Outline

DM811 - Fall 2009

Heuristics for Combinatorial Optimization

Lecture 14

Race: A Configuration Tool

Marco Chiarandini
Deptartment of Mathematics \& Computer Science University of Southern Denmark

Outline

1. Introduction
2. Inferential Statistics

Basics of Inferential Statistics
Experimental Designs
3. Race: Sequential Testing

1. Introduction
2. Inferential Statistics Basics of Inferential Statistics Experimental Designs
3. Race: Sequential Testing

Probability Distributions

Binomial distribution

$$
\mathrm{P}[\mathrm{x}=v]=\binom{\mathrm{n}}{v} \mathrm{p}^{v}(1-\mathrm{p})^{\mathrm{n}-v}
$$

Binomial Distribution: Trials $=30$, Probability of success $=0.5$

p probability of successes
x number of successes
The binomial distribution indicates the probability for each set of outcomes, i.e., $v=\{1, \ldots, n\}$ successes.

One parameter: p

Uniform distribution (continuous)

$$
f(x)=\frac{1}{b-a}
$$

Exponential distribution (continuous)

$$
f(t)=\lambda e^{-\lambda t}
$$

Normal distribution (continuous)

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}}
$$

Theoretical importance

Defined by two parameters: $N(\mu, \sigma)$.
$N(0,1)$ is the standardized version.
In $N(0,1) 68.27 \%$ of data fall within $\mu \pm \sigma$

Weibull distribution (continuous)

$$
f(x)=\frac{\beta}{\eta}\left(\frac{t-\gamma}{\eta}\right)^{\beta-1} e^{-\left(\frac{t-\gamma}{\eta}\right)^{\beta}}
$$

Used in life data and reliability analysis
Defined by three parameters:
β (shape), η (scale), γ (location)

Outline

1. Introduction
2. Inferential Statistics

Basics of Inferential Statistics
Experimental Designs
3. Race: Sequential Testing

Inferential Statistics

- We work with samples (instances, solution quality)
- But we want sound conclusions: generalization over a given population (all possible instances)
- Thus we need statistical inference
Random Sample
X^{n}

Statistical Estimator $\hat{\theta}$$\longrightarrow$| Inference |
| :---: |
| Population |
| $\mathrm{P}(x, \theta)$ |
| Parameter θ |

Since the analysis is based on finite-sized sampled data, statements like
"the cost of solutions returned by algorithm \mathcal{A} is smaller than that of algorithm \mathcal{B} "
must be completed by
"at a level of significance of 5% ".

Parameter Estimation

Estimator $\hat{\theta}\left(X_{1}, \ldots, X_{n}\right)$ makes a guess on the parameter (Es. \bar{X})
Estimate is the actual value $\hat{\theta}\left(x_{1}, \ldots, x_{n}\right)$
Properties of an estimator:

- unbiased: $\mathrm{E}[\hat{\theta}]=\theta$ (e.g., $\mathrm{E}[\bar{X}]=\mu)$
- consistent
- efficient (uncertainty must decrease with size, e.g., $\operatorname{Var}[\bar{X}]=\sigma^{2} / n$)
- sufficient

Note: The best result $b_{N}=\min _{i} c_{i}$ is not a good estimator. It is biased and not efficient.

A Motivating Example

- There is a competition and two stochastic algorithms \mathcal{A}_{1} and \mathcal{A}_{2} are submitted.
- We run both algorithms once on n instances.

On each instance either \mathcal{A}_{1} wins $(+)$ or \mathcal{A}_{2} wins (-) or they make a tie (=).

Questions:

1. If we have only 10 instances and algorithm \mathcal{A}_{1} wins 7 times how confident are we in claiming that algorithm \mathcal{A}_{1} is the best?
2. How many instances and how many wins should we observe to gain a confidence of 95% that the algorithm \mathcal{A}_{1} is the best?

