Outline

DM811 – Fall 2009 Heuristics for Combinatorial Optimization

Lecture 14 Race: A Configuration Tool

Marco Chiarandini

Deptartment of Mathematics & Computer Science University of Southern Denmark 1. Introduction

2. Inferential Statistics Basics of Inferential Statistics Experimental Designs

3. Race: Sequential Testing

Outline

1. Introduction

- Inferential Statistics
 Basics of Inferential Statistics
 Experimental Designs
- 3. Race: Sequential Testing

Probability Distributions

Binomial distribution

$$P[x = v] = \binom{n}{v} p^{v} (1 - p)^{n-v}$$

Binomial Distribution: Trials = 30, Probability of success = 0.5

p probability of successes x number of successes The binomial distribution indicates the probability for each set of outcomes, *i.e.*, $v = \{1, ..., n\}$ successes.

2

4

One parameter: p

Uniform distribution (continuous)

Normal distribution (continuous)

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$$

Normal Distribution: $\mu = 0, \sigma = 1$

Defined by two parameters: $N(\mu, \sigma)$. N(0, 1) is the standardized version. In N(0, 1) 68.27% of data fall within $\mu \pm \sigma$

Theoretical importance

Exponential distribution (continuous)

 $f(t) = \lambda e^{-\lambda t}$

It has the memory-less property, *i.e.*, the probability of a new event to happen within a fixed time does not depend on the time passed so far.

5

Defined by one parameter: $E[X] = \frac{1}{\lambda}$.

Weibull distribution (continuous)

$$f(\mathbf{x}) = \frac{\beta}{\eta} \left(\frac{\mathbf{t} - \gamma}{\eta}\right)^{\beta - 1} e^{-\left(\frac{\mathbf{t} - \gamma}{\eta}\right)}$$

β

Used in life data and reliability analysis

Defined by three parameters: β (shape), η (scale), γ (location)

Outline

1. Introduction

2. Inferential Statistics Basics of Inferential Statistics Experimental Designs

3. Race: Sequential Testing

Parameter Estimation

Estimator $\hat{\theta}(X_1, \dots, X_n)$ makes a guess on the parameter (Es. \bar{X}) *Estimate* is the actual value $\hat{\theta}(x_1, \dots, x_n)$

Properties of an estimator:

- unbiased: $E[\hat{\theta}] = \theta$ (*e.g.*, $E[\bar{X}] = \mu$)
- consistent
- efficient (uncertainty must decrease with size, e.g., $Var[\overline{X}] = \sigma^2/n$)
- sufficient

Note: The best result $b_N = \min_i c_i$ is not a good estimator. It is biased and not efficient.

Inferential Statistics

- We work with samples (instances, solution quality)
- But we want sound conclusions: generalization over a given population (all possible instances)
- Thus we need statistical inference

Random Sample	Inference	Population
Xn		\rightarrow P(x, θ)
Statistical Estimator $\widehat{\theta}$		Parameter θ

Since the analysis is based on finite-sized sampled data, statements like "the cost of solutions returned by algorithm A is smaller than that of algorithm B"

must be completed by

"at a level of significance of 5%".

A Motivating Example

- \bullet There is a competition and two stochastic algorithms \mathcal{A}_1 and \mathcal{A}_2 are submitted.
- We run both algorithms once on n instances.
 On each instance either A₁ wins (+) or A₂ wins (-) or they make a tie (=).

Questions:

- 1. If we have only 10 instances and algorithm A_1 wins 7 times how confident are we in claiming that algorithm A_1 is the best?
- 2. How many instances and how many wins should we observe to gain a confidence of 95% that the algorithm A_1 is the best?

9

A Motivating Example

- p: probability that \mathcal{A}_1 wins on each instance (+)
- n: number of runs without ties
- Y: number of wins of algorithm \mathcal{A}_1

If each run is independent and consitent:

$$Y \sim B(n,p)$$
: $\Pr[Y = y] = {n \choose y} p^y (1-p)^{n-y}$

1 If we have only 10 instances and algorithm A_1 wins 7 times how confident are we in claiming that algorithm A_1 is the best?

Under these conditions, we can check how unlikely the situation is if it were $p(+) \leq p(-).$

If p=0.5 then the chance that algorithm \mathcal{A}_1 wins 7 or more times out of 10 is 17.2%: quite high!

13

Inferential Statistics

2 How many instances and how many wins should we observe to gain a confidence of 95% that the algorithm ${\cal A}_1$ is the best?

To answer this question, we compute the 95% quantile, *i.e.*, $y : \Pr[Y \ge y] < 0.05$ with p = 0.5 at different values of n:

n	10	11	12	13	14	15	16	17	18	19	20
y	10 9	9	10	10	11	12	12	13	13	14	15

This is an application example of sign test, a special case of binomial test in which $p=0.5\,$

General procedure:

- Assume that data are consistent with a null hypothesis H_0 (e.g., sample data are drawn from distributions with the same mean value).
- Use a statistical test to compute how likely this is to be true, given the data collected. This "likely" is quantified as the p-value.
- Accept H_0 as true if the p-value is larger than an user defined threshold called level of significance α .
- Alternatively (p-value $< \alpha$), H₀ is rejected in favor of an alternative hypothesis, H₁, at a level of significance of α .

14

Preparation of the Experiments

Variance reduction techniques

• Same pseudo random seed

Sample Sizes

- If the sample size is large enough (infinity) any difference in the means of the factors, no matter how small, will be significant
- Real *vs* Statistical significance Study factors until the improvement in the response variable is deemed small
- \bullet Desired statistical power + practical precision \Rightarrow sample size

Note: If resources available for N runs then the optimal design is one run on N instances $[{\sf Birattari},\,2004]$

Experimental Design

Algorithms \Rightarrow Treatment Factor;

 $\mathsf{Instances} \Rightarrow \mathsf{Blocking}\ \mathsf{Factor}$

Design A: One run on various instances (Unreplicated Factorial)

	Algorithm 1	Algorithm 2	 Algorithm k
Instance 1	X ₁₁	X ₁₂	X _{1k}
:	:	· ·	:
	:		
Instance b	X _{b1}	X _{b2}	X _{bk}

Design B: Several runs on various instances (Replicated Factorial)

	Algorithm 1	Algorithm 2	 Algorithm k
Instance 1	X_{111}, \ldots, X_{11r}	X_{121}, \ldots, X_{12r}	X_{1k1},\ldots,X_{1kr}
Instance 2	X_{211}, \ldots, X_{21r}	X_{221}, \ldots, X_{22r}	X_{2k1},\ldots,X_{2kr}
:	:	:	:
Instance b	X_{b11}, \ldots, X_{b1r}	X_{b21}, \ldots, X_{b2r}	X_{bk1}, \ldots, X_{bkr}

19

Outline

1. Introduction

 Inferential Statistics Basics of Inferential Statistics Experimental Designs

3. Race: Sequential Testing

Unreplicated Designs

Procedure Race [Birattari 2002]:

repeat

Randomly select an unseen instance and run all candidates on it

Perform *all-pairwise comparison* statistical tests

Drop all candidates that are significantly inferior to the best algorithm **until** only one candidate left or no more unseen instances ;

- F-Race use Friedman test
- Holm adjustment method is typically the most powerful

20

Sequential Testing

