
DM811 – Fall 2009

Heuristics for Combinatorial Optimization

Lecture 10
Efficient Local Search

Exercises

Marco Chiarandini

Deptartment of Mathematics & Computer Science
University of Southern Denmark

Resume

Fromalization and properties of neighborhood operators

Distances in neighborhood graph

Non-obvious solution representations

parallel machine scheduling problem

Steiner tree problem

2

Knapsack, Bin Packing, Cutting Stock

Knapsack

Given: a knapsack with maximum weight W and a set of n items
{1, 2, . . . , n}, with each item j associated to a profit pj and to a weight wj.

Task: Find the subset of items of maximal total profit and whose total
weight is not greater than W.

One dimensional Bin Packing

Given: A set L = (a1, a2, . . . , an) of items, each with a size s(ai) ∈ (0, 1]
and an unlimited number of unit-capacity bins B1, B2, . . . , Bm.

Task: Pack all the items into a minimum number of unit-capacity bins
B1, B2, . . . , Bm.

Cutting stock

Each item has a profit pj > 0 and a number of times it must appear ai.
The task is to select a subset of items to be packed in a single finite bin that
maximizes the total selected profit.

3

Bin Packing

Cutting Stock

Two-Dimensional Packing Problems

Two dimensional bin packing

Given: A set L = (a1, a2, . . . , an) of n rectangular items, each with a width
wj and a height hj and an unlimited number of identical rectangular bins of
width W and height H.
Task: Allocate all the items into a minimum number of bins, such that the
original orientation is respected (no rotation of the items is allowed).

Two dimensional strip packing

Given: A set L = (a1, a2, . . . , an) of n rectangular items, each with a width
wj and a height hj and a bin of width W and infinite height (a strip).
Task: Allocate all the items into the strip by minimizing the used height and
such that the original orientation is respected (no rotation of the items is
allowed).

Two dimensional cutting stock

Each item has a profit pj > 0 and the task is to select a subset of items to be
packed in a single finite bin that maximizes the total selected profit.

7

Three dimensional

Given: A set L = (a1, a2, . . . , an) of rectangular boxes, each with a width
wj, height hj and depth dj and an unlimited number of three-dimensional
bins B1, B2, . . . , Bm of width W, height H, and depth D.

Task: Pack all the boxes into a minimum number of bins, such that the
original orientation is respected (no rotation of the boxes is allowed)

8

Outline

1. Efficient Local Search
Application Examples

9

Efficiency vs Effectiveness

The performance of local search is determined by:

1. quality of local optima (effectiveness)

2. time to reach local optima (efficiency):

A. time to move from one solution to the next

B. number of solutions to reach local optima

10

Note:
Local minima depend on g and neighborhood function N .
Larger neighborhoods N induce

neighborhood graphs with smaller diameter;
fewer local minima.

Ideal case: exact neighborhood, i.e., neighborhood function
for which any local optimum is also guaranteed to be
a global optimum.

Typically, exact neighborhoods are too large to be searched effectively
(exponential in size of problem instance).

11

Trade-off (to be assessed experimentally):

Using larger neighborhoods
can improve performance of II (and other LS methods).
But: time required for determining improving search steps
increases with neighborhood size.

Speedups Techniques for Efficient Neighborhood Search

1) Incremental updates

2) Neighborhood pruning

12

Speedups in Neighborhood Examination

1) Incremental updates (aka delta evaluations)

Key idea: calculate effects of differences between
current search position s and neighbors s ′ on
evaluation function value.

Evaluation function values often consist of
independent contributions of solution components;
hence, f(s) can be efficiently calculated from f(s ′) by differences
between s and s ′ in terms of solution components.

Typically crucial for the efficient implementation of
II algorithms (and other LS techniques).

13

Do not do this:

tmp ← current
while ∃ unseen sol in N(current) do

change current into sol
evaluate current
if current better than tmp then

break;
current ← tmp

Do this:

while ∃ unseen sol in N(current) do
evaluate changes at current
if improving then

change current into sol

14

Example: Incremental updates for TSP

solution components = edges of given graph G
standard 2-exchange neighborhood, i.e., neighboring
round trips p, p ′ differ in two edges

w(p ′) := w(p) − edges in p but not in p ′

+ edges in p ′ but not in p

Note: Constant time (4 arithmetic operations), compared to
linear time (n arithmetic operations for graph with n vertices)
for computing w(p ′) from scratch.

15

2) Neighborhood Pruning

Idea: Reduce size of neighborhoods by excluding neighbors that are
likely (or guaranteed) not to yield improvements in f.
Note: Crucial for large neighborhoods, but can be also very useful for
small neighborhoods (e.g., linear in instance size).

