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Search Methods

initial state: the empty assignment {} in which all variables are
unassigned
successor function: a value can be assigned to any unassigned variable,
provided that it does not conflict with previously assigned variables
goal test: the current assignment is complete
path cost: a constant cost

Types of problems:

Assignment
Sequencing
Subset
Routing
...
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Tree Search

Search Space

tree with branching factor at the top level nd
at the next level (n− 1)d.
The tree has n! · dn even if only dn possible complete assignments.

CSP is commutative in the order of application of any given set of
action. (the order of the assignment does not influence)

Hence we can consider search algs that generate successors by
considering possible assignments for only a single variable at each node
in the search tree.
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Backtrack Search

Backtracking search

depth first search that chooses one variable at a time and backtracks when a
variable has no legal values left to assign.
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Backtrack Search

No need to copy solutions all the times but rather extensions and undo
extensions

Since CSP is standard then the alg is also standard and can use general
purpose algorithms for initial state, successor function and goal test.

Backtracking is uninformed and complete. Other search algorithms may
use information in form of heuristics.
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Complete Tree Search

Uninformed

Breadth-first search
Depth-first search
Depth-limited search
Iterative deepening depth-first search
Bidirectional Search

Informed

Informed search algorithm: exploit problem-specific knowledge
Best-first search: node that “appears” to be the best selected for
expansion based on an evaluation function f(x)
Implemented through a priority queue of nodes in ascending order of f
(See later discussion on A∗ search)
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General Purpose Methods

Decisions in general purpose methods:

1) Which variable should we assign next, and in what order should its
values be tried?

2) What are the implications of the current variable assignments for the
other unassigned variables?

3) When a path fails – that is, a state is reached in which a variable has no
legal values can the search avoid repeating this failure in subsequent
paths?

Search (1) + Inference (2) + Backtracking (3) = Constraint Programming

In the general case, at point 1) we use heuristic rules.

If we do not backtrack (point 3) then we have a construction heuristic.
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1) Which variable should we assign next,
and in what order should its values be tried?

Select-Initial-Unassigned-Variable

Select-Unassigned-Variable
most constrained first = fail-first heuristic
= Minimum remaining values (MRV) heuristic
(tend to reduce the branching factor and to speed up pruning)
least constrained last

Eg.: max degree, farthest, earliest due date, etc.

Order-Domain-Values
greedy
least constraining value heuristic
(leaves maximum flexibility for subsequent variable assignments)
maximal regret
implements a kind of look ahead
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2) What are the implications of the current variable assignments for the
other unassigned variables?

Propagating information through constraints:

Implicit in Select-Unassigned-Variable

Forward checking (coupled with Minimum Remaining Values)

Constraint propagation in CSP
arc consistency: force all (directed) arcs uv to be consistent:
∃ a value in D(v) : ∀ values in D(u), otherwise detects inconsistency

can be applied as preprocessing or as propagation step after each
assignment (Maintaining Arc Consistency)

Applied repeatedly
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Propagation: An Example
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3) When a path fails – that is, a state is reached in which a variable has no
legal values can the search avoid repeating this failure in subsequent
paths?

Backtracking-Search
chronological backtracking, the most recent decision point is revisited
backjumping, backtracks to the most recent variable in the conflict set
(set of previously assigned variables connected to X by constraints).
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An Empirical Comparison

Median number of consistency checks
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A∗, a best-first search

A∗ search
The priority assigned to a node x is determined by the function

f(x) = g(x) + h(x)

g(x): cost of the path so far
h(x): heuristic estimate of the minimal cost to reach the goal from x.
It is optimal if h(x) is an

admissible heuristic: never overestimates the cost to reach the goal
consistent: h(n) ≤ c(n, a, n ′) + h(n ′)
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A∗ best-first search
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A∗ search

Possible choices for admissible heuristic functions

optimal solution to an easily solvable relaxed problem
optimal solution to an easily solvable subproblem
learning from experience by gathering statistics on state features
preferred heuristics functions with higher values (provided they do not
overestimate)
if several heuristics available h1, h2, . . . , hm and not clear which is the
best then:

h(x) = max{h1(x), . . . , hm(x)}
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A∗ search
Drawbacks

Time complexity: In the worst case, the number of nodes expanded is
exponential,
(but it is polynomial when the heuristic function h meets the following
condition:

|h(x) − h∗(x)| ≤ O(logh∗(x))

h∗ is the optimal heuristic, the exact cost of getting from x to the goal.)

Memory usage: In the worst case, it must remember an exponential
number of nodes.
Several variants: including iterative deepening A∗ (IDA∗),
memory-bounded A∗ (MA∗) and simplified memory bounded A∗ (SMA∗)
and recursive best-first search (RBFS)
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Complete search is often better suited when ...

proofs of insolubility or optimality are required;
time constraints are not critical;
problem-specific knowledge can be exploited.

