
Lecture 1
Course Introduction

Combinatorial Optimization and Problem Solving

Marco Chiarandini

Deptartment of Mathematics & Computer Science
University of Southern Denmark

Outline

1. Course Introduction

2. Combinatorial Optimization
Combinatorial Problems
Solution Methods

3. Problem Solving
Example
Psychological Perspective
Mathematical Perspective

4. Basic Concepts from Algorithmics

2

Outline

1. Course Introduction

2. Combinatorial Optimization
Combinatorial Problems
Solution Methods

3. Problem Solving
Example
Psychological Perspective
Mathematical Perspective

4. Basic Concepts from Algorithmics

3

Course Presentation

Schedule (28 lecture hours):
Tuesday 8.15-10
Wednesday 10-11.45 or 10.15-12 ?
Last lecture: Wednesday, 9th October, 2008

Communication tools
Course Public Web Site (Ws) ⇔ Blackboard (Bb)
Announcements (Bb)
(link from http://www.imada.sdu.dk/~marco/DM811/)
Discussion board (Bb)
Personal email (Bb)
You are welcome to visit me in my office in working hours (8-16).

Course content

4

Course Presentation

Evaluation: final individual project (internal examiner)
Algorithm design
Implementation (deliverable and checkable source code)
(Analytical) and experimental analysis
Written description
Performance counts

5

Course Material

Books:

B1 Theoretical Aspects of Local Search. W. Michiels, E. Aarts and J. Korst.
Springer Berlin Heidelberg, 2007

Photocopies (from Course Documents left menu of Blackboard)
B2 Artificial Intelligence: A Modern Approach. S. Russell and P. Norvig.

Prentice Hall, 2003
B3 Stochastic Local Search: Foundations and Applications, H. Hoos and T.

Stützle, 2005, Morgan Kaufmann
B4 Search methodologies: introductory tutorials in optimization and decision

support techniques E.K. Burke, G. Kendall, 2005, Springer, New York

Articles from the web site
R notes from the web site
Lecture slides
Assignments

...but take notes in class!
6

Course Presentation

Practical experience is important to learn to use heuristics
Implementation details play an important role.

Running Assignment

Home preparation

Implementation of heuristics for a certain problem

Experimental analysis of performance

Groups in competition

(worthwhile in preparation of the project!)

Further Assignment Sheets

Problem solving in class

7

Personal Lecture Journal

aka Personal Blog

Content:

Write the main points of the lecture in an appropriate language

Publish your results on the common problem

Other topics indicated in Announcements

Functions:

Revise the lecture

Let me have a feedback whether the goals of the lecture have been
achieved.

8

Outline

1. Course Introduction

2. Combinatorial Optimization
Combinatorial Problems
Solution Methods

3. Problem Solving
Example
Psychological Perspective
Mathematical Perspective

4. Basic Concepts from Algorithmics

10

Combinatorial Problems

Combinatorial problems

They arise in many areas
of Computer Science, Artificial Intelligence
and Operations Research:

allocating register memory
planning, scheduling, timetabling
Internet data packet routing
protein structure prediction
combinatorial auctions winner determination
portfolio selection
...

12

Combinatorial Problems (2)

Simplified models are often used to formalize real life problems

finding shortest/cheapest round trips (TSP)
finding models of propositional formulae (SAT)
coloring graphs (GCP)
finding variable assignment which satisfy constraints (CSP)
partitioning graphs or digraphs
partitioning, packing, covering sets
finding the order of arcs with minimal backward cost
...

13

Example Problems

They are chosen because conceptually concise, intended to illustrate the
development, analysis and presentation of algorithms

Although real-world problems tend to have much more complex
formulations, these problems capture their essence

14

Combinatorial Problems (3)

Combinatorial problems are characterized by an input,
i.e., a general description of conditions and parameters and
a question (or task, or objective) defining
the properties of a solution.

They involve finding a grouping, ordering, or assignment
of a discrete, finite set of objects that satisfies given conditions.

(Candidate) solutions are combinations of objects or solution components
that need not satisfy all given conditions.

Solutions are candidate solutions that satisfy all given conditions.

15

Combinatorial Problems (4)

Classical Example

Traveling Salesman Problem

Given: edge-weighted, undirected graph G
Task: find a minimal-weight Hamiltonian cycle in G.

