DM811 - Heuristics for Combinatorial Optimization

Assignment Sheet 2, Fall 2009

Due date: September 9. You are welcome to post all the answers in your Lecture Journal.

Running Assignment

1. The following are possible alternatives to consider in the design of a local search for GCP. They lead to the definition of the solution representation (and hence to the candidate solutions), the neighborhood structure and the evaluation function.

k in	assignment	type of
local search	of colors to V	coloring
<i>k</i> -fixed	complete	proper
<i>k</i> -fixed	partial	proper
<i>k</i> -fixed	complete	unproper
<i>k</i> -fixed	partial	unproper
<i>k</i> -variable	complete	proper
<i>k</i> -variable	partial	proper
<i>k</i> -variable	complete	unproper
<i>k</i> -variable	partial	unproper

- Determine which combination read in the rows of this table leads to a promising local search approach.
- Implement your favorite.
- How do you select the neighboring solution to move to? Does your local search have a natural termination or do you have to halt it?
- 2. A preprocessing rule is a trivial polynomial time procedure that simplifies a given instance of a problem by removing parts that are trivially solved. Often preprocessing rules can be applied repeatedly, as new simplifications may become available after a previous preprocessing. Think about possible preprocessing rules for the graph coloring problem.
- 3. Publish the results of your solvers in the wiki journal. Divide the results clearly into two sections:
 - Your best construction heuristic
 - Your best local search

In each section report the results of 10 trials on each of the following instances:

```
queen11_11, queen12_12, queen13_13, queen14_14, queen15_15, queen16_16, DSJC1000.1, DSJC1000.5, DSJC1000.9, DSJC500.1, DSJC500.5, DSJC500.9
```

(available from the section Resources of the Assignments), using the following format:

CPRN instance_name solution seconds

Exercise 1

Definition 1 TRAVELLING SALESMAN PROBLEM **Input:** A graph G = (V, E) and a cost function $\omega : V \times V \mapsto \mathbf{R}$. **Task:** Find an Hamiltonian cycle of minimum cost.

Design at least one construction heuristic and at least one local search (solution representation + neighborhood + evaluation function).

Exercise 2

Definition 2 SET COVERING

Input: Collection C of subsets of a finite set S and a weight function $\omega : C \mapsto \mathbf{R}$. **Task:** Find a set cover for S, i.e., a subset $C' \subseteq C$ such that every element in S belongs to at least one member of C' and the sum of the costs associated with the subsets in C' is minimal.

Is this problem NP-hard? If the problem is NP-hard, design at least one construction heuristic and at least one local search (solution representation + neighborhood + evaluation function).

Exercise 3

Definition 3 Single Machine Total Weighted Tardiness Problem

Input: A set *J* of jobs $\{1, ..., n\}$ to be processed on a single machine and for each job $j \in J$ a processing time p_i , a weight w_i and a due date d_i .

Task: Find a schedule that minimizes the total weighted tardiness $\sum_{j=1}^{n} w_j \cdot T_j$, where $T_j = \{C_j - d_j, 0\}$ (C_j completion time of job j).

Is this problem NP-hard? If the problem is NP-hard, design at least one construction heuristic and at least one local search (solution representation + neighborhood + evaluation function).