DM811 - Fall 2009 Heuristics for Combinatorial Optimization

> Lecture 4 **Experimental Analysis**

> > Marco Chiarandini

Deptartment of Mathematics & Computer Science University of Southern Denmark

Running Assignment

Sequential greedy coloring:

- Worst case: for 3-colorable graphs may end up using more than $2\Omega(n)$ colors
- Avergae case: for random graphs with p = 0.5 no more than $2\chi(G)$ with $n
 ightarrow \infty$
- However no polytime heuristic has been proved to have better avergae case behaviour
- Best worst case results only slightly better.

Running Assignment

Experimental Analysis References

2

4

Different choices for the candidate solutions, neighborhood structures and evaluation function define different approaches to the problem

k-fixed	complete	proper
k-fixed	partial	proper
k-fixed	complete	unproper
k-fixed	partial	unproper
k-variable	complete	proper
k-variable	partial	proper
k-variable	complete	unproper
k-variable	partial	unproper

Running Assignment

Experimental Analysis References

	Approximability results		Non approximability results			
Factor Due to		Factor	Due to	Assumption		
	$O(n(\log \log n)^2 / \log^3 n)$	Halldórsson (1993)	$\mathcal{O}(n^{1-\epsilon})$	Feige and Kilian (1998)	$\mathcal{NP} \neq \mathcal{ZPP}$	
	$\mathcal{O}(n(\log\log n/\log n)^3)$	Berger and Rompel (1990)	$\mathcal{O}(n^{\frac{1}{5}-\epsilon})$	Bellare et al. (1998)	$\mathcal{NP} \neq co\mathcal{RP}$	
	$\mathcal{O}(n(\log\log n/\log n)^2)$	Wigderson (1983)	$\mathcal{O}(n^{\frac{1}{7}-\epsilon})$	Feige and Kilian (1998)	$\mathcal{P} \neq \mathcal{NP}$	
	$\mathcal{O}(n/\log n)$	Johnson (1974)	$O(n^{\frac{1}{5}-\epsilon})$	Bellare et al. (1998)	$\mathcal{P} \neq \mathcal{NP}$	

Table 4.1.: Bounds on the approximability and non approximability of the chromatic number problem. Strength of the results increases as going upwards in the table. The two conditions $\mathcal{NP} \not\subseteq \mathcal{ZPP}$ and $\mathcal{NP} \not\subseteq co\mathcal{RP}$ are known to be equivalent.

Outline

Definitions Performance Measures Experimental Analysis Sample Statistics References Scenarios of Analysis Presenting Data

Contents and Goals

Experimental Analysis References

Definitions Performance Measures Sample Statistics Scenarios of Analysis Presenting Data

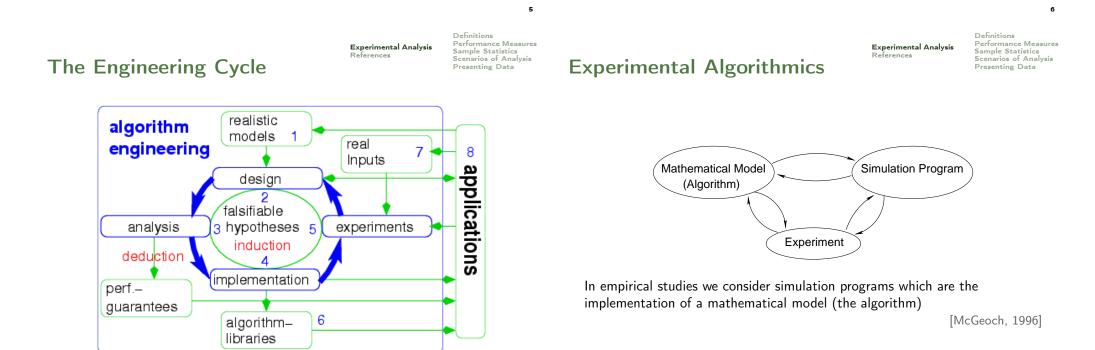
8

Provide a view of issues in Experimental Algorithmics

- Exploratory data analysis
- Presenting results in a concise way with graphs and tables
- Organizational issues and Experimental Design
- Basics of inferential statistics
- Sequential statistical testing: race, a methodology for tuning

The goal of Experimental Algorithmics is not only producing a sound analysis but also adding an important tool to the development of a good solver for a given problem.

