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Running Assignment

Sequential greedy coloring:

Worst case: for 3-colorable graphs may end up using more than 2Ω(n)
colors

Avergae case: for random graphs with p = 0.5 no more than 2χ(G) with
n → ∞
However no polytime heuristic has been proved to have better avergae
case behaviour

Best worst case results only slightly better.
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Different choices for the candidate solutions, neighborhood structures and
evaluation function define different approaches to the problem

k-fixed complete proper
k-fixed partial proper
k-fixed complete unproper
k-fixed partial unproper

k-variable complete proper
k-variable partial proper
k-variable complete unproper
k-variable partial unproper
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1. Experimental Analysis
Definitions
Performance Measures
Sample Statistics
Scenarios of Analysis
Guidelines for Presenting Data
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Provide a view of issues in Experimental Algorithmics

Exploratory data analysis
Presenting results in a concise way with graphs and tables
Organizational issues and Experimental Design

Basics of inferential statistics
Sequential statistical testing: race, a methodology for tuning

The goal of Experimental Algorithmics is not only producing a sound analysis
but also adding an important tool to the development of a good solver for a
given problem.

Experimental Algorithmics is an important part in the algorithm production
cycle, which is referred to as Algorithm Engineering
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from http://www.algorithm-engineering.de/
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 (Algorithm)
Mathematical Model Simulation Program

Experiment

In empirical studies we consider simulation programs which are the
implementation of a mathematical model (the algorithm)

[McGeoch, 1996]
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Goals

Defining standard methodologies
Comparing relative performance of algorithms so as to identify the best
ones for a given application
Characterizing the behavior of algorithms
Identifying algorithm separators, i.e., families of problem instances for
which the performance differ
Providing new insights in algorithm design
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Fairness principle: being completely fair is perhaps impossible but try to
remove any possible bias

possibly all algorithms must be implemented with the same style, with
the same language and sharing common subprocedures and data
structures
the code must be optimized, e.g., using the best possible data structures
running times must be comparable, e.g., by running experiments on the
same computational environment (or redistributing them randomly)
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The most typical scenario considered in analysis of search heuristics

Asymptotic heuristics with time (or iteration) limit decided a priori

The algorithm A∞ is halted when time expires.

Deterministic case: A∞ on π
returns a solution of cost x.

The performance of A∞ on π is a
scalar y = x.

Randomized case: A∞ on π returns
a solution of cost X, where X is a
random variable.

The performance of A∞ on π is the
univariate Y = X.

[This is not the only relevant scenario: to be refined later]
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Random Variables and Probability

Statistics deals with random (or stochastic) variables.

A variable is called random if, prior to observation, its outcome cannot be
predicted with certainty.

The uncertainty is described by a probability distribution.

Discrete variables

Probability distribution:

pi = P[x = vi]

Cumulative Distribution Function (CDF)

F(v) = P[x ≤ v] =
∑

i

pi

Mean

µ = E[X] =
∑

xipi

Variance

σ2 = E[(X − µ)2] =
∑

(xi − µ)2pi

Continuous variables

Probability density function (pdf):

f(v) =
dF(v)

dv

Cumulative Distribution Function (CDF):

F(v) =

∫v

−∞ f(v)dv

Mean

µ = E[X] =

∫
xf(x)dx

Variance

σ2 = E[(X − µ)2] =

∫
(x − µ)2f(x) dx
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For each general problem Π (e.g., TSP, GCP) we denote by CΠ a set
(or class) of instances and by π ∈ CΠ a single instance.

On a specific instance, the random variable Y that defines the performance
measure of an algorithm is described by its probability distribution/density
function

Pr(Y = y | π)

It is often more interesting to generalize the performance
on a class of instances CΠ, that is,

Pr(Y = y,CΠ) =
∑
π∈Π

Pr(Y = y | π)Pr(π)
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In experiments,

1. we sample the population of instances and
2. we sample the performance of the algorithm on each sampled instance

If on an instance π we run the algorithm r times then we have r replicates of
the performance measure Y, denoted Y1, . . . , Yr, which are independent and
identically distributed (i.i.d.), i.e.

