
DM811 – Fall 2009

Heuristics for Combinatorial Optimization

Lecture 11
Stochastic Local Search and Metaheuristics

Marco Chiarandini

Deptartment of Mathematics & Computer Science
University of Southern Denmark

Outline

1. Randomized Iterative Improvement

2. Tabu Search

3. Simulated Annealing

4. Iterated Local Search

5. Variable Neighborhood Search

2

Outline

1. Randomized Iterative Improvement

2. Tabu Search

3. Simulated Annealing

4. Iterated Local Search

5. Variable Neighborhood Search

4

Min-Conflict Heuristics

5

Randomized Iterative Impr.
aka, Stochastic Hill Climbing

Key idea: In each search step, with a fixed probability
perform an uninformed random walk step instead of
an iterative improvement step.

Randomized Iterative Improvement (RII):
determine initial candidate solution s
while termination condition is not satisfied do

With probability wp:
choose a neighbor s ′ of s uniformly at random

Otherwise:
choose a neighbor s ′ of s such that f(s ′) < f(s) or,
if no such s ′ exists, choose s ′ such that f(s ′) is minimal

s := s ′

6

Example: Randomized Iterative Improvement for GCP

procedure RIIGCP(F, wp, maxSteps)
input: a graph G and k, probability wp, integer maxSteps
output: a proper coloring ϕ for G or ∅
choose coloring ϕ of G uniformly at random;
steps := 0;
while not(ϕ is not proper) and (steps < maxSteps) do

with probability wp do
select v in V and c in Γ uniformly at random;

otherwise
select v in Vc and c in Γ uniformly at random from those that

maximally decrease number of edge violations;
change color of v in ϕ;
steps := steps+1;

end
if ϕ is proper for G then return ϕ
else return ∅
end

end RIIGCP

7

Note:

No need to terminate search when local minimum is encountered
Instead: Impose limit on number of search steps or CPU time,
from beginning of search or after last improvement.
Probabilistic mechanism permits arbitrary long sequences
of random walk steps
Therefore: When run sufficiently long, RII is guaranteed
to find (optimal) solution to any problem instance with
arbitrarily high probability.

8

Min-Conflict + Random Walk

Example of slc heuristic: with prob. wp select a random move, with prob.
1−wp select the best

9

Outline

1. Randomized Iterative Improvement

2. Tabu Search

3. Simulated Annealing

4. Iterated Local Search

5. Variable Neighborhood Search

10

Tabu Search

Key idea: Use aspects of search history (memory) to escape from local
minima.

Associate tabu attributes with candidate solutions or
solution components.

Forbid steps to search positions recently visited by
underlying iterative best improvement procedure based on
tabu attributes.

Tabu Search (TS):
determine initial candidate solution s
While termination criterion is not satisfied:
|| determine set N ′ of non-tabu neighbors of s
|| choose a best candidate solution s ′ in N ′
||
|| update tabu attributes based on s ′
b s := s ′

11

Example: Tabu Search for GCP – TabuCol

Search space: set of all complete colorings of G.
Solution set: proper colorings of G.
Neighborhood relation: one-exchange.
Memory: Associate tabu status (Boolean value) with each pair (v, c).
Initialization: a construction heuristic
Search steps:

pairs (v, c) are tabu if they have been changed
in the last tt steps;
neighboring colorings are admissible if they
can be reached by changing a non-tabu pair
or have fewer unsatisfied edge constr. than the best coloring
seen so far (aspiration criterion);
choose uniformly at random admissible coloring
with minimal number of unsatisfied constraints.

Termination: upon finding a proper coloring for G or after given bound
on number of search steps has been reached or after a number of idle
iterations

12

Note:

Non-tabu search positions in N(s) are called
admissible neighbors of s.
After a search step, the current search position
or the solution components just added/removed from it
are declared tabu for a fixed number of subsequent
search steps (tabu tenure).
Often, an additional aspiration criterion is used: this specifies
conditions under which tabu status may be overridden (e.g., if
considered step leads to improvement in incumbent solution).
Crucial for efficient implementation:

keep time complexity of search steps minimal
by using special data structures, incremental updating
and caching mechanism for evaluation function values;
efficient determination of tabu status:
store for each variable x the number of the search step
when its value was last changed itx; x is tabu if
it− itx < tt, where it = current search step number.

13

Note: Performance of Tabu Search depends crucially on
setting of tabu tenure tt:

tt too low ⇒ search stagnates due to inability to escape
from local minima;
tt too high ⇒ search becomes ineffective due to overly restricted search
path (admissible neighborhoods too small)

Advanced TS methods:

Robust Tabu Search [Taillard, 1991]:
repeatedly choose tt from given interval;
also: force specific steps that have not been made for a long time.