A Motivating Example

- p: probability that \mathcal{A}_{1} wins on each instance $(+)$
- n : number of runs without ties
- Y: number of wins of algorithm \mathcal{A}_{1}

If each run is indepenedent and consitent:

$$
Y \sim B(n, p): \quad \operatorname{Pr}[Y=y]=\binom{n}{y} p^{y}(1-p)^{n-y}
$$

 confidence of 95% that the algorithm \mathcal{A}_{1} is the best?

To answer this question, we compute the 95% quantile, i.e., $\mathrm{y}: \operatorname{Pr}[\mathrm{Y} \geq \mathrm{y}]<0.05$ with $\mathrm{p}=0.5$ at different values of n :

n	10	11	12	13	14	15	16	17	18	19	20
y	9	9	10	10	11	12	12	13	13	14	15

This is an application example of sign test, a special case of binomial test in which $p=0.5$

1 If we have only 10 instances and algorithm \mathcal{A}_{1} wins 7 times how confident are we in claiming that algorithm \mathcal{A}_{1} is the best?

Under these conditions, we can check how unlikely the situation is if it were $p(+) \leq p(-)$.
If $p=0.5$ then the chance that algorithm \mathcal{A}_{1} wins 7 or more times out of 10 is 17.2% : quite high!

Inferential Statistics

General procedure:

- Assume that data are consistent with a null hypothesis H_{0} (e.g., sample data are drawn from distributions with the same mean value).
- Use a statistical test to compute how likely this is to be true, given the data collected. This "likely" is quantified as the p-value.
- Accept H_{0} as true if the p -value is larger than an user defined threshold called level of significance α.
- Alternatively (p-value $<\alpha$), H_{0} is rejected in favor of an alternative hypothesis, H_{1}, at a level of significance of α.

Preparation of the Experiments

Variance reduction techniques

- Same pseudo random seed

Sample Sizes

- If the sample size is large enough (infinity) any difference in the means of the factors, no matter how small, will be significant
- Real vs Statistical significance

Study factors until the improvement in the response variable is deemed small

- Desired statistical power + practical precision \Rightarrow sample size

Note: If resources available for N runs then the optimal design is one run on N instances [Birattari, 2004]

Experimental Design

Algorithms \Rightarrow Treatment Factor; \quad Instances \Rightarrow Blocking Factor

Design A: One run on various instances (Unreplicated Factorial)

	Algorithm 1	Algorithm 2	\ldots	Algorithm \mathbf{k}
Instance 1	X_{11}	X_{12}		$\mathrm{X}_{1 \mathrm{k}}$
\vdots	\vdots	\vdots		\vdots
Instance b	$\mathrm{X}_{\mathrm{b} 1}$	$\mathrm{X}_{\mathrm{b} 2}$		X_{bk}

Design B: Several runs on various instances (Replicated Factorial)

	Algorithm 1	Algorithm 2	\ldots	Algorithm k
Instance 1	$X_{111}, \ldots, X_{11 r}$	$X_{121}, \ldots, X_{12 r}$		$X_{1 k 1}, \ldots, X_{1 k r}$
Instance 2	$X_{211}, \ldots, X_{21 r}$	$X_{221}, \ldots, X_{22 r}$		$X_{2 k 1}, \ldots, X_{2 k r}$
\vdots	\vdots	\vdots		\vdots
Instance b	$X_{b 11}, \ldots, X_{b 1 r}$	$X_{b 21}, \ldots, X_{b 2 r}$		$X_{b k 1}, \ldots, X_{b k r}$

Unreplicated Designs

Procedure Race [Birattari 2002]:

repeat

Randomly select an unseen instance and run all candidates on it
Perform all-pairwise comparison statistical tests
Drop all candidates that are significantly inferior to the best algorithm until only one candidate left or no more unseen instances ;

- F-Race use Friedman test

- Holm adjustment method is typically the most powerful

Sequential Testing