Note:
solution component: segment consisting of two points that are visited
one directly after the other
candidate solution: one of the (n− 1)! possible sequences of points to
visit one directly after the other.
solution: Hamiltonian cycle of minimal length

16

Decision problems

Hamiltonian cycle problem

Given: undirected graph G
Question: does G contain a Hamiltonian cycle?

solutions = candidate solutions that satisfy given logical conditions

Two variants:
Existence variant: Determine whether solutions
for given problem instance exists
Search variant: Find a solution for given problem instance
(or determine that no solution exists)

17

Optimization problems

Traveling Salesman Problem

Given: edge-weighted, undirected graph G
Task: find a minimal-weight Hamiltonian cycle in G.

objective function measures solution quality
(often defined on all candidate solutions)
find solution with optimal quality, i.e., minimize/maximize obj. func.

Variants of optimization problems:

Search variant: Find a solution with optimal
objective function value for given problem instance
Evaluation variant: Determine optimal objective function
value for given problem instance

18

Remarks

Every optimization problem has associated decision problems:
Given a problem instance and a fixed solution quality bound b,
find a solution with objective function value ≤ b (for minimization
problems) or determine that no such solution exists.

Many optimization problems have an objective function
as well as constraints (= logical conditions) that solutions must satisfy.

A candidate solution is called feasible (or valid) iff it satisfies
the given constraints.

Approximate solutions are feasible candidate solutions that are not
optimal. (to be refined later).

Note: Logical conditions can always be captured by
an objective function such that feasible candidate solutions
correspond to solutions of an associated decision problem
with a specific bound.

19

Combinatorial Problems (5)

General problem vs problem instance:

General problem Π:
Given any set of points X, find a Hamiltonian cycle
Solution: Algorithm that finds shortest Hamiltonian cycle for any X

Problem instantiation π = Π(I):
Given a specific set of points I, find a shortest Hamiltonian cycle
Solution: Shortest Hamiltonian cycle for I

Problems can be formalized on sets of problem instances I

20

Traveling Salesman Problem

Types of TSP instances:

Symmetric: For all edges uv of the given graph G, vu is also in G, and
w(uv) = w(vu).
Otherwise: asymmetric.
Euclidean: Vertices = points in an Euclidean space,
weight function = Euclidean distance metric.
Geographic: Vertices = points on a sphere,
weight function = geographic (great circle) distance.

21

TSP: Benchmark Instances

Instance classes
Real-life applications (geographic, VLSI)
Random Euclidean
Random Clustered Euclidean
Random Distance

Available at the TSPLIB (more than 100 instances upto 85.900 cities)
and at the 8th DIMACS challenge

22

TSP: Instance Examples

23

Methods and Algorithms

A Method is a general framework for the development of a solution
algorithm. It is not problem-specific.

An Algorithm (or algorithmic model) is a problem-specific template that
leaves some practical details unspecified.
The level of detail may vary:

minimally instantiated (few details, algorithm template)
lowly instantiated (which data structure to use)
highly instantiated (programming tricks that give speedups)
maximally instantiated (details specific of a programming language and
computer architecture)

A Program is the formulation of an algorithm in a programming language.

An algorithm can thus be regarded as a class of computer programs
(its implementations)

25

Solution Methods

Exact methods (complete)
guaranteed to eventually find (optimal) solution,
or to determine that no solution exists (eg, systematic enumeration)

Search algorithms (backtracking, branch and bound)
Dynamic programming
Constraint programming
Integer programming
Dedicated Algorithms

Approximation methods
worst-case solution guarantee
http://www.nada.kth.se/~viggo/problemlist/compendium.html

Heuristic (Approximate) methods (incomplete)
not guaranteed to find (optimal) solution,
and unable to prove that no solution exists

26

Problem specific methods:

Dynamic programming (knapsack)

Dedicated algorithms (shortest path)

Generic methods:

Integer Programming (knapsack)

Constraint Programming (constraint satisfaction problem)

Generic methods:
U Allow to save development time
D Do not achieve same performance as specific algorithms

27

Heuristics
Get inspired by approach to problem solving in human mind
(more on this later) [Newell and Simon, 1976]

effective rules

trial and error

Applications:

Optimization, Timetabling, Routing, Scheduling
But also in Psychology, Economics, Management

Side aspects: basis on empirical evidence rather than mathematical logic.
Getting things done in the given time. Good having creativity in problem
solving and criticism.

28

Outline

1. Course Introduction

2. Combinatorial Optimization
Combinatorial Problems
Solution Methods

3. Problem Solving
Example
Psychological Perspective
Mathematical Perspective

4. Basic Concepts from Algorithmics

29

The Vertex Coloring Problem

Given: A graph G and a set of colors Γ .
A proper coloring is an assignment of one color to each vertex of the graph
such that adjacent vertices receive different colors.

Decision version (k-coloring)
Task: Find a proper coloring of G that uses at most k
colors.
Optimization version (chromatic number)
Task: Find a proper coloring of G that uses the
minimal number of colors.