Reactive Tabu Search [Battiti and Tecchiolli, 1994]:
dynamically adjust tt during search;
also: use escape mechanism to overcome stagnation.

14

Further improvements can be achieved by using intermediate-term or
long-term memory to achieve additional intensification or diversification.

Examples:

Occasionally backtrack to elite candidate solutions, i.e., high-quality
search positions encountered earlier in the search; when doing this, all
associated tabu attributes are cleared.

Freeze certain solution components and keep them fixed
for long periods of the search.

Occasionally force rarely used solution components to be introduced into
current candidate solution.

Extend evaluation function to capture frequency of use
of candidate solutions or solution components.

15

Tabu search algorithms algorithms are state of the art
for solving many combinatorial problems, including:

SAT and MAX-SAT
CSP and MAX-CSP
GCP
many scheduling problems

Crucial factors in many applications:

choice of neighborhood relation

efficient evaluation of candidate solutions
(caching and incremental updating mechanisms)

16

Min-Conflict + Tabu Search

After the value of a variable x is changed from v to v ′ with min-conflict
heuristic, the variable/value pair (xi, v) is declared tabu for the next tt
steps

tt = 2 is often a good choice

è Advantage: the neighborhood does not need to be searched exahustively

17

Min-Conflict + RW + TS
Another more involved hybrid:

Example on GCP

: decision tree for step

 select the
second best colour

 select
best colour

 many colours
with best improvement

 only one colour
with best improvement

select one,
not most recent

randomly

1−wp

select v and c
randomly

select v in Vc

1−p p

wp

select best colour

colour randomly

most recent
among colors for vamong colors for v

not most recent

18

TS for GCP

Design choices:

Neighborhood exploration:

no reduction

min-conflict heuristic

Prohibition power for move = <v,new_c,old_c>

<v,-,->

<v,-,old_c>

<v,new_c,old_c>, <v,old_c,new_c>

Tabu list dynamics:

Interval: tt ∈ [tb, tb +w]

Adaptive: tt = bα · csc+ RandU(0, tb)

19

Outline

1. Randomized Iterative Improvement

2. Tabu Search

3. Simulated Annealing

4. Iterated Local Search

5. Variable Neighborhood Search

23

Probabilistic Iterative Improv.

Key idea: Accept worsening steps with probability that depends
on respective deterioration in evaluation function value:
bigger deterioration ∼= smaller probability

Realization:

Function p(f, s): determines probability distribution
over neighbors of s based on their values under
evaluation function f.
Let step(s, s ′) := p(f, s, s ′).

Note:

Behavior of PII crucially depends on choice of p.
II and RII are special cases of PII.

24

Example: Metropolis PII for the TSP

Search space S: set of all Hamiltonian cycles in given graph G.
Solution set: same as S
Neighborhood relation N (s): 2-edge-exchange
Initialization: an Hamiltonian cycle uniformly at random.
Step function: implemented as 2-stage process:

1. select neighbor s ′ ∈ N(s) uniformly at random;
2. accept as new search position with probability:

p(T, s, s ′) :=

{
1 if f(s ′) ≤ f(s)
exp f(s)−f(s ′)

T
otherwise

(Metropolis condition), where temperature parameter T controls
likelihood of accepting worsening steps.

Termination: upon exceeding given bound on run-time.

25

Inspired by statistical mechanics in matter physics:

candidate solutions ∼= states of physical system
evaluation function ∼= thermodynamic energy
globally optimal solutions ∼= ground states
parameter T ∼= physical temperature

Note: In physical process (e.g., annealing of metals), perfect ground states
are achieved by very slow lowering of temperature.

26

Simulated Annealing

Key idea: Vary temperature parameter, i.e., probability of accepting
worsening moves, in Probabilistic Iterative Improvement according to
annealing schedule (aka cooling schedule).

