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Probability Distributions
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Binomial Distribution: Trials = 30,
Probability of success = 0.5
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p probability of successes
x number of successes
The binomial distribution indicates the
probability for each set of outcomes,
i,e., v={1,...,n} successes.

One parameter: p
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Exponential distribution (continuous)
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It has the memory-less property, i.e.,

the probability of a new event to

happen within a fixed time does not

depend on the time passed so far.

Defined by one parameter: E[X] =

1
X
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Normal distribution (continuous)
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Normal Distribution: p=0,0=1
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Theoretical importance
Defined by two parameters: N(u, o).
N(0, 1) is the standardized version.

In N(0,1) 68.27% of data fall within
pto

Weibull distribution (continuous)

) = B () ()

n n

Weibull Distribution:
shape=1.5, scale=1, location=0
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Used in life data and reliability analysi

Defined by three parameters:
B (shape), n (scale), v (location)
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2. Inferential Statistics
Basics of Inferential Statistics
Experimental Designs

Parameter Estimation

Estimator ©(X1, ..., Xy ) makes a guess on the parameter (Es. )_()

Estimate is the actual value 8(x1,...,xn)
Properties of an estimator:
@ unbiased: E[0] =0 (e.g., EX] = i)
@ consistent
o efficient (uncertainty must decrease with size, e.g., Var[)_(] = O'Z/Tl)

o sufficient

Note: The best result by = min; ¢; is not a good estimator. It is biased and
not efficient.
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Inferential Statistics

e We work with samples (instances, solution quality)

@ But we want sound conclusions: generalization over a given population
(all possible instances)

@ Thus we need statistical inference

Random Sample Inference Population
xXn R P(x,0)
Statistical Estimator 0 Parameter 0

Since the analysis is based on finite-sized sampled data, statements like
“the cost of solutions returned by algorithm A is smaller than that
of algorithm B”

must be completed by

“at a level of significance of 5%".
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A Motivating Example

@ There is a competition and two stochastic algorithms A; and A, are
submitted.

@ We run both algorithms once on n instances.
On each instance either A; wins (+) or A, wins (-) or they make a tie

(=).

Questions:

1. If we have only 10 instances and algorithm 47 wins 7 times how
confident are we in claiming that algorithm A; is the best?

2. How many instances and how many wins should we observe to gain a
confidence of 95% that the algorithm A; is the best?
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A Motivating Example

@ p: probability that .A; wins on each instance (+) 1 If we have only 10 instances and algorithm A; wins 7 times how
@ n: number of runs without ties confident are we in claiming that algorithm A is the best?

@ Y: number of wins of algorithm A;
Under these conditions, we can check how unlikely the situation is if it were

If each run is indepenedent and consitent: p(+) <p(—).
Y~B(n,p): PrlY = y] = n pY(1—p)™y !f p=05 thfen the chance that algorithm A; wins 7 or more times out of 10
is 17.2%: quite high!

Binomial distribution: Trials = 30
Binomial Distribution: Trials = 30, Probability of success 0.5
Probability of success = 0.5
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Inferential Statistics

2 How many instances and how many wins should we observe to gain a

: G | dure:
confidence of 95% that the algorithm A; is the best? eneral procedure

@ Assume that data are consistent with a null hypothesis Hy (e.g., sample
To answer this question, we compute the 95% quantile, i.e., data are drawn from distributions with the same mean value).

y : Pr[Y > y] < 0.05 with p = 0.5 at different values of n:
o Use a statistical test to compute how likely this is to be true, given the

data collected. This “likely” is quantified as the p-value.

10 11 12 13 14 15 16 17 18 19 20 _
yl9 9 10 10 11 12 12 13 13 14 15 @ Accept Ho as true if the p-value is larger than an user defined threshold

called level of significance «.

3

o Alternatively (p-value < «), Ho is rejected in favor of an alternative

This is an application example of sign test, a special case of binomial test in hypothesis, Hy, at a level of significance of o.

which p = 0.5

15 17



Preparation of the Experiments

Variance reduction techniques

@ Same pseudo random seed

Sample Sizes

o If the sample size is large enough (infinity) any difference in the means
of the factors, no matter how small, will be significant

@ Real vs Statistical significance
Study factors until the improvement in the response variable is deemed

small
o Desired statistical power + practical precision = sample size

Note: If resources available for N runs then the optimal design is one run on
N instances [Birattari, 2004]
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3. Race: Sequential Testing
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Experimental Design

Algorithms = Treatment Factor; Instances = Blocking Factor

Design A: One run on various instances (Unreplicated Factorial)
Algorithm 1 Algorithm 2 Algorithm k
Instance 1 X11 Xi2 X1k
Instance b Xp1 Xp2 Xpx
v
Design B: Several runs on various instances (Replicated Factorial)
Algorithm 1 Algorithm 2 Algorithm k
Instance 1 X111, , X910y Xi121,.-,X12r Xikty ooy X1kr
Instance 2 X211,y X217 X221, .+, X22r X2kt -+ X2kr
Instance b Xb11, .-, Xp1r Xb21, -, Xp2r Xvk1ye-oy Xbkr
v
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Unreplicated Designs

Procedure Race [Birattari 2002]:

repeat
Randomly select an unseen instance and run all candidates on it

Perform all-pairwise comparison statistical tests
Drop all candidates that are significantly inferior to the best algorithm
until only one candidate left or no more unseen instances ;

o F-Race use Friedman test
@ Holm adjustment method is typically the most powerful
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Sequential Testing
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