Experimental Algorithmics is an important part in the algorithm production cycle, which is referred to as Algorithm Engineering



from http://www.algorithm-engineering.de/

Performance Measures

Sample Statistics Scenarios of Analysis

1. Experimental Analysis

Definitions

Guidelines for Presenting Data

Experimental Algorithmics

Experimental Analysis References Definitions Performance Measures Sample Statistics Scenarios of Analysis Presenting Data

Fairness Principle

Experimental Analysis References

Definitions Performance Measures Sample Statistics Scenarios of Analysis Presenting Data

Goals

- Defining standard methodologies
- Comparing relative performance of algorithms so as to identify the best ones for a given application
- Characterizing the behavior of algorithms
- Identifying algorithm separators, *i.e.*, families of problem instances for which the performance differ
- Providing new insights in algorithm design

Fairness principle: being completely fair is perhaps impossible but try to remove any possible bias

- possibly all algorithms must be implemented with the same style, with the same language and sharing common subprocedures and data structures
- the code must be optimized, e.g., using the best possible data structures
- running times must be comparable, e.g., by running experiments on the same computational environment (or redistributing them randomly)

10

Definitions

The most typical scenario considered in analysis of search heuristics

Asymptotic heuristics with time (or iteration) limit decided a priori

The algorithm \mathcal{A}^{∞} is halted when time expires.

Deterministic case: \mathcal{A}^{∞} on π returns a solution of cost x.

The performance of \mathcal{A}^{∞} on π is a scalar y = x.

Randomized case: \mathcal{A}^{∞} on π returns a solution of cost X, where X is a random variable. The performance of \mathcal{A}^{∞} on π is the

Experimental Analysis

References

univariate Y = X.

[This is not the only relevant scenario: to be refined later]

Random Variables and Probability

Statistics deals with random (or stochastic) variables.

A variable is called random if, prior to observation, its outcome cannot be predicted with certainty.

The uncertainty is described by a probability distribution.

Discrete variables

Probability distribution:

 $p_i = P[x = v_i]$

Cumulative Distribution Function (CDF)

 $F(\nu) = P[x \leq \nu] = \sum_i p_i$

Mean

$$\mu = \mathsf{E}[X] = \sum x_i p_i$$

Variance

$$\sigma^2 = \mathsf{E}[(X-\mu)^2] = \sum (x_i - \mu)^2 p_i$$

Continuous variables

Probability density function (pdf):

$$f(v) = \frac{dF(v)}{dv}$$

Cumulative Distribution Function (CDF):

$$F(v) = \int_{-\infty}^{v} f(v) dv$$

Mean

$$\mu = \mathbb{E}[X] = \int x f(x) dx$$

Variance

 $\sigma^2 = E[(X - \mu)^2] = \int (x - \mu)^2 f(x) dx$

9

Definitions Performance Measures

Sample Statistics

Presenting Data

Scenarios of Analysis

Generalization

For each general problem Π (e.g., TSP, GCP) we denote by C_{Π} a set (or class) of instances and by $\pi \in C_{\Pi}$ a single instance.

On a specific instance, the random variable Y that defines the performance measure of an algorithm is described by its probability distribution/density function

$$\Pr(Y = y \mid \pi)$$

It is often more interesting to generalize the performance on a class of instances C_{Π} , that is,

$$\Pr(\mathbf{Y} = \mathbf{y}, \mathbf{C}_{\Pi}) = \sum_{\pi \in \Pi} \Pr(\mathbf{Y} = \mathbf{y} \mid \pi) \Pr(\pi)$$

Sampling

In experiments,

- 1. we sample the population of instances and
- 2. we sample the performance of the algorithm on each sampled instance

Definitions

Experimental Analysis

Experimental Analysis

References

References

Performance Measures

Scenarios of Analysis

Sample Statistics

Presenting Data

If on an instance π we run the algorithm r times then we have r replicates of the performance measure Y, denoted Y_1, \ldots, Y_r , which are independent and identically distributed (i.i.d.), i.e.

$$\Pr(\mathbf{y}_1,\ldots,\mathbf{y}_r|\pi) = \prod_{j=1}^r \Pr(\mathbf{y}_j \mid \pi)$$

$$\Pr(\mathbf{y}_1,\ldots,\mathbf{y}_r) = \sum_{\pi \in C_{\Pi}} \Pr(\mathbf{y}_1,\ldots,\mathbf{y}_r \mid \pi) \Pr(\pi)$$

15

Definitions

Performance Measures

Scenarios of Analysis

Sample Statistics

Presenting Data

Definitions

Experimental Analysis

Experimental Analysis

References

References

Performance Measures

Scenarios of Analysis

Sample Statistics

Presenting Data

Instance Selection

In real-life applications a simulation of $p(\pi)$ can be obtained by historical data.