Design an algorithm for solving general instances of the graph coloring
problem.

32

Home Assignment

N-Queens problem

Input: A chessboard of size N×N
Task: Find a placement of n queens
on the board such that no two queens
are on the same row, column, or
diagonal.

33

Home Assignment

N2 Queens – queen graph coloring
problem

Input: A chessboard of size N×N
Question: Given such a chessboard, is
it possible to place N sets of N queens
on the board so that no two queens of
the same set are in the same row,
column, or diagonal?

The answer is yes ⇐⇒ the graph admits a coloring with N colors.

34

Problem Solving

Problem solving is a mental process considered the most complex of all
intellectual functions.

Move from a given state to a desired goal state using the knowledge we have.
However often solutions seem to be original and creative.

Theories:
1. Gestalt approach
2. Problem space theory (Information-processing theory)

37

Gestalt Approach

The process of problem solving is

Behaviourists: reproduction of known responses, trial and error process

Gestalt school: (German psychologists in 20-30’s concerned with experience
as a whole rather than composed of parts)

reproductive: draws on previous experience
may cause fixation and hinder the solution
productive: insight and problem restructuring

38

Gestalt Approach

Maier’s Experiment (1931): pendulum problem

Those who solved it rarely
reported the cue

Unconscious clue can lead to
problem restructuring and insight

Criticism:

unspecified and vague

descriptive nature, not normative
or explanatory (what processes
are involved?)

39

Representational Theory

Incorporate Gestalt ideas into a working theory [Ohlsson, 1992]

A problem is represented in a certain way in the person’s mind and this
serves as a source of information from long-term memory
The retrieval process spreads activation over relevant long term memory
items
A block occurs if the way a problem is represented does not lead to a
helpful memory search
The way the problem is represented changes and the memory search is
extended, making new information available
Representational change can occur due to elaboration (addition of new
information) constraint relaxation (rules are reinterpreted) or re-encoding
(fixedness is removed)
Insight occurs when a block is broken and retrieved knowledge results in
solution

40

Representational Theory

Draw four straight lines to join all the dots without taking the pen off the
page

This problem was given to
employees at Disney as is
reportedly the origin of the
expression “thinking outside
the box”

Who failed probably did not
consider extending the lines
beyond the grid
è Constraint relaxation

41

Problem Space Approach

Information-processing theory:

[A. Newell and H.A. Simon. Computer science as empirical inquiry:
symbols and search. Communications of the ACM, 1976]

generating problems states in the problem space using
legal transition operators to go from an initial state to a
goal state.

restrictions imposed by human processing system (limited
short-term memory and speed).

maximization heuristic: reduce difference between initial
and goal state.

progress monitoring: assessment of rate of progress

42

Further Elements

Experience helps us since we can learn how to structure problems space
and appropriate operators.

Analogy (old knowledge is used to solve new problems)

Domain knowledge and skill acquisition

Observation of expert vs novice in chess
chess masters remember board configurations
structure available to maintain configurations in short term memory
grouping of problems according to underlying conceptual similarities
better encoding of knowledge and easier information retrieval

skill acquisition:
general-purpose rules
rules to specific task
rules are tuned to speed up

43

Further reading:

A. Newell and H.A. Simon. Computer science as empirical inquiry:
symbols and search. Communications of the ACM, ACM, 1976, 19(3),
113-126

A. Dix, J. Finlay, G.D. Abowd and R. Beale. Human-Computer
Interaction. Pearson, Prentice Hall, 2004. (Chapter 1)

Ormerod, T. MacGregor, J. Chronicle, E. (2002) Dynamics and
Constraints in Insight Problem Solving. Journal of Experimental
Psychology: Learning, Memory, and Cognition vol. 28 (4) pp 791-799

44

The Mathematical Perspective

Beside psychologists, also mathematicians reflected upon problem solving
processes:

George Pólya, How to Solve it, 1945

J. Hadamard, The Mathematician’s Mind - The Psychology of Invention
in the Mathematical Field, 1945

46

Mathematical Problem Solving
George Pólya

George Pólya’s 1945 book How to Solve It:

1. Understand the problem.
2. Make a plan.
3. Carry out the plan.
4. Look back on your work. How could it be better?

http://en.wikipedia.org/wiki/How_to_Solve_It

47

Pólya’s First Principle: Understand the Problem

Do you understand all the words used in stating the problem?
What are you asked to find or show?
Is there enough information to enable you to find a solution?
Can you restate the problem in your own words?
Can you think of a picture or a diagram that might help you to
understand the problem?

48

Pólya’s Second Principle: Devise a plan

There are many reasonable ways to solve problems.

