## Loading Data

Lecture 7 Running Assignment

## Marco Chiarandini

Deptartment of Mathematics \& Computer Science
University of Southern Denmark

## Experimental Set Up

- 12 instances divided into two sets

| Queen | Random |
| :--- | :--- |
| queen11_11 | DSJC1000.1 |
| queen12-12 | DSJC1000.5 |
| queen13-13 | DSJC1000.9 |
| queen14-14 | DSJC500.1 |
| queen15 | 15 |
| queen16_16 | DSJC500.5 |

- Same computational environment to all algorithms on Intel(R) Celeron(R) CPU $2.40 \mathrm{GHz}, 1 \mathrm{~GB}$ RAM
- ROS, RLF and DSATUR added
- Problem: some algorithms are single-pass heuristics, other metaheuristics with time limit 30 seconds.
Thought this should not be, analyzed together due to limited number of submissions!

F <- read.table("/home/marco/Teaching/Fall2009/DM811/GCP/results.txt")
G1 <- read.table("/home/marco/Teaching/Fall2009/DM811/GCP/Task1.res")
names(F) <- c("alg", "inst", "col", "time")
names(G1) <- c("alg", "inst", "run", "col", "time")
$>$ G <- G1[, c(1, 2, 4, 5)]
$>$ Fqueen <- F[grep("queen", F\$inst), ]
Cqueen <- G[grep("queen", G\$inst),
> FDSJC <- F[grep("DSJC", F\$inst), ]
GDSJC <- G[grep("DSJC", G\$inst),
> DSJC <- rbind(FDSJC, GDSJC)
> queen <- rbind(Fqueen, Gqueen)

## Experimental Set Up

- Each algorithm run 10 times on each of the 12 instances
> all <- rbind(DSJC, queen)
> table(all\$alg, all\$inst)

|  | DSJC1000.1 | DSJC1000.5 | DSJC1000.9 | DSJC500. 1 | DSJC500. 5 | DSJC500. 9 | queen11_11 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 010287 | 10 | 10 | 10 | 11 | 10 | 10 | 10 |
| 081284 | 0 | 0 | 0 | 0 | 0 | 0 | 10 |
| 090289 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
| 090289-1s | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
| 111085 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
| DSATUR | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
| RLF | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
| ROS | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
|  | queen12_12 | queen13_13 | queen14_14 | queen15_15 | queen16_16 |  |  |
| 010287 | 10 | 10 | 10 | 10 | 10 | 0 |  |
| 081284 | 10 | 10 | 10 | 10 | 10 | 0 |  |
| 090289 | 10 | 10 | 10 | 10 | 10 | 0 |  |
| 090289-1s | 10 | 10 | 10 | 10 | 10 | 0 |  |
| 111085 | 10 | 10 | 10 | 10 | 10 | 0 |  |
| DSATUR | 10 | 10 | 10 | 10 | 10 | 0 |  |
| RLF | 10 | 10 | 10 | 10 | 10 | 0 |  |
| ROS | 10 | 10 | 10 | 10 | 10 | 0 |  |

Comparative Analysis
$>\operatorname{print}(b w p l o t(r e o r d e r(a l g, ~ c o l) ~ \sim ~ c o l ~ \mid ~ i n s t, ~ d a t a ~=~ q u e e n, ~ l a y o u t ~=c(3, ~$ 2)))


## Comparative Analysis



## Comparative Analysis

> K <- aggregate(queen\$col, list(alg = queen\$alg, inst = queen\$inst), median)
> print(dotplot(reorder(alg, x) ~ x | reorder(inst, x), data = K, layout = c(3,
2), scales = list(y = list(relation = "same"))))


## Comparative Analysis

> print(bwplot(reorder(alg, col) ~ col | reorder(inst, col), data = DSJC


Aggregating raw data on the random graphs
> print(bwplot(reorder(alg, col) ~ col, data = DSJC))