In simulation studies instances may be:

- real world instances
- random variants of real world-instances
- online libraries
- randomly generated instances

They may be grouped in classes according to some features whose impact may be worth studying:

- type (for features that might impact performance)
- size (for scaling studies)
- hardness (focus on hard instances)
- application (e.g., CSP encodings of scheduling problems), ...

Within the class, instances are drawn with uniform probability $p(\pi) = c$

Statistical Methods

The analysis of performance is based on finite-sized sampled data. Statistics provides the methods and the mathematical basis to

- describe, summarizing, the data (descriptive statistics)
- make inference on those data (inferential statistics)

Statistics helps to

- guarantee reproducibility
- make results reliable (are the observed results enough to justify the claims?)
- extract relevant results from large amount of data

In the practical context of heuristic design and implementation (i.e., engineering), statistics helps to take correct design decisions with the least amount of experimentation

17

16

Definitions

Performance Measures

Scenarios of Analysis

Sample Statistics

Presenting Data

Objectives of the Experiments

Definitions Performance Measures Experimental Analysis Sample Statistics Scenarios of Analysis Presenting Data

Objectives of the Experiments

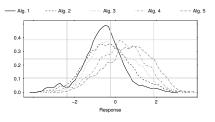
Experimental Analysis

Definitions Performance Measures Sample Statistics Scenarios of Analysis Presenting Data

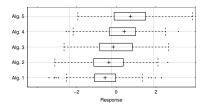
• Comparison:

bigger/smaller, same/different, Algorithm Configuration, **Component-Based Analysis**

 Standard statistical methods: experimental designs, test hypothesis and estimation



rences



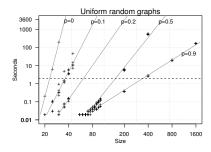
Comparison:

bigger/smaller, same/different, Algorithm Configuration. **Component-Based Analysis**

- Standard statistical methods: experimental designs, test hypothesis and estimation
- Characterization:

Interpolation: fitting models to data Extrapolation: building models of data, explaining phenomena

 Standard statistical methods: linear and non linear regression model fitting



References

19

Measures and Transformations

Performance Measures **Experimental Analysis** Sample Statistics erences Scenarios of Analysis Presenting Data

Definitions

On a single instance

Computational effort indicators

- number of elementary operations/algorithmic iterations (e.g., search steps, objective function evaluations, number of visited nodes in the search tree, consistency checks, etc.)
- total CPU time consumed by the process (sum of *user* and *system* times returned by getrusage)

Solution quality indicators

- value returned by the cost function
- error from optimum/reference value

• (optimiality) gap
$$\frac{|UB-LB|}{UB}$$

ranks

Measures and Transformations

Experimental Analysis eferences

Definitions Performance Measures Sample Statistics Scenarios of Analysis Presenting Data

On a class of instances

Computational effort indicators

- no transformation if the interest is in studying scaling
- standardization if a fixed time limit is used
- geometric mean (used for a set of numbers whose values are meant to be multiplied together or are exponential in nature),
- otherwise, better to group homogeneously the instances

Solution quality indicators

Different instances imply different scales \Rightarrow need for an invariant measure

(However, many other measures can be taken both on the algorithms and on the instances [McGeoch, 1996])

19

Measures and Transformations

On a class of instances (cont.)

Solution quality indicators

• Distance or error from a reference value (assume minimization case):

$$e_1(x,\pi) = rac{x(\pi) - ar{x}(\pi)}{\sqrt{\sigma(\pi)}}$$
 standard score

$$e_2(x,\pi) = rac{x(\pi) - x^{\texttt{opt}}(\pi)}{x^{\texttt{opt}}(\pi)}$$
 relative error

$$e_3(x,\pi) = \frac{x(\pi) - x^{opt}(\pi)}{x^{worst}(\pi) - x^{opt}(\pi)} \quad \text{invariant [Zemel, 1981]}$$

- optimal value computed exactly or known by construction
- ${\ensuremath{\,\circ}}$ surrogate value such bounds or best known values
- Rank (no need for standardization but loss of information)