Pr(y1, . . . , yr|π) =

r∏
j=1

Pr(yj | π)

Pr(y1, . . . , yr) =
∑
π∈CΠ

Pr(y1, . . . , yr | π)Pr(π).
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In real-life applications a simulation of p(π) can be obtained by
historical data.

In simulation studies instances may be:

real world instances
random variants of real world-instances
online libraries
randomly generated instances

They may be grouped in classes according to some features whose impact
may be worth studying:

type (for features that might impact performance)
size (for scaling studies)
hardness (focus on hard instances)
application (e.g., CSP encodings of scheduling problems), ...

Within the class, instances are drawn with uniform probability p(π) = c
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The analysis of performance is based on finite-sized sampled data.
Statistics provides the methods and the mathematical basis to

describe, summarizing, the data (descriptive statistics)
make inference on those data (inferential statistics)

Statistics helps to

guarantee reproducibility
make results reliable
(are the observed results enough to justify the claims?)
extract relevant results from large amount of data

In the practical context of heuristic design and implementation (i.e.,
engineering), statistics helps to take correct design decisions with the least
amount of experimentation
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Comparison:
bigger/smaller, same/different,
Algorithm Configuration,
Component-Based Analysis

Standard statistical methods:
experimental designs, test
hypothesis and estimation

Characterization:
Interpolation: fitting models to data
Extrapolation: building models of
data, explaining phenomena

Standard statistical methods: linear
and non linear regression
model fitting

Response
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Comparison:
bigger/smaller, same/different,
Algorithm Configuration,
Component-Based Analysis

Standard statistical methods:
experimental designs, test
hypothesis and estimation

Characterization:
Interpolation: fitting models to data
Extrapolation: building models of
data, explaining phenomena

Standard statistical methods: linear
and non linear regression
model fitting
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On a single instance

Computational effort indicators

number of elementary operations/algorithmic iterations
(e.g., search steps, objective function evaluations, number of visited
nodes in the search tree, consistency checks, etc.)
total CPU time consumed by the process
(sum of user and system times returned by getrusage)

Solution quality indicators

value returned by the cost function
error from optimum/reference value

(optimiality) gap |UB−LB|
UB

ranks
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On a class of instances

Computational effort indicators

no transformation if the interest is in studying scaling
standardization if a fixed time limit is used
geometric mean (used for a set of numbers whose values are meant to
be multiplied together or are exponential in nature),
otherwise, better to group homogeneously the instances

Solution quality indicators

Different instances imply different scales ⇒ need for an invariant measure

(However, many other measures can be taken both on the algorithms and on
the instances [McGeoch, 1996])

22



Measures and Transformations

On a class of instances (cont.)

Solution quality indicators

Distance or error from a reference value
(assume minimization case):

e1(x, π) =
x(π) − x̄(π)√

^σ(π)

standard score

e2(x, π) =
x(π) − xopt(π)

xopt(π)
relative error

e3(x, π) =
x(π) − xopt(π)

xworst(π) − xopt(π)
invariant [Zemel, 1981]

optimal value computed exactly or known by construction
surrogate value such bounds or best known values

Rank (no need for standardization but loss of information)
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Measures to describe or characterize a population

Measure of central tendency, location
Measure of dispersion

One such a quantity is

a parameter if it refers to the population (Greek letters)
a statistics if it is an estimation of a population parameter from the
sample (Latin letters)
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Measures of central tendency

Arithmetic Average (Sample mean)

X̄ =

∑
xi

n

Quantile: value above or below which lie a fractional part of the data
(used in nonparametric statistics)

Median

M = x(n+1)/2

Quartile

Q1 = x(n+1)/4 Q3 = x3(n+1)/4

q-quantile

q of data lies below and 1 − q lies above

Mode

value of relatively great concentration of data
(Unimodal vs Multimodal distributions)
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Measure of dispersion

Sample range

R = x(n) − x(1)

