
Department of Mathematics and Computer Science
University of Southern Denmark, Odense

August 21, 2009

Marco Chiarandini

DM811 - Heuristics for Combinatorial Optimization

Assignment Sheet 1, Fall 2009

1 Introduction

This is an assignment that will run throughout the whole course. It aims at letting the
student experiment problem solving skills and gain practical experience on the methods
learned in class. Moreover, it favors the development of a working environment that can
be reused in the final exam project.

The experience gained and the analysis of results attained will be used for class
discussions. Students will have to publish computational results in the format required
in their journal blog. These results will be used by the lecturer for examples of analysis.1

Students are suggested to work in pairs above all in the part that concerns coding.
An update of tasks is expected with weekly cadence. At the beginning of the course

the tasks aim at letting the student design its own solutions without external bias. As the
course proceeds the tasks will become more specific and aimed at an active application
of the knowledge acquired.

There is no evaluation to the assignment, and its accomplishment is not compulsory.
However, the assignment closely reflects the content of the final project and students are
highly recommended to use the assignment as a means to prepare for the exam.

2 Introduction

The graph (vertex) coloring problem (GCP) consists in finding an assignment of colors
to vertices of a graph in such a way that no adjacent vertices receive the same color.
Graph coloring problems arise in many real life applications like register allocation, air
traffic flow management, frequency assignment, light wavelengths assignment in optical
networks and timetabling.

More formally, let G = (V, E) be an undirected graph, with V being the set of |V| = n
vertices and E being the set of edges. A k-coloring of G is a mapping φ : V 7→ Γ, where
Γ = {1, 2, . . . , k} is a set of |Γ| = k integers, each one representing a color. A k-coloring
is feasible or proper if for all [u, v] ∈ E it holds that ϕ(u) 6= ϕ(v); otherwise it is infeasible.
If for some [u, v] ∈ E it is ϕ(u) = ϕ(v), the vertices u and v are in conflict. A feasible
k-coloring in which some vertices are uncolored is said to be a partial k-coloring.

The GCP can be posed as a decision or as an optimization problem. In the decision
version, also called the (vertex) k-coloring problem, the question to be answered is whether
for some given k a feasible k-coloring exists. The optimization version of the GCP asks
for the smallest number k such that a feasible k-coloring exists; for a graph G, this
number is called the chromatic number χG.

1Hence in order to make computational times comparable it is good that you run your experiments
in the IMADA machines. This is also a recommendation for the final project as it makes sure that your
programs will run on IMADA machine, which are those where your programs will be checked.

1

DM811 – Fall 2009 Exam Project

0 1 2 3 4
3 4 0 1 2
1 2 3 4 0
4 0 1 2 3
2 3 4 0 1

0 1 2 3 4 5 6
5 6 0 1 2 3 4
3 4 5 6 0 1 2
1 2 3 4 5 6 0
6 0 1 2 3 4 5
4 5 6 0 1 2 3
2 3 4 5 6 0 1

Figure 1: A solution to the 5× 5 queen graph and to the 7× 7 queen graph.

For some graphs the chromatic number is known. A famous example is the four
color theorem: if a graph is planar then it admits a feasible 4-coloring. However, de-
ciding for a planar graph whether it also admits a 3-coloring has been shown to be an
NP-complete problem. For general graphs it remains NP-complete and consequently
the chromatic number problem NP-hard (Karp 1972).

3 Coloring Queen Graphs

A famous chess puzzle asks to dispose n queens on an n× n chessboard such that none
of them is able to attack any other using the standard chess queen’s moves. Thus, a
solution requires that no two queens share the same row, column, or diagonal.

Derived from this puzzle, the n× n queen graph has the squares of n× n chessboard
for its vertices and two such vertices are adjacent if, and only if, queens placed on the
two squares attack each other. For the n× n queen graph to be n colorable corresponds
to dispose in a n× n chessboard n× n queens subdivided into n subgroups such that
no two queens belonging to the same group can attack each other. See Figure 1 for
an example, where colors are represented by the integers {1, . . . , n} and each integer
indicates a queen group.