Measures of central tendency

• Arithmetic Average (Sample mean)

$$\bar{X} = \frac{\sum x_i}{n}$$

- *Quantile*: value above or below which lie a fractional part of the data (used in nonparametric statistics)
 - Median

$$\mathcal{M} = x_{(n+1)/2}$$

Quartile

 $Q_1 = x_{(n+1)/4}$ $Q_3 = x_{3(n+1)/4}$

• q-quantile

 \boldsymbol{q} of data lies below and $1-\boldsymbol{q}$ lies above

Mode

value of relatively great concentration of data (*Unimodal vs Multimodal* distributions)

Summary Measures

Experimental Analysis References Definit Sample Scenar Presen

Definitions Performance Measures Sample Statistics Scenarios of Analysis Presenting Data

Measures to describe or characterize a population

- Measure of central tendency, location
- Measure of dispersion

One such a quantity is

- a parameter if it refers to the population (Greek letters)
- a **statistics** if it is an *estimation* of a population parameter from the sample (Latin letters)

Experimental Analysis References Definitions Performance Measures **Sample Statistics** Scenarios of Analysis Presenting Data

25

Measure of dispersion

Sample range

$$\mathbf{R} = \mathbf{x}_{(n)} - \mathbf{x}_{(1)}$$

• Sample variance

$$s^{2} = \frac{1}{n-1} \sum (x_{i} - \bar{X})^{2}$$

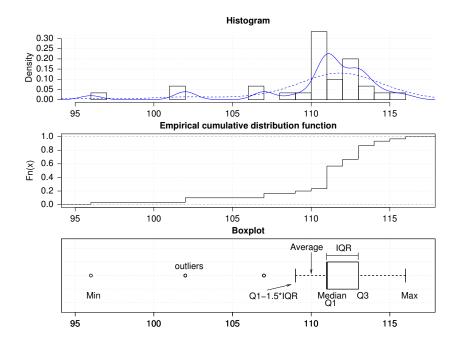
• Standard deviation

$$s = \sqrt{s^2}$$

• Inter-quartile range

 $IQR = Q_3 - Q_1$

Definitions Performance Measures Experimental Analysis Sample Statistics References Scenarios of Analysis Presenting Data



> x<-runif(10,0,1)</pre> mean(x), median(x), quantile(x), quantile(x,0.25) range(x), var(x), sd(x), IQR(x)> fivenum(x) #(minimum, lower-hinge, median, upper-hinge, maximum) [1] 0.18672 0.26682 0.28927 0.69359 0.92343 > summary(x) > aggregate(x,list(factors),median) > boxplot(x)

Scenarios

Definitions Performance Measures Sample Statistics Scenarios of Analysis **Experimental Analysis** References Presenting Data

Experimental Analysis References

Definitions Performance Measures Sample Statistics Scenarios of Analysis Presenting Data

29

- A. Single-pass heuristics
- B. Asymptotic heuristics: Two approaches:
 - 1. Univariate
 - 1.a Time as an external parameter decided a priori
 - 1.b Solution quality as an external parameter decided a priori
 - 2. Cost dependent on running time:

Single-pass heuristics

Deterministic case: \mathcal{A}^{+} on class C_{Π} **Randomized case:** \mathcal{A}^{+} on class C_{Π} returns a solution of cost x with computational effort t (e.g., running time).

The performance of \mathcal{A}^{-1} on class C_{Π} is the vector $\vec{y} = (x, t)$.

returns a solution of cost X with computational effort T, where X and T are random variables.

The performance of \mathcal{A}^{\dashv} on class C_{Π} is the bivariate $\vec{Y} = (X, T)$.

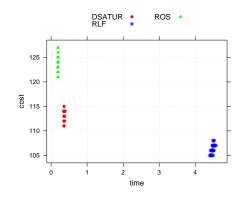
Example

Experimental Analysis Multi-Criteria Decision Making

Definitions Performance Measures Sample Statistics Scenarios of Analysis Presenting Data

Scenario:

- \triangleright 3 heuristics \mathcal{A}_1^{\dashv} , \mathcal{A}_2^{\dashv} , \mathcal{A}_3^{\dashv} on class C_{Π} .
- \triangleright homogeneous instances or need for data transformation.
- > 1 or r runs per instance
- ▶ Interest: inspecting solution cost and running time to observe and compare the level of approximation and the speed.



