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Probability Distributions

Binomial distribution

P[x = v] =

(
n

v

)
pv(1− p)n−v
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Binomial Distribution: Trials = 30,
 Probability of success = 0.5
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p probability of successes
x number of successes
The binomial distribution indicates the
probability for each set of outcomes,
i.e., v = {1, . . . , n} successes.

One parameter: p
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Uniform distribution (continuous)

f(x) =
1
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Normal distribution (continuous)

f(x) =
1
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Normal Distribution: µ = 0, σ = 1
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Theoretical importance

Defined by two parameters: N(µ, σ).

N(0, 1) is the standardized version.

In N(0, 1) 68.27% of data fall within
µ± σ
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Exponential distribution (continuous)

f(t) = λe−λt
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Exponential distribution:
 lambda = 1
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It has the memory-less property, i.e.,
the probability of a new event to
happen within a fixed time does not
depend on the time passed so far.

Defined by one parameter: E[X] = 1
λ .
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Weibull distribution (continuous)

f(x) =
β

η

(t− γ

η

)β−1
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Weibull Distribution:
 shape=1.5, scale=1, location=0
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Used in life data and reliability analysis

Defined by three parameters:
β (shape), η (scale), γ (location)
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Inferential Statistics

We work with samples (instances, solution quality)
But we want sound conclusions: generalization over a given population
(all possible instances)
Thus we need statistical inference

Random Sample
Xn

Statistical Estimator θ̂

Population
P(x, θ)

Parameter θ

Inference

Since the analysis is based on finite-sized sampled data, statements like
“the cost of solutions returned by algorithm A is smaller than that
of algorithm B”

must be completed by

“at a level of significance of 5%”.
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Parameter Estimation

Estimator θ̂(X1, . . . , Xn) makes a guess on the parameter (Es. X̄)
Estimate is the actual value θ̂(x1, . . . , xn)

Properties of an estimator:
unbiased: E[θ̂] = θ (e.g., E[X̄] = µ)
consistent
efficient (uncertainty must decrease with size, e.g., Var[X̄] = σ2/n)
sufficient

Note: The best result bN = mini ci is not a good estimator. It is biased and
not efficient.
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A Motivating Example

There is a competition and two stochastic algorithms A1 and A2 are
submitted.
We run both algorithms once on n instances.
On each instance either A1 wins (+) or A2 wins (-) or they make a tie
(=).

Questions:

1. If we have only 10 instances and algorithm A1 wins 7 times how
confident are we in claiming that algorithm A1 is the best?

2. How many instances and how many wins should we observe to gain a
confidence of 95% that the algorithm A1 is the best?
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A Motivating Example
p: probability that A1 wins on each instance (+)
n: number of runs without ties
Y: number of wins of algorithm A1

If each run is indepenedent and consitent:

Y ∼ B(n, p) : Pr[Y = y] =

(
n

y

)
py(1− p)n−y

10 15 20

0.
00

0.
04

0.
08

0.
12

Binomial Distribution: Trials = 30,
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1 If we have only 10 instances and algorithm A1 wins 7 times how
confident are we in claiming that algorithm A1 is the best?

Under these conditions, we can check how unlikely the situation is if it were
p(+) ≤ p(−).

If p = 0.5 then the chance that algorithm A1 wins 7 or more times out of 10
is 17.2%: quite high!
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Binomial distribution: Trials = 30
Probability of success 0.5
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2 How many instances and how many wins should we observe to gain a
confidence of 95% that the algorithm A1 is the best?

To answer this question, we compute the 95% quantile, i.e.,
y : Pr[Y ≥ y] < 0.05 with p = 0.5 at different values of n:

n 10 11 12 13 14 15 16 17 18 19 20

y 9 9 10 10 11 12 12 13 13 14 15

This is an application example of sign test, a special case of binomial test in
which p = 0.5
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Inferential Statistics

General procedure:

Assume that data are consistent with a null hypothesis H0 (e.g., sample
data are drawn from distributions with the same mean value).

Use a statistical test to compute how likely this is to be true, given the
data collected. This “likely” is quantified as the p-value.

Accept H0 as true if the p-value is larger than an user defined threshold
called level of significance α.

Alternatively (p-value < α), H0 is rejected in favor of an alternative
hypothesis, H1, at a level of significance of α.
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Preparation of the Experiments

Variance reduction techniques
Same pseudo random seed

Sample Sizes

If the sample size is large enough (infinity) any difference in the means
of the factors, no matter how small, will be significant
Real vs Statistical significance
Study factors until the improvement in the response variable is deemed
small
Desired statistical power + practical precision ⇒ sample size

Note: If resources available for N runs then the optimal design is one run on
N instances [Birattari, 2004]
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Experimental Design

Algorithms ⇒ Treatment Factor; Instances ⇒ Blocking Factor

Design A: One run on various instances (Unreplicated Factorial)

Algorithm 1 Algorithm 2 . . . Algorithm k
Instance 1 X11 X12 X1k

...
...

...
...

Instance b Xb1 Xb2 Xbk

Design B: Several runs on various instances (Replicated Factorial)

Algorithm 1 Algorithm 2 . . . Algorithm k
Instance 1 X111, . . . , X11r X121, . . . , X12r X1k1, . . . , X1kr
Instance 2 X211, . . . , X21r X221, . . . , X22r X2k1, . . . , X2kr

...
...

...
...

Instance b Xb11, . . . , Xb1r Xb21, . . . , Xb2r Xbk1, . . . , Xbkr
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Unreplicated Designs

Procedure Race [Birattari 2002]:
repeat

Randomly select an unseen instance and run all candidates on it
Perform all-pairwise comparison statistical tests
Drop all candidates that are significantly inferior to the best algorithm

until only one candidate left or no more unseen instances ;

F-Race use Friedman test
Holm adjustment method is typically the most powerful
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Sequential Testing

S_D_s_Y
S_D_g_Y
O_CCRB
O_CCRA
O_DCRB
S_D_g_N
O_CRRA
O_DCRA
O_CRRB
S_D_s_N
O_DRRA
O_DRRB
S_RLF_N
O_CCFA

S_RLF_Y
O_CCFB
O_DCFB
O_DCFA

S_Seq_SL_Y
...
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