The n× n queen graph is n-colorable whenever n mod 6 ≡ 1 or 5. This condition is
sufficient for n-colorability of the n× n queen graph. It is also necessary when n < 12.
Thus none of the n × n queen graphs with n = 2, 3, 4, 6, 8, 9 is n-colorable, while for
n = 5 and n = 7 a feasible solution is reported in Figure 1. For n ≥ 12 counterexamples
have been found, eg, for n = 12, 14, 15, 16, 18, 20, 21, 22, 24, 28, 32, that are n-colourable in
spite of the fact that the condition does not hold.

4 Your tasks

1. Write a program that outputs the queen graphs in the DIMACS format.

This format consists of a file in which each line begins with a letter that defines
the content of the line. The legal lines are:

• c Comment: remainder of line ignored.

• p Problem: is of form:

– p edge n m where n is the number of vertices (to be numbered 1..n) and
m the number of edges.

• e Edge: is of the form e n1 n2 where n1 and n2 are the endpoints of the edge.

2

DM811 – Fall 2009 Exam Project

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

col. 3 4 5 5 7 7 9 10 11 12 12 – 14 15 16

n 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

col. 18 – 20 21 22 – 24 – – – 28 – – – 32

Table 1: Known solutions to the n× n queen graphs.

2. Implement a fast solver for the queen graphs and report the largest of the graphs
in Table 1 for which you could find a coloring of the given number. For the graphs
with a dash it is not known whether an n-coloring exists.

Check the correctness of the coloring found with the program made available in
the Assignments page. The program takes in input the problem instance file in the
format described above and a solution file. The solution file reports a column of
numbers corresponding to the colors assigned to each vertex. After each entry the
character \n (new line) has to be printed. Colors start from 1 and the first color in
the column represents the color assigned to vertex 1. All vertices must receive a
color, if your solution has uncolored vertices use a dummy color for them.

3

DM811 – Fall 2009 Exam Project

Appendix

These are a few practical issues that it is worth knowing in preparation of the exam.

Delivery

The project will be handed in electronically. The program implementation must be
handed in within the given deadline. This is done by submitting through the Blackboad
system an archive thus organized:

Main directory:

CPRN/

where CPRN is the student’s CPR number (eg, 030907-4089) and content:

CPRN/README
CPRN/doc/
CPRN/src/

The directory doc may contain the written report, that will be the main source for
the evaluation of the project. The report has to be kept anonymous. The file README
reports the name of the student and the manual for the compilation of the program.
The directory src contains the source files, which may be in C, C++, Java or python. If
needed a Makefile can be included either in the root directory or in src. After compila-
tion the executable must be placed in src. For java programs, a jar package can also be
submitted.

Programs must work on IMADA’s computers under Linux Ubuntu operating system
and with the compilers and other applications present on IMADA’s computers. You are
free to develop your program at home, but it is your own responsibility to transfer the
program to IMADA’s system and make the necessary adjustments such that it works at
IMADA.2

Program Options and Output

The executable must be called gcp. It will be run by typing in the directory CPRN/src/:

gcp -i INSTANCE -t TIME -s SEED -o OUTPUT

• -i INSTANCE to load the data associated with the file INSTANCE.

• -t TIME to stop the program execution after TIME seconds. The test machine could
not be totally dedicated at the moment of execution.

• -s SEED to initialize the random generator.

• -o OUTPUT the file name where the solution is written
2Past issues: the java compiler path is /usr/local/bin/javac; in C, any routine that uses subroutines

from the math.c library should be compiled with the -lm flag – eg, cc floor.c -lm.

4

DM811 – Fall 2009 Exam Project

For example: gcp -i queen8_8.col -o queen8_8.sol -t 300 -s 1 will run the
program on the instance queen8_8.col opportunely retrieved from the given path for
300 seconds with random seed 1 and write the solution in the file queen8_8.sol. It is
advisable to have a log of algorithm activities during the run. This can be achieved by
printing on the standard error or in a file (which maybe determined with a option -o
filename) further information. A suggested format is to output a line whenever a new
best solution is found containing at least the following pieces of information:

best 853 col 10 time 0.000000 iter 0 par_iter 0

The correctness of a solution will be checked.

5

	Introduction
	Introduction
	Coloring Queen Graphs
	Your tasks