Experimental Analysis

References

Tools:

 Scatter plots of solution-cost and run-time

Scenario B

Asymptotic heuristics

There are two approaches:

1.a. Time as an external parameter decided a priori. The algorithm is halted when time expires.

Deterministic case: \mathcal{A}^{∞} on class C_{Π} returns a solution of cost x.

Randomized case: \mathcal{A}^{∞} on class C_{Π} returns a solution of cost X, where Xis a random variable.

The performance of \mathcal{A}^{∞} on class C_{Π} is the scalar y = x.

The performance of \mathcal{A}^{∞} on class C_{Π} is the univariate Y = X.

Needed some definitions on dominance relations

In Pareto sense, for points in \mathbf{R}^2

$\vec{x}^1 \preceq \vec{x}^2$	weakly dominates	$x_i^1 \leq x_i^2$ for all $i = 1, \dots, n$
$\vec{\mathrm{x}}^1 \parallel \vec{\mathrm{x}}^2$	incomparable	neither $\vec{x}^1 \preceq \vec{x}^2$ nor $\vec{x}^2 \preceq \vec{x}^1$

33

Definitions

Performance Measures Sample Statistics Scenarios of Analysis

Presenting Data

Experimental Analysis References

rences

Definitions Performance Measures Sample Statistics Scenarios of Analysis Presenting Data

34

Example

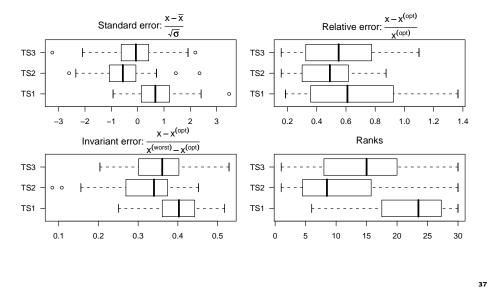
Scenario:

- \triangleright 3 heuristics \mathcal{A}_1^{∞} , \mathcal{A}_2^{∞} , \mathcal{A}_3^{∞} on class C_{Π} . (Or 3 heuristics \mathcal{A}_1^{∞} , \mathcal{A}_2^{∞} , \mathcal{A}_3^{∞} on class C_{Π} without interest in computation time because negligible or comparable)
- ▷ homogeneous instances (no data transformation) or heterogeneous (data transformation)
- > 1 or r runs per instance
- \triangleright a priori time limit imposed
- ▶ Interest: inspecting solution cost

Tools:

- Histograms (summary measures: mean or median or mode?)
- Boxplots
- Empirical cumulative distribution functions (ECDFs)

On a class of instances

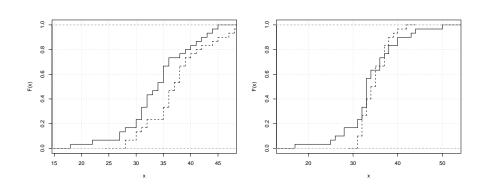


Definitions Performance Measures Sample Statistics Scenarios of Analysis **Experimental Analysis** Presenting Data

References

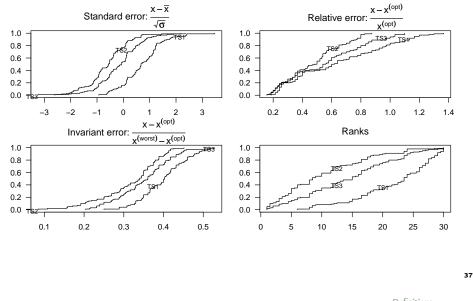
Stochastic Dominance

Definition: Algorithm A_1 probabilistically dominates algorithm A_2 on a problem instance, iff its CDF is always "below" that of A_2 , *i.e.*:



$\mathsf{F}_1(\mathbf{x}) \leq \mathsf{F}_2(\mathbf{x}),$ $\forall x \in X$

On a class of instances



Experimental Analysis References

Experimental Analysis

References

```
Definitions
Performance Measures
Sample Statistics
Scenarios of Analysis
Presenting Data
```

Definitions

Performance Measures

Scenarios of Analysis

Sample Statistics

Presenting Data

R code behind the previous plots

We load the data and plot the comparative boxplot for each instance.