Sample variance

s2 =
1

n− 1

∑
(xi − X̄)2

Standard deviation

s =
√
s2

Inter-quartile range

IQR = Q3 −Q1
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� �
> x<-runif(10,0,1)
mean(x), median(x), quantile(x), quantile(x,0.25)
range(x), var(x), sd(x), IQR(x)
> fivenum(x)
#(minimum, lower-hinge, median, upper-hinge, maximum)
[1] 0.18672 0.26682 0.28927 0.69359 0.92343
> summary(x)
> aggregate(x,list(factors),median)
> boxplot(x)� �
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A. Single-pass heuristics

B. Asymptotic heuristics:
Two approaches:

1. Univariate

1.a Time as an external parameter decided a priori
1.b Solution quality as an external parameter decided a priori

2. Cost dependent on running time:
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Single-pass heuristics

Deterministic case: Aa on class CΠ
returns a solution of cost x with
computational effort t (e.g., running
time).

The performance of Aa on class CΠ
is the vector ~y = (x, t).

Randomized case: Aa on class CΠ
returns a solution of cost X with
computational effort T , where X and
T are random variables.

The performance of Aa on class CΠ
is the bivariate ~Y = (X, T).
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Scenario:

B 3 heuristics Aa1 , Aa2 , Aa3 on
class CΠ.

B homogeneous instances or
need for data transformation.

B 1 or r runs per instance
I Interest: inspecting solution

cost and running time to
observe and compare the level
of approximation and the
speed.

Tools:

Scatter plots of solution-cost
and run-time
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Needed some definitions on dominance relations

In Pareto sense, for points in R2

~x1 � ~x2 weakly dominates x1i ≤ x2i for all i = 1, . . . , n

~x1 ‖ ~x2 incomparable neither ~x1 � ~x2 nor ~x2 � ~x1
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Asymptotic heuristics

There are two approaches:

1.a. Time as an external parameter decided a priori.
The algorithm is halted when time expires.

Deterministic case: A∞ on class
CΠ returns a solution of cost x.

The performance of A∞ on class CΠ
is the scalar y = x.

Randomized case: A∞ on class CΠ
returns a solution of cost X, where X
is a random variable.

The performance of A∞ on class CΠ
is the univariate Y = X.
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Scenario:

B 3 heuristics A∞
1 , A∞

2 , A∞
3 on class CΠ.

(Or 3 heuristics A∞
1 , A∞

2 , A∞
3 on class CΠ without interest in

computation time because negligible or comparable)
B homogeneous instances (no data transformation) or heterogeneous (data

transformation)
B 1 or r runs per instance
B a priori time limit imposed
I Interest: inspecting solution cost

Tools:
Histograms (summary measures: mean or median or mode?)
Boxplots
Empirical cumulative distribution functions (ECDFs)
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On a class of instances
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On a class of instances
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Definition: Algorithm A1 probabilistically dominates algorithm A2 on a
problem instance, iff its CDF is always "below" that of A2, i.e.:

F1(x) ≤ F2(x), ∀x ∈ X
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R code behind the previous plots

We load the data and plot the comparative boxplot for each instance.� �
> load("TS.class-G.dataR")
> G[1:5,]
alg inst run sol time.last.imp tot.iter parz.iter exit.iter exit.time opt

1 TS1 G-1000-0.5-30-1.1.col 1 59 9.900619 5955 442 5955 10.02463 30
2 TS1 G-1000-0.5-30-1.1.col 2 64 9.736608 3880 130 3958 10.00062 30
3 TS1 G-1000-0.5-30-1.1.col 3 64 9.908618 4877 49 4877 10.03263 30
4 TS1 G-1000-0.5-30-1.1.col 4 68 9.948622 6996 409 6996 10.07663 30
5 TS1 G-1000-0.5-30-1.1.col 5 63 9.912620 3986 52 3986 10.04063 30
>
> library(lattice)
> bwplot(alg ~ sol | inst,data=G)� �
If we want to make an aggregate analysis we have the following choices:

maintain the raw data,
transform data in standard error,
transform the data in relative error,
transform the data in an invariant error,
transform the data in ranks.
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Maintain the raw data� �
> par(mfrow=c(3,2),las=1,font.main=1,mar=c(2,3,3,1))
> #original data
> boxplot(sol~alg,data=G,horizontal=TRUE,main="Original data")� �
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Transform data in standard error� �
> #standard error
> T1 <- split(G$sol,list(G$inst))
> T2 <- lapply(T1,scale,center=TRUE,scale=TRUE)
> T3 <- unsplit(T2,list(G$inst))
> T4 <- split(T3,list(G$alg))
> T5 <- stack(T4)
> boxplot(values~ind,data=T5,horizontal=TRUE,main=expression(paste("Standard

error: ",frac(x-bar(x),sqrt(sigma)))))
> library(latticeExtra)
> ecdfplot(~values,group=ind,data=T5,main=expression(paste("Standard error:
",frac(x-bar(x),sqrt(sigma)))))

> #standard error
> G$scale <- 0
> split(G$scale, G$inst) <- lapply(split(G$sol, G$inst), scale,center=TRUE,

scale=TRUE)� �
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Transform the data in relative error� �
> #relative error
> G$err2 <- (G$sol-G$opt)/G$opt
> boxplot(err2~alg,data=G,horizontal=TRUE,main=expression(paste("Relative

error: ",frac(x-x^(opt),x^(opt)))))
> ecdfplot(G$err2,group=G$alg,main=expression(paste("Relative error: ",frac(

x-x^(opt),x^(opt)))))� �
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Transform the data in an invariant error
We use as surrogate of xworst the median solution returned by the simplest
algorithm for the graph coloring, that is, the ROS heuristic.� �
> #error 3
> load("ROS.class-G.dataR")
> F1 <- aggregate(F$sol,list(inst=F$inst),median)
> F2 <- split(F1$x,list(F1$inst))
> G$ref <- sapply(G$inst,function(x) F2[[x]])
> G$err3 <- (G$sol-G$opt)/(G$ref-G$opt)
> boxplot(err3~alg,data=G,horizontal=TRUE,main=expression(paste("Invariant

error: ",frac(x-x^(opt),x^(worst)-x^(opt)))))
> ecdfplot(G$err3,group=G$alg,main=expression(paste("Invariant error: ",frac

(x-x^(opt),x^(worst)-x^(opt)))))� �
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Transform the data in ranks� �
> #rank
> T2 <- lapply(T1,rank)
> T3 <- unsplit(T2,list(G$inst))
> T4 <- split(T3,list(G$alg))
> T5b <- stack(T4)
> boxplot(values~ind,data=T5b,horizontal=TRUE,main="Ranks")
> ecdfplot(T5b$values,group=T5b$ind,main="Ranks")� �
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Asymptotic heuristics

There are two approaches:

1.b. Solution quality as an external parameter decided a priori. The
algorithm is halted when quality is reached.

Deterministic case: A∞ on class
CΠ finds a solution in running time t.

The performance of A∞ on class CΠ
is the scalar y = t.

Randomized case: A∞ on class CΠ
finds a solution in running time T ,
where T is a random variable.

The performance of A∞ on class CΠ
is the univariate Y = T .
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Asymptotic heuristics, Approach 1.b

B Heuristic Aa stopped before completion or A∞ truncated (always the
case)

I Interest: determining whether a prefixed goal (optimal/feasible) has
been reached

The computational effort to attain the goal can be specified by a cumulative
distribution function F(t) = P(T < t) with T in [0,∞).

If in a run i we stop the algorithm at time Li then we have a Type I right
censoring, that is, we know either

Ti if Ti ≤ Li
or Ti ≥ Li.

Hence, for each run i we need to record min(Ti, Li) and the indicator variable
for observed optimal/feasible solution attainment, δi = I(Ti ≤ Li).
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Asymptotic heuristics, Approach 1.b: Example

B An exact vs an heuristic algorithm for the
2-edge-connectivity augmentation problem.