Example: Heuristic candidate lists for the TSP

Intuition: High-quality solutions likely include short edges.
Candidate list of vertex v: list of v’s nearest neighbors (limited number),
sorted according to increasing edge weights.
Search steps (e.g., 2-exchange moves) always involve edges to elements
of candidate lists.
Significant impact on performance of LS algorithms
for the TSP.

16

Overview

Delta evaluations and neighborhood examinations in:

Permutations
TSP
SMTWTP, Parallel Machine, Bin Packing

Assignments
CSP, SAT, GCP, Bin Packing

Sets
Set Covering, Max Independent Set, p-median

18

Example: Iterative Improvement for k-col

search space S: set of all k-colorings of G

solution set S ′: set of all proper k-coloring of F

neighborhood function N : 1-exchange neighborhood
(as in Uninformed Random Walk)

memory: not used, i.e., M := {0}

initialization: uniform random choice from S, i.e., init{∅, ϕ ′} := 1/|S|

for all colorings ϕ ′

step function:
evaluation function: g(ϕ) := number of edges in G
whose ending vertices are assigned the same color under assignment ϕ
(Note: g(ϕ) = 0 iff ϕ is a proper coloring of G.)
move mechanism: uniform random choice from improving neighbors, i.e.,
step{ϕ,ϕ ′} := 1/|I(ϕ)| if s ′ ∈ I(ϕ),
and 0 otherwise, where I(ϕ) := {ϕ ′ | N (ϕ,ϕ ′) ∧ g(ϕ ′) < g(ϕ)}

termination: when no improving neighbor is available
i.e., terminate{ϕ,>} := 1 if I(ϕ) = ∅, and 0 otherwise.

19

Local Search for the Traveling Salesman Problem

k-exchange heuristics
2-opt
2.5-opt
Or-opt
3-opt

complex neighborhoods
Lin-Kernighan
Helsgaun’s Lin-Kernighan
Dynasearch
ejection chains approach

Implementations exploit speed-up techniques
1. neighborhood pruning: fixed radius nearest neighborhood search
2. neighborhood lists: restrict exchanges to most interesting candidates
3. don’t look bits: focus perturbative search to “interesting” part
4. sophisticated data structures

20

TSP data structures
Tour representation:

reverse(a, b)

succ

prec

sequence(a,b,c) – check whether b is within a and b
Possible choices:

|V | < 1.000 array for π and π−1

|V | < 1.000.000 two level tree
|V | > 1.000.000 splay tree

Moreover static data structure:
priority lists
k-d trees

21

Look at implementation of local search for TSP by T. Stützle:

File: http://www.imada.sdu.dk/~marco/DM811/Lab/ls.c

two_opt_b(tour);
two_opt_f(tour);
two_opt_best(tour);
two_opt_first(tour);
three_opt_first(tour);

22

[Appelgate Bixby, Chvátal, Cook, 2006]

23

24

Single Machine Total Weighted Tardiness Problem

Interchange: size
(
n
2

)
and O(|i− j|) evaluation each

first-improvement: πj, πk
pπj ≤ pπk for improvements, wjTj+wkTk must decrease because jobs

in πj, . . . , πk can only increase their tardiness.
pπj ≥ pπk possible use of auxiliary data structure to speed up the com-

putation
best-improvement: πj, πk
pπj ≤ pπk for improvements, wjTj +wkTk must decrease at least as

the best interchange found so far because jobs in πj, . . . , πk
can only increase their tardiness.

pπj ≥ pπk possible use of auxiliary data structure to speed up the com-
putation

Swap: size n− 1 and O(1) evaluation each
Insert: size (n− 1)2 and O(|i− j|) evaluation each
But possible to speed up with systematic examination by means of
swaps: an insert is equivalent to |i− j| swaps hence overall examination
takes O(n2)

25

The Max Independent Set Problem

Max Independent Set (aka, stable set problem or vertex packing problem)

Given: an undirected graph G(V, E) and a non-negative weight function ω
on V (ω : V → R)
Task: A largest weight independent set of vertices, i.e., a subset V ′ ⊆ V
such that no two vertices in V ′ are joined by an edge in E.

Related Problems:

Vertex Cover

Given: an undirected graph G(V, E) and a non-negative weight function ω
on V (ω : V → R)
Task: A smallest weight vertex cover, i.e., a subset V ′ ⊆ V such that each
edge of G has at least one endpoint in V ′.

Maximum Clique

Given: an undirected graph G(V, E)
Task: A maximum cardinality clique, i.e., a subset V ′ ⊆ V such that every
two vertices in V ′ are joined by an edge in E

26

The p-median Problem

Given:
a set U of locations for n users
a set F of locations of m facilities
a distance matrix D = [dij] ∈ Rn×m

Task: Select p locations of F where to install facilities such that
the sum of the distances of each user to its closest installed facility is
minimized, i.e.,

min
J

∑
i∈U

min
j∈F

dij J ⊆ F and |J| = p

27