Guess and check
Make an orderly list
Eliminate possibilities
Use symmetry
Consider special cases
Use direct reasoning

Also suggested:

Look for a pattern
Draw a picture
Solve a simpler problem
Use a model
Work backward

Choosing an appropriate strategy is best learned by solving many problems.

49

Pólya’s Third Principle: Carry out the plan

“Needed is care and patience, given that you have the necessary
skills. Persist with the plan that you have chosen. If it continues
not to work discard it and choose another. Don’t be misled, this is
how mathematics is done, even by professionals.”

Pólya’s Fourth Principle: Review/Extend

“Much can be gained by taking the time to reflect and look back at
what you have done, what worked and what didn’t. Doing this will
enable you to predict what strategy to use to solve future problems.”

50

51

Inspiration can strike anytime, particularly after an individual
had worked hard on a problem for days and then turned the
attention to another activity.

The Mathematician’s Mind - The Psychology of Invention in the
Mathematical Field, J. Hadamard, 1945

52

Outline

1. Course Introduction

2. Combinatorial Optimization
Combinatorial Problems
Solution Methods

3. Problem Solving
Example
Psychological Perspective
Mathematical Perspective

4. Basic Concepts from Algorithmics

53

Concepts from Algorithmics
Outline

Notation of runtime analysis

Machine models

Pseudo-code

Computational complexity

Analysis of algorithms

Graphs

54

Motivations

Questions:

1. How hard, computationally, is a given a problem to solve
using the most efficient algorithm for that problem?

2. How good is the algorithm designed?

1. Complexity theory

2. Asymptotic notation, running time bounds
Approximation theory

55

Asymptotic notation

n ∈ N instance size

max time worst case T(n) = max{T(π) : π ∈ Πn}

average time average case T(n) = 1
|Πn| {

∑
π T(π) : π ∈ Πn}

min time best case T(n) = min{T(π) : π ∈ Πn}

Growth rate or asymptotic analysis

f(n) and g(n) same growth rate if c ≤ f(n)
g(n) ≤ d for n large

f(n) grows faster than g(n) if f(n) ≥ c · g(n) for all c and n large

big O O(f) = {g(n) : ∃c > 0, ∀n > n0 : g(n) ≤ c · f(n)}

big omega Ω(f) = {g(n) : ∃c > 0, ∀n > n0 : g(n) ≥ c · f(n)}

theta Θ(f) = O(f) ∩Ω(f)

little O o(f) = g grows strictly more slowly

56

Machine model

For asymptotic analysis we use RAM machine

single processor unit

all memory access take same amount of time

It is an abstraction from machine architecture: it ignores caches, memories
hierarchies, parallel processing (SIMD, multi-threading), etc.

Total execution of a program = total number of instructions executed

We are not interested in constant and lower order terms

57

Pseudo-code

We express algorithms in natural language and mathematical notation, and in
pseudo-code, which is an abstraction from programming languages C, C++,
Java, etc.

(In implementation you can choose your favorite language)

Programs must be correct.
Certifying algorithm: computes a certificate for a post condition (without
increasing asymptotic running time)

58

Good Algorithms

We say that an algorithm A is

Efficient = good = polynomial time = polytime
iff

there exists p(n) such that T(A) = O(p(n))

There are problems for which no polytime algorithm is known.
This course is about those problems.

Complexity theory classifies problems

59

Computational Complexity

Consider Decision Problems

A problem Π is in P if ∃ algorithm A that finds a solution in polynomial
time.
in NP if ∃ verification algorithm A(s, k) that verifies a binary certificate
(whether it is a solution to the problem) in polynomial time.
Polynomial time reduction formally shows that one problem Π1 is at
least as hard as another Π2, to within a polynomial factor. (there exists
a polynomial time transformation) Π2 ≤P Π1 ⇒ Π2 is no more than a
polynomial harder than Π1.
Π1 is in NP-complete if
1. Π1 ∈ NP
2. ∀Π2 ∈ NP Π2 ≤P Π1

If Π1 satisfies property 2, but not necessarily property 1, we say that it is
NP-hard:

60

Summary

1. Course Introduction

2. Combinatorial Optimization

Combinatorial Problems, Terminology
Solution Methods, Overview
Travelling Salesman Problem

3. Problem Solving

Example: Graph Coloring Problem
Psychological Perspective
Mathematical Perspective, Polya’s view

4. Basic Concepts from Algorithmics

61

Outlook

Next Time:

Generalitis on Heuristics

Working Environment

Basic Concepts from Algorithmics

In preparation:

Check Announcements

Set up and Write in the Blog

Think individually to the Running Assignment and be prepared to
discuss your solutions

Read the chapters in photocopies

62