I Interest: time to find the optimum on different instances.
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Asymptotic heuristics

There are two approaches:

2. Cost dependent on running time:

Deterministic case: A∞ on π
returns a current best solution x at
each observation in t1, . . . , tk.

The performance of A∞ on π is
the profile indicated by the vector
~y = {x(t1), . . . , x(tk)}.

Randomized case: A∞ on π
produces a monotone stochastic
process in solution cost X(τ) with
any element dependent on the
predecessors.

The performance of A∞ on π is
the multivariate
~Y = (X(t1), X(t2), . . . , X(tk)).
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Scenario:

B 3 heuristics A∞
1 , A‘∞2 , A∞

3 on instance π.
B single instance hence no data transformation.
B r runs
I Interest: inspecting solution cost over running time to determine

whether the comparison varies over time intervals

Tools:
Quality profiles
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The performance is described by multivariate random variables of the kind
~Y = {Y(t1), Y(t2), . . . , Y(lk)}.

Sampled data are of the form ~Yi = {Yi(t1), Yi(t2), . . . , Yi(tk)}, i = 1, . . . , 10

(10 runs per algorithm on one instance)
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The performance is described by multivariate random variables of the kind
~Y = {Y(t1), Y(t2), . . . , Y(lk)}.

Sampled data are of the form ~Yi = {Yi(t1), Yi(t2), . . . , Yi(tk)}, i = 1, . . . , 10

(10 runs per algorithm on one instance)
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The performance is described by multivariate random variables of the kind
~Y = {Y(t1), Y(t2), . . . , Y(lk)}.

Sampled data are of the form ~Yi = {Yi(t1), Yi(t2), . . . , Yi(tk)}, i = 1, . . . , 10

(10 runs per algorithm on one instance)
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Explore your data:

make plots: histograms, boxplots, empirical cumulative distribution
functions, correlation/scatter plots
look at the numerical data and interpret them in practical terms:
computation times, distance from optimum
look for patterns

All the above both at a single instance level and at an aggregate level.
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http://algo2.iti.uni-karlsruhe.de/sanders/courses/bergen/bergenPresenting.pdf

[Sanders, 2002]

Should the experimental setup from the exploratory phase be redesigned to
increase conciseness or accuracy?

What parameters should be varied? What variables should be measured?

How are parameters chosen that cannot be varied?

Can tables be converted into curves, bar charts, scatter plots or any other
useful graphics?

Should tables be added in an appendix?

Should a 3D-plot be replaced by collections of 2D-curves?

Can we reduce the number of curves to be displayed?

How many figures are needed?

Should the x-axis be transformed to magnify interesting subranges?
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Should the x-axis have a logarithmic scale? If so, do the x-values used
for measuring have the same basis as the tick marks?

Is the range of x-values adequate?

Do we have measurements for the right x-values, i.e., nowhere too dense
or too sparse?

Should the y-axis be transformed to make the interesting part of the
data more visible?

Should the y-axis have a logarithmic scale?

Is it misleading to start the y-range at the smallest measured value?
(if not too much space wasted start from 0)

Clip the range of y-values to exclude useless parts of curves?

Can we use banking to 45o?

Are all curves sufficiently well separated?

Can noise be reduced using more accurate measurements?

Are error bars needed? If so, what should they indicate? Remember that
measurement errors are usually not random variables.
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Connect points belonging to the same curve.

Only use splines for connecting points if interpolation is sensible.

Do not connect points belonging to unrelated problem instances.

Use different point and line styles for different curves.

Use the same styles for corresponding curves in different graphs.

Place labels defining point and line styles in the right order and without
concealing the curves.

Give axis units

Captions should make figures self contained.

Give enough information to make experiments reproducible.

Golden ratio rule: make the graph wider than higher [Tufte 1983].

Rule of 7: show at most 7 curves (omit those clearly irrelevant).

Avoid: explaining axes, connecting unrelated points by lines, cryptic
abbreviations, microscopic lettering, pie charts
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