> load("TS.class-G.dataR")			
> G[1:5,]			
alg inst run sol time.last.imp tot.iter parz.iter exit.iter exit.time opt			
1 TS1 G-1000-0.5-30-1.1.col 1 59 9.900619 5955 442 5955 10.02463 30			
2 TS1 G-1000-0.5-30-1.1.col 2 64 9.736608 3880 130 3958 10.00062 30			
3 TS1 G-1000-0.5-30-1.1.col 3 64 9.908618 4877 49 4877 10.03263 30			
4 TS1 G-1000-0.5-30-1.1.col 4 68 9.948622 6996 409 6996 10.07663 30			
5 TS1 G-1000-0.5-30-1.1.col 5 63 9.912620 3986 52 3986 10.04063 30			
>			
> library(lattice)			
> bwplot(alg ~ sol inst,data=G)			

If we want to make an aggregate analysis we have the following choices:

- maintain the raw data.
- transform data in standard error,
- transform the data in relative error,
- transform the data in an invariant error.
- transform the data in ranks.

Definitions Performance Measures Sample Statistics Scenarios of Analysis Presenting Data

Transform data in standard error

Maintain the raw data

- > par(mfrow=c(3,2),las=1,font.main=1,mar=c(2,3,3,1))
- > #original data
- > boxplot(sol~alg,data=G,horizontal=TRUE,main="Original data")

- > #standard error > T1 <- split(G\$sol.list(G\$inst))</pre>
- > T2 <- lapply(T1,scale,center=TRUE,scale=TRUE)
- > T3 <- unsplit(T2,list(G\$inst))</pre>
- > T4 <- split(T3,list(G\$alg))</pre>
- > T5 <- stack(T4)
- > boxplot(values~ind,data=T5,horizontal=TRUE,main=expression(paste("Standard error: ",frac(x-bar(x),sqrt(sigma)))))
- > library(latticeExtra)
- > ecdfplot(~values,group=ind,data=T5,main=expression(paste("Standard error: ",frac(x-bar(x),sqrt(sigma)))))
- > #standard error
- > G\$scale <- 0

40

Definitions

Experimental Analysis

References

Performance Measures

Scenarios of Analysis

Sample Statistics

Presenting Data

Experimental Analysis References Definitions Performance Measures Sample Statistics **Scenarios of Analysis** Presenting Data

41

Transform the data in relative error

> #relative error

- > G\$err2 <- (G\$sol-G\$opt)/G\$opt</pre>
- > boxplot(err2~alg,data=G,horizontal=TRUE,main=expression(paste("Relative error: ",frac(x-x^(opt),x^(opt)))))

Transform the data in an invariant error

We use as surrogate of x^{worst} the median solution returned by the simplest algorithm for the graph coloring, that is, the ROS heuristic.

> #error 3

- > load("ROS.class-G.dataR")
- > F1 <- aggregate(F\$sol,list(inst=F\$inst),median)</pre>
- > F2 <- split(F1\$x,list(F1\$inst))</pre>
- > G\$ref <- sapply(G\$inst,function(x) F2[[x]])</pre>
- > G\$err3 <- (G\$sol-G\$opt)/(G\$ref-G\$opt)</pre>
- > boxplot(err3~alg,data=G,horizontal=TRUE,main=expression(paste("Invariant error: ",frac(x-x^(opt),x^(worst)-x^(opt)))))

Scenario B

Definitions Performance Measures Sample Statistics Scenarios of Analysis Presenting Data

Transform the data in ranks

> #rank

> T2 <- lapply(T1,rank) > T3 <- unsplit(T2,list(G\$inst))</pre> > T4 <- split(T3,list(G\$alg))</pre> > T5b <- stack(T4)> boxplot(values~ind,data=T5b,horizontal=TRUE,main="Ranks") > ecdfplot(T5b\$values,group=T5b\$ind,main="Ranks")

Asymptotic heuristics

There are two approaches:

1.b. Solution quality as an external parameter decided a priori. The algorithm is halted when quality is reached.

Deterministic case: \mathcal{A}^{∞} on class C_{Π} finds a solution in running time t.	Randomized case: \mathcal{A}^{∞} on class C_{Π} finds a solution in running time T, where T is a random variable.
The performance of \mathcal{A}^{∞} on class C_{Π} is the scalar $y = t$.	The performance of \mathcal{A}^{∞} on class C_{Π} is the univariate $Y = T$.