Heuristics are often better suited when ...
non linear constraints and non linear objective function;
reasonably good solutions are required within a short time;
problem-specific knowledge is rather limited.
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Greedy algorithms (aka best-first)

Strategy: always make the choice that is best at the moment.
They are not generally guaranteed to find globally optimal solutions
(but sometimes they do: Minimum Spanning Tree, Single Source
Shortest Path, etc.)

We will see problem sepcific examples
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Beyond best-first search

Based on backtracking

Bounded backtrack

Credit-based search

Limited Discrepancy Search

Barrier Search

Randomization in Tree Search

Based on other ideas
(and simpler to implement)

Rollout/Pilot Method

Beam Search

Iterated Greedy

GRASP

Adaptive Iterated Construction
Search

Multilevel Refinement
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Key idea: important decisions are
at the top of the tree

Credit = backtracking steps

Credit distribution: one half at
the best child the other divided
among the other children.

When credits run out follow
deterministic best-search

In addition: allow limited
backtracking steps (eg, 5) at the
bottom

Control parameters: initial credit,
the distribution of credit among
the children, and the amount of
local backtracking at the bottom.
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Key observation that often the
heuristic used in the search is
nearly always correct with just a
few exceptions.

Explore the tree in increasing
number of discrepancies,
modifications from the heuristic
choice.

Eg: count one discrepancy if
second best is chosen
count two discrepancies either if
third best is chosen or twice the
second best is chosen

Control parameter: the number of
discrepancies
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Extension of LDS

Key idea: we may encounter
several, independent problems in
our heuristic choice. Each of
these problems can be overcome
locally with a limited amount of
backtracking.

At each barrier start LDS-based
backtracking
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The idea comes from complete search

Dynamical selection of solution components
in construction or choice points in backtracking.

Randomization of construction method or
selection of choice points in backtracking
while still maintaining the method complete
 randomized systematic search.

Randomization can also be used in incomplete search
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Derived from A∗

Each candidate solution is a collection of m components
S = (s1, s2, . . . , sm).
Master process adds components sequentially to a partial solution
Sk = (s1, s2, . . . sk)

At the k-th iteration the master process evaluates feasible components
to add based on an heuristic look-ahead strategy.
The evaluation function H(Sk+1) is determined by sub-heuristics that
complete the solution starting from Sk

Sub-heuristics are combined in H(Sk+1) by
weighted sum
minimal value
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Speed-ups:

halt whenever cost of current partial solution exceeds current upper
bound
evaluate only a fraction of possible components
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Possible extension of tree based construction heuristics:
maintains a set B of bw (beam width) partial candidate solutions

at each iteration extend each solution from B in fw (filter width)
possible ways

rank each bw× fw candidate solutions and take the best bw partial
solutions

complete candidate solutions obtained by B are maintained in Bf

Stop when no partial solution in B is to be extended
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Key idea: use greedy construction

alternation of Construction and Deconstruction phases
an acceptance criterion decides whether the search continues from the
new or from the old solution.

Iterated Greedy (IG):
determine initial candidate solution s
while termination criterion is not satisfied do

r := s
greedily destruct part of s
greedily reconstruct the missing part of s
based on acceptance criterion,

keep s or revert to s := r
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Key idea: solutions can reveal problem structure which maybe worth to
exploit.

Use a greedy heuristic repeatedly by prioritizing the elements that create
troubles.

Squeaky Wheel
Constructor: greedy algorithm on a sequence of problem elements.
Analyzer: assign a penalty to problem elements that contribute to flaws
in the current solution.
Prioritizer: uses the penalties to modify the previous sequence of problem
elements. Elements with high penalty are moved toward the front.

Hybridize with subsidiary perturbative search
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Greedy Randomized Adaptive Search Procedure

Key Idea: Combine randomized constructive search with subsequent local
search.

Motivation:

Candidate solutions obtained from construction heuristics can often be
substantially improved by local search.

Local search methods often require substantially fewer steps to reach
high-quality solutions when initialized using greedy constructive search
rather than random picking.

By iterating cycles of constructive + local search, further performance
improvements can be achieved.
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Greedy Randomized “Adaptive” Search Procedure (GRASP):
while termination criterion is not satisfied do

generate candidate solution s using
subsidiary greedy randomized constructive search

perform subsidiary local search on s

Randomization in constructive search ensures that a large number of
good starting points for subsidiary local search is obtained.
Constructive search in GRASP is ‘adaptive’ (or dynamic):
Heuristic value of solution component to be added to
a given partial candidate solution may depend on
solution components present in it.
Variants of GRASP without local search phase
(aka semi-greedy heuristics) typically do not reach
the performance of GRASP with local search.
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Restricted candidate lists (RCLs)

Each step of constructive search adds a solution component selected
uniformly at random from a restricted candidate list (RCL).

RCLs are constructed in each step using a heuristic function h.

RCLs based on cardinality restriction comprise the k best-ranked solution
components. (k is a parameter of the algorithm.)