Simulated Annealing (SA):
determine initial candidate solution s
set initial temperature T according to annealing schedule
while termination condition is not satisfied: do

while maintain same temperature T according to annealing schedule do
probabilistically choose a neighbor s ′ of s using proposal mechanism
if s ′ satisfies probabilistic acceptance criterion (depending on T) then

s := s ′

update T according to annealing schedule

27

2-stage step function based on
proposal mechanism (often uniform random choice from N(s))
acceptance criterion (often Metropolis condition)

Annealing schedule
(function mapping run-time t onto temperature T(t)):

initial temperature T0

(may depend on properties of given problem instance)
temperature update scheme
(e.g., linear cooling: Ti+1 = T0(1− i/Imax),
geometric cooling: Ti+1 = α · Ti)
number of search steps to be performed at each temperature
(often multiple of neighborhood size)
may be static or dynamic
seek to balance moderate execution time with asymptotic behavior
properties

Termination predicate: often based on acceptance ratio,
i.e., ratio of proposed vs accepted steps or number of idle iterations

28

Example: Simulated Annealing for the TSP

Extension of previous PII algorithm for the TSP, with

proposal mechanism: uniform random choice from
2-exchange neighborhood;
acceptance criterion: Metropolis condition (always accept improving
steps, accept worsening steps with probability exp [(f(s) − f(s ′))/T]);
annealing schedule: geometric cooling T := 0.95 · T with n · (n− 1)
steps at each temperature (n = number of vertices in given graph), T0

chosen such that 97% of proposed steps are accepted;
termination: when for five successive temperature values no
improvement in solution quality and acceptance ratio < 2%.

Improvements:

neighborhood pruning (e.g., candidate lists for TSP)
greedy initialization (e.g., by using NNH for the TSP)
low temperature starts (to prevent good initial candidate solutions from
being too easily destroyed by worsening steps)

29

Profiling

0.0

0.5

1.0

1.5

2.0

2.5

T
em

pe
ra

tu
re

Run A

0 10 20 30 40 50

0

100

200

300

400

500

600

Iterations 107

C
os

t f
un

ct
io

n
va

lu
e

Run B

0 10 20 30 40 50

Iterations 107

31

Outline

1. Randomized Iterative Improvement

2. Tabu Search

3. Simulated Annealing

4. Iterated Local Search

5. Variable Neighborhood Search

34

Iterated Local Search

Key Idea: Use two types of LS steps:

subsidiary local search steps for reaching
local optima as efficiently as possible (intensification)

perturbation steps for effectively
escaping from local optima (diversification).

Also: Use acceptance criterion to control diversification vs intensification
behavior.

Iterated Local Search (ILS):
determine initial candidate solution s
perform subsidiary local search on s
while termination criterion is not satisfied do

r := s

perform perturbation on s
perform subsidiary local search on s
based on acceptance criterion,
keep s or revert to s := r

35

Note:

Subsidiary local search results in a local minimum.

ILS trajectories can be seen as walks in the space of
local minima of the given evaluation function.

Perturbation phase and acceptance criterion may use aspects of search
history (i.e., limited memory).

In a high-performance ILS algorithm, subsidiary local search,
perturbation mechanism and acceptance criterion need to complement
each other well.

36

Subsidiary local search: (1)

More effective subsidiary local search procedures lead to better ILS
performance.
Example: 2-opt vs 3-opt vs LK for TSP.
Often, subsidiary local search = iterative improvement,
but more sophisticated LS methods can be used.
(e.g., Tabu Search).

37

Perturbation mechanism: (1)

Needs to be chosen such that its effect cannot be easily undone by
subsequent local search phase.
(Often achieved by search steps larger neighborhood.)
Example: local search = 3-opt, perturbation = 4-exchange steps in ILS
for TSP.
A perturbation phase may consist of one or more
perturbation steps.
Weak perturbation ⇒ short subsequent local search phase; but: risk of
revisiting current local minimum.
Strong perturbation ⇒ more effective escape from local minima; but:
may have similar drawbacks as random restart.
Advanced ILS algorithms may change nature and/or strength of
perturbation adaptively during search.

38

Acceptance criteria: (1)

Always accept the best of the two candidate solutions⇒ ILS performs Iterative Improvement in the space of local optima
reached by subsidiary local search.

Always accept the most recent of the two candidate solutions⇒ ILS performs random walk in the space of local optima reached by
subsidiary local search.

Intermediate behavior: select between the two candidate solutions based
on the Metropolis criterion (e.g., used in Large Step Markov Chains
[Martin et al., 1991].

Advanced acceptance criteria take into account search history,
e.g., by occasionally reverting to incumbent solution.

39

Example: Iterated Local Search for the TSP (1)

Given: TSP instance G.

Search space: Hamiltonian cycles in G.

Subsidiary local search: Lin-Kernighan variable depth search algorithm

Perturbation mechanism:
‘double-bridge move’ = particular 4-exchange step:

A

BC

D

double bridge

move

A

BC

D

Acceptance criterion: Always return the best of the two given
candidate round trips.