Dealing with Censored Data

Definitions Performance Measures Sample Statistics **Experimental Analysis** References Scenarios of Analysis Presenting Data

Asymptotic heuristics, Approach 1.b

- \triangleright Heuristic \mathcal{A}^{\dashv} stopped before completion or \mathcal{A}^{∞} truncated (always the case)
- ▶ Interest: determining whether a prefixed goal (optimal/feasible) has been reached

The computational effort to attain the goal can be specified by a cumulative distribution function F(t) = P(T < t) with T in $[0, \infty)$.

If in a run i we stop the algorithm at time L_i then we have a Type I right censoring, that is, we know either

- T_i if $T_i \leq L_i$
- or $T_i > L_i$.

Hence, for each run i we need to record $\min(T_i, L_i)$ and the indicator variable for observed optimal/feasible solution attainment, $\delta_i = I(T_i \leq L_i)$.

Example

44

Asymptotic heuristics, Approach 1.b: Example

Experimental Analysis References

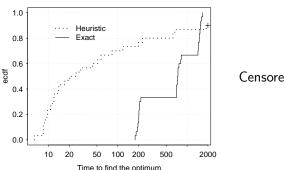
Definitions Performance Measures Sample Statistics Scenarios of Analysis Presenting Data

45

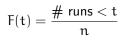
 \triangleright An exact vs an heuristic algorithm for the

2-edge-connectivity augmentation problem.

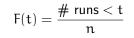
▶ Interest: time to find the optimum on different instances.



Uncensored:



Censored:



Scenario B

Experimental Analysis References Definitions Sample Statistics Scenarios of Analysis Presenting Data

Example

Experimental Analysis References Sce

Definitions Performance Measures Sample Statistics Scenarios of Analysis Presenting Data

Asymptotic heuristics

There are two approaches:

2. Cost dependent on running time:

Deterministic case: \mathcal{A}^{∞} on π returns a current best solution x at each observation in t_1, \ldots, t_k .

The performance of \mathcal{A}^{∞} on π is the profile indicated by the vector $\vec{y} = \{x(t_1), \dots, x(t_k)\}.$

Randomized case: \mathcal{A}^{∞} on π produces a monotone stochastic process in solution cost $X(\tau)$ with any element dependent on the predecessors.

The performance of \mathcal{A}^{∞} on π is the multivariate $\vec{Y} = (X(t_1), X(t_2), \dots, X(t_k)).$

Scenario:

- \triangleright 3 heuristics \mathcal{A}_1^{∞} , \mathcal{A}_2^{∞} , \mathcal{A}_3^{∞} on instance π .
- \triangleright single instance hence no data transformation.
- \triangleright r runs
- Interest: inspecting solution cost over running time to determine whether the comparison varies over time intervals

Tools:

48

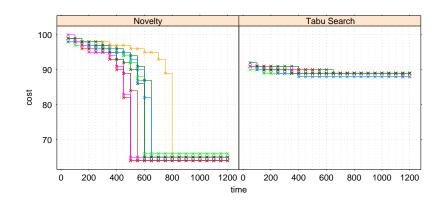
50

• Quality profiles

Experimental Analysis References Definitions Sample Statistics Scenarios of Analysis Presenting Data

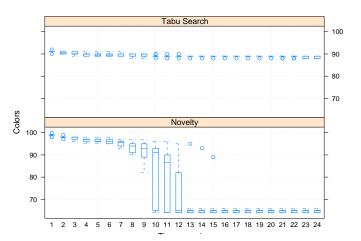
The performance is described by multivariate random variables of the kind $\vec{Y} = \{Y(t_1), Y(t_2), \dots, Y(l_k)\}.$

Sampled data are of the form $\vec{Y_i} = \{Y_i(t_1), Y_i(t_2), \dots, Y_i(t_k)\}$, $i = 1, \dots, 10$ (10 runs per algorithm on one instance)



The performance is described by	multivariate	random	variables	of the kind
$\vec{Y} = \{Y(t_1), Y(t_2), \dots, Y(l_k)\}.$				

Sampled data are of the form $\vec{Y_i} = \{Y_i(t_1), Y_i(t_2), \dots, Y_i(t_k)\}, i = 1, \dots, 10$ (10 runs per algorithm on one instance)



Definitions

Experimental Analysis

References

Performance Measures

Scenarios of Analysis

Sample Statistics

Presenting Data

Experimental Analysis References Definitions Sample Statistics Scenarios of Analysis Presenting Data

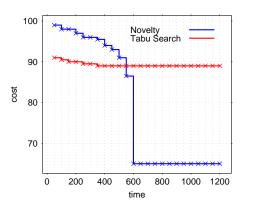
Summary

Definitions Performance Measures Sample Statistics Scenarios of Analysis Presenting Data