RCLs based on value restriction comprise all solution components l for
which h(l) ≤ hmin + α · (hmax − hmin),
where hmin = minimal value of h and hmax = maximal value
of h for any l. (α is a parameter of the algorithm.)
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Example: GRASP for SAT [Resende and Feo, 1996]

Given: CNF formula F over variables x1, . . . , xn

Subsidiary constructive search:

start from empty variable assignment

in each step, add one atomic assignment (i.e., assignment of
a truth value to a currently unassigned variable)

heuristic function h(i, v) := number of clauses that
become satisfied as a consequence of assigning xi := v

RCLs based on cardinality restriction (contain fixed number k
of atomic assignments with largest heuristic values)

Subsidiary local search:

iterative best improvement using 1-flip neighborhood

terminates when model has been found or given number of
steps has been exceeded
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GRASP has been applied to many combinatorial problems, including:

SAT, MAX-SAT
various scheduling problems

Extensions and improvements of GRASP:

reactive GRASP (e.g., dynamic adaptation of α
during search)
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Key Idea: Alternate construction and local local search phases as in GRASP,
exploiting experience gained during the search process.

Realisation:

Associate weights with possible decisions made during constructive
search.

Initialize all weights to some small value τ0 at beginning of search
process.

After every cycle (= constructive + local local search phase), update
weights based on solution quality and solution components of current
candidate solution.
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Adaptive Iterated Construction Search (AICS):
initialise weights
while termination criterion is not satisfied: do

generate candidate solution s using
subsidiary randomized constructive search

perform subsidiary local search on s
adapt weights based on s
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Subsidiary constructive search:

The solution component to be added in each step of constructive search
is based on weights and
heuristic function h.

h can be standard heuristic function as, e.g., used by
greedy heuristics

It is often useful to design solution component selection in constructive
search such that any solution component may be chosen (at least with
some small probability) irrespective of its weight and heuristic value.
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Subsidiary local local search:

As in GRASP, local local search phase is typically important for
achieving good performance.

Can be based on Iterative Improvement or more advanced LS method
(the latter often results in better performance).

Tradeoff between computation time used in construction phase vs local
search phase (typically optimized empirically, depends on problem
domain).
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Weight updating mechanism:

Typical mechanism: increase weights of all solution components
contained in candidate solution obtained from local search.

Can also use aspects of search history; e.g., current incumbent candidate
solution can be used as basis for
weight update for additional intensification.
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Example: A simple AICS algorithm for the TSP (1)

(Based on Ant System for the TSP [Dorigo et al. 1991].)

Search space and solution set as usual (all Hamiltonian cycles in given
graph G). However represented in a construction tree T .

Associate weight τij with each edge (i, j) in G and T

Use heuristic values ηij := 1/w((i, j)).

Initialize all weights to a small value τ0 (parameter).

Constructive search starts with randomly chosen vertex
and iteratively extends partial round trip φ by selecting vertex
not contained in φ with probability

[τij]
α · [ηij]β∑

l∈N ′(i)[τil]α · [ηij]β
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Example: A simple AICS algorithm for the TSP (2)

Subsidiary local search = typical iterative improvement

Weight update according to

τij := (1− ρ) · τij + ∆(i, j, s ′)

where ∆(i, j, s ′) := 1/f(s ′), if edge (i, j) is contained in
the cycle represented by s ′, and 0 otherwise.

Criterion for weight increase is based on intuition that edges contained in
short round trips should be preferably used in subsequent constructions.
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Key idea: make the problem recursively less refined creating a hierarchy of
approximations of the original problem.

an initial solution is found on the original problem or at a refined level
solutions are iteratively refined at each level
use of projection operators to transfer the solution from one level to
another

Multilevel Refinement
while Termination criterion is not satisfied do

coarse the problem π0 into πi, i = 0, . . . , k successive non degenerate
problems
i = k

determine an initial candidate solution for πk
repeat

i = i− 1
extend the solution found in πi+1 to πi
use subsidiary local search to refine the solution on πi

until i ≥ 0 ;
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Example: Multilevel Refinement for TSP

Coarsen: fix some edges and contract vertices
Solve: matching

(always match vertices with the nearest unmatched neighbors)
Extend: uncontract vertices
Refine: LK heuristic
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Note
crucial point: the solution to each refined problem must contain a
solution of the original problem (even if it is a poor solution)

Applications to

Graph Partitioning
Traveling Salesman
Graph Coloring
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Construction heuristics specific for TSP
Heuristics that Grow Fragments

Nearest neighborhood heuristics
Double-Ended Nearest Neighbor heuristic
Multiple Fragment heuristic (aka, greedy heuristic)

Heuristics that Grow Tours
Nearest Addition
Farthest Addition
Random Addition

Clarke-Wright savings heuristic

Nearest Insertion
Farthest Insertion
Random Insertion

Heuristics based on Trees
Minimum span tree heuristic
Christofides’ heuristics
Fast recursive partitioning heuristic
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