40

Outline

1. Randomized Iterative Improvement

2. Tabu Search

3. Simulated Annealing

4. Iterated Local Search

5. Variable Neighborhood Search

43

Variable Neighborhood Search

Variable Neighborhood Search is a method based on the systematic change of
the neighborhood during the search.

Central observations

a local minimum w.r.t. one neighborhood function is not necessarily
locally minimal w.r.t. another neighborhood function
a global optimum is locally optimal w.r.t. all neighborhood functions

44

Principle: change the neighborhood during the search

Several adaptations of this central principle

(Basic) Variable Neighborhood Descent (VND)

Variable Neighborhood Search (VNS)

Reduced Variable Neighborhood Search (RVNS)

Variable Neighborhood Decomposition Search (VNDS)

Skewed Variable Neighborhood Search (SVNS)

Notation

Nk, k = 1, 2, . . . , km is a set of neighborhood functions

Nk(s) is the set of solutions in the k-th neighborhood of s

45

How to generate the various neighborhood functions?

for many problems different neighborhood functions (local searches)
exist / are in use
change parameters of existing local search algorithms
use k-exchange neighborhoods; these can be naturally extended
many neighborhood functions are associated with distance measures; in
this case increase the distance

46

Basic Variable Neighborhood Descent

Procedure BVND
input : Nk, k = 1, 2, . . . , kmax, and an initial solution s
output: a local optimum s for Nk, k = 1, 2, . . . , kmax

k← 1

repeat
s ′ ← FindBestNeighbor(s,Nk)
if f(s ′) < f(s) then

s← s ′

(k← 1)
else

k← k+ 1

until k = kmax ;

47

Variable Neighborhood Descent

Procedure VND
input : Nk, k = 1, 2, . . . , kmax, and an initial solution s
output: a local optimum s for Nk, k = 1, 2, . . . , kmax

k← 1

repeat
s ′ ← IterativeImprovement(s,Nk)
if f(s ′) < f(s) then

s← s ′

k← 1

else
k← k+ 1

until k = kmax ;

48

Final solution is locally optimal w.r.t. all neighborhoods

First improvement may be applied instead of best improvement

Typically, order neighborhoods from smallest to largest

If iterative improvement algorithms IIk, k = 1, . . . , kmax

are available as black-box procedures:
order black-boxes
apply them in the given order
possibly iterate starting from the first one
order chosen by: solution quality and speed

49

Example

VND for single-machine total weighted tardiness problem

Candidate solutions are permutations of job indexes
Two neighborhoods: swap and insert
Influence of different starting heuristics also considered

initial swap insert swap+insert insert+swap
solution ∆avg tavg ∆avg tavg ∆avg tavg ∆avg tavg
EDD 0.62 0.140 1.19 0.64 0.24 0.20 0.47 0.67
MDD 0.65 0.078 1.31 0.77 0.40 0.14 0.44 0.79

∆avg deviation from best-known solutions, averaged over 100 instances

50

Basic Variable Neighborhood Search

Procedure BVNS
input : Nk, k = 1, 2, . . . , kmax, and an initial solution s
output: a local optimum s for Nk, k = 1, 2, . . . , kmax

repeat
k← 1

repeat
s ′ ← RandomPicking(s,Nk)
s ′′ ← IterativeImprovement(s ′,Nk)
if f(s ′′) < f(s) then

s← s ′′

k← 1

else
k← k+ 1

until k = kmax ;
until Termination Condition ;

51

To decide:
which neighborhoods
how many
which order
which change strategy

Extended version: parameters kmin and kstep; set k← kmin and
increase by kstep if no better solution is found (achieves diversification)

52

Extensions (1)

Reduced Variable Neighborhood Search (RVNS)

same as VNS except that no IterativeImprovement procedure is applied

only explores different neighborhoods randomly

can be faster than standard local search algorithms for reaching good
quality solutions

53

Extensions (2)

Variable Neighborhood Decomposition Search (VNDS)
same as in VNS but in IterativeImprovement all solution components are
kept fixed except k randomly chosen
IterativeImprovement is applied on the k unfixed components

IterativeImprovement can be substituted by exhaustive search up to a
maximum size b (parameter) of the problem

54

Extensions (3)

Skewed Variable Neighborhood Search (SVNS)

Derived from VNS
Accept s← s ′′ when s ′′ is worse

according to some probability

skewed VNS: accept if

g(s ′′) − α · d(s, s ′′) < g(s)

d(s, s ′′) measure the distance between solutions

(underlying idea: avoiding degeneration to multi-start)

55

