannot be observed
⇒ keeping track of change is essential

25

First Order LogicKeeping track of change
Facts hold in situations, rather than eternally
E.g., Holding(Gold,Now) rather than just Holding(Gold)

Situation calculus is one way to represent change in FOL:
Adds a situation argument to each non-eternal predicate
E.g., Now in Holding(Gold,Now) denotes a situation

Situations are connected by the Result function
Result(a, s) is the situation that results from doing a in s

PIT

PIT

PIT

Gold

PIT

PIT

PIT

Gold

S0

Forward

S1

26

First Order LogicDescribing actions I

“Effect” axiom—describe changes due to action
∀ s AtGold(s) =⇒ Holding(Gold,Result(Grab, s))

“Frame” axiom—describe non-changes due to action
∀ s HaveArrow(s) =⇒ HaveArrow(Result(Grab, s))

Frame problem: find an elegant way to handle non-change
(a) representation—avoid frame axioms
(b) inference—avoid repeated “copy-overs” to keep track of state

Qualification problem: true descriptions of real actions require endless
caveats—what if gold is slippery or nailed down or . . .

Ramification problem: real actions have many secondary consequences—what
about the dust on the gold, wear and tear on gloves, . . .

27

First Order LogicDescribing actions II

Successor-state axioms solve the representational frame problem
Each axiom is “about” a predicate (not an action per se):

P true afterwards ⇔ [an action made P true
∨ P true already and no action made P false]

For holding the gold:
∀ a, s Holding(Gold,Result(a, s)) ⇔

[(a=Grab ∧AtGold(s))
∨ (Holding(Gold, s) ∧ a 6= Release)]

28

First Order LogicMaking plans

Initial condition in KB:
At(Agent, [1, 1], S0)
At(Gold, [1, 2], S0)

Query: Ask(KB,∃ s Holding(Gold, s))
i.e., in what situation will I be holding the gold?

Answer: {s/Result(Grab,Result(Forward, S0))}
i.e., go forward and then grab the gold

This assumes that the agent is interested in plans starting at S0 and that S0

is the only situation described in the KB

29

First Order LogicMaking plans: A better way

Represent plans as action sequences p = [a1, a2, . . . , an]

PlanResult(p, s) is the result of executing p in s

Then the query Ask(KB,∃ p Holding(Gold, P lanResult(p, S0)))
has the solution {p/[Forward,Grab]}

Definition of PlanResult in terms of Result:
∀ s P lanResult([], s) = s
∀ a, p, s P lanResult([a|p], s) = PlanResult(p,Result(a, s))

Planning systems are special-purpose reasoners designed to do this type of
inference more efficiently than a general-purpose reasoner

30

First Order LogicKnowledge Engineer

The one just saw is called knowledge engineer process.
It is the production of special-purpose knowledge systems, aka expert systems
(eg, in medical diagnosis)

Identify the task

Assemble the relevant knowledge

Decide on a vocabulary of predicates, functions, and constants

Encode general knowledge about the domain

Encode a description of the specific problem instance (input data)
decide what is a constant, a predicate, a function
leads to definition of the ontology of the domain (what kind of things
exist)

Pose queries to the inference procedure and get answers

Debug the knowledge base

31

First Order LogicSummary

First-order logic:
– objects and relations are semantic primitives
– syntax: constants, functions, predicates, equality, quantifiers

Increased expressive power: sufficient to define wumpus world

Situation calculus:
– conventions for describing actions and change in FOL
– can formulate planning as inference on a situation calculus KB

32

First Order LogicOutline

♦ Reducing first-order inference to propositional inference
♦ Unification
♦ Generalized Modus Ponens
♦ Forward and backward chaining
♦ Logic programming
♦ Resolution

33