51

The performance is described by multivariate random variables of the kind $\vec{Y} = \{Y(t_1), Y(t_2), \dots, Y(l_k)\}.$

Sampled data are of the form $\vec{Y_i} = \{Y_i(t_1), Y_i(t_2), \dots, Y_i(t_k)\}$, $i = 1, \dots, 10$ (10 runs per algorithm on one instance)



The median behavior of the two algorithms

> Definitions Performance Measures

Sample Statistics

Presenting Data

Scenarios of Analysis

Experimental Analysis

References

50

Making Plots

http://algo2.iti.uni-karlsruhe.de/sanders/courses/bergen/bergenPresenting.pdf [Sanders, 2002]

- Should the experimental setup from the exploratory phase be redesigned to increase conciseness or accuracy?
- What parameters should be varied? What variables should be measured?
- How are parameters chosen that cannot be varied?
- Can tables be converted into curves, bar charts, scatter plots or any other useful graphics?
- Should tables be added in an appendix?
- Should a 3D-plot be replaced by collections of 2D-curves?
- Can we reduce the number of curves to be displayed?
- How many figures are needed?
- Should the x-axis be transformed to magnify interesting subranges?

Explore your data:

- make plots: histograms, boxplots, empirical cumulative distribution functions, correlation/scatter plots
- look at the numerical data and interpret them in practical terms: computation times, distance from optimum
- look for patterns

All the above both at a single instance level and at an aggregate level.

- Should the x-axis have a logarithmic scale? If so, do the x-values used for measuring have the same basis as the tick marks?
- Is the range of x-values adequate?
- Do we have measurements for the right x-values, i.e., nowhere too dense or too sparse?
- Should the y-axis be transformed to make the interesting part of the data more visible?
- Should the y-axis have a logarithmic scale?
- Is it misleading to start the y-range at the smallest measured value? (if not too much space wasted start from 0)
- Clip the range of y-values to exclude useless parts of curves?
- Can we use banking to 45°?
- Are all curves sufficiently well separated?
- Can noise be reduced using more accurate measurements?
- Are error bars needed? If so, what should they indicate? Remember that measurement errors are usually not random variables.

- Connect points belonging to the same curve.
- Only use splines for connecting points if interpolation is sensible.
- Do not connect points belonging to unrelated problem instances.
- Use different point and line styles for different curves.
- Use the same styles for corresponding curves in different graphs.
- Place labels defining point and line styles in the right order and without concealing the curves.
- Give axis units
- Captions should make figures self contained.
- Give enough information to make experiments reproducible.
- Golden ratio rule: make the graph wider than higher [Tufte 1983].
- Rule of 7: show at most 7 curves (omit those clearly irrelevant).
- Avoid: explaining axes, connecting unrelated points by lines, cryptic abbreviations, microscopic lettering, pie charts

Coffin M and Saltzman M L (2000) Statistical analysis of

Suggested Reading

- Coffin M. and Saltzman M.J. (2000). Statistical analysis of computational tests of algorithms and heuristics. *INFORMS Journal on Computing*, 12(1), pp. 24–44.
- Demetrescu C., Finocchi I., and Italiano G. (2004). Algorithm engineering. In *Current Trends in Theoretical Computer Science: the Challenge of the New Century*, edited by A. G.Paun G.Rozemberg, vol. 1: Algorithms and Complexity. World Scientific Publishing.
- Johnson D.S. (2002). A theoretician's guide to the experimental analysis of algorithms. In Data Structures, Near Neighbor Searches, and Methodology: Fifth and Sixth DIMACS Implementation Challenges, edited by M.H. Goldwasser, D.S. Johnson, and C.C. McGeoch, vol. 59 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pp. 215–250. American Mathematical Society, Providence, RI, USA.
- McGeoch C.C. (1996). **Toward an experimental method for algorithm simulation**. *INFORMS Journal on Computing*, 8(1), pp. 1–15. This journal issue contains also commentaries by Pierre L'Ecuyer, James B. Orlin and Douglas R. Shier, and a rejoinder by C. McGeoch.
- Sanders P. (2002). Presenting data from experiments in algorithmics. In Experimental Algorithmics – From Algorithm Design to Robust and Efficient Software,, vol. 2547 of LNCS, pp. 181–196. Springer.

55