Trade off Solution Quality vs Run Time
> print(xyplot(time ~ col | inst, groups = alg, data = DSJC, pch = c(1:7), $+\quad$ scales $=$ list (relation $=$ "free" $),$ auto.key $=$ list $(p c h=c(1: 7)$,


## Comparative Analysis

View of raw data ranked within instances and aggregated between


## Trade off Solution Quality vs Run Time

Solution quality ranked within instances
Data aggregated by median value between instances


## Numerical Results

## DSATUR

|  | ${ }^{\text {x. } 010287}$ | x. 081284 | $\times .09289$ | x.090289-1s | x.111085 | x.DSATUR | x.RLF | x.ROS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DSJC1000. 1 | 30 |  | ${ }^{31}$ | 26 |  | 26 | 24 | 30 |
| DSJC1000.5 | 124 |  | 127 | 126 | 124 | 113 | 107 | 126 |
| DSJC1000.9 | 317 18 18 |  | $\begin{array}{r}321 \\ 20 \\ \hline\end{array}$ | 321 16 | 317 18 | ${ }_{15}^{297}$ | 281 14 | 315 18 |
| SJJC500.1 | ${ }_{71}^{18}$ |  | 20 72 | ${ }_{63}^{16}$ | +18 ${ }_{69}^{18}$ | 15 64 | 14 60 | ${ }_{72}^{18}$ |
| DSJC500.9 | 181 |  | 175 | 169 | 174 | 160 | 155 | 174 |
| queen11 ${ }^{11}$ | 18 | 14 | 17 | 13 | 15 | 15 | 13 | 16 |
| queen12-12 | 20 | 15 | 20 | 14 | 16 | 16 | 14 | 17 |
| queen13-13 | 21 | 16 | 21 | 16 | 18 | 17 | 15 | 19 |
| queen11-14 | 23 | 17 |  | 16 | 19 |  | 17 | 20 |
| queen15-15 ${ }_{\text {queen }}$ | ${ }_{27}^{25}$ |  | 25 25 | 18 19 | ${ }_{22}^{20}$ | ${ }_{20}^{19}$ | 18 19 | ${ }_{23}^{21}$ |

Median Time (sec.)

| inst | x. 010287 | x. 081284 | x. 090289 | x.090289-ls | x. 111085 | x.DSATUR | x.RLF | x.ROS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DSJC1000.1 | 1.06 |  | 0.01 | 9.87 | 30.00 | 0.01 | 0.04 | 0.01 |
| DSJC1000.5 | 2.01 |  | 0.02 | 9.85 | 30.00 | 0.04 | 0.82 | 0.04 |
| DSJC1000.9 | 3.02 |  | 0.02 | 9.87 | 30.00 | 0.07 | 3.98 | 0.06 |
| DSJC500.1 | 0.74 |  | 0.00 | 9.91 | 30.00 | 0.00 | 0.01 | 0.00 |
| DSJC500.5 | 0.99 |  | 0.01 | 9.87 | 30.00 | 0.01 | 0.12 | 0.01 |
| DSJC500.9 | 1.25 |  | 0.01 | 9.77 | 30.00 | 0.02 | 0.54 | 0.02 |
| queen11_11 | 0.23 | 30.00 | 0.00 | 9.88 | 30.00 | 0.00 | 0.00 | 0.00 |
| queen12-12 | 0.27 | 30.00 | 0.00 | 9.88 | 30.00 | 0.00 | 0.00 | 0.00 |
| queen13 ${ }^{13}$ | 0.31 | 30.00 | 0.00 | 9.76 | 30.00 | 0.00 | 0.00 | 0.00 |
| queen14-14 | 0.36 | 30.00 | 0.00 | 9.82 | 30.00 | 0.00 | 0.00 | 0.00 |
| queen15 ${ }^{-15}$ | 0.39 | 30.00 | 0.00 | 9.89 | 30.00 | 0.00 | 0.00 | 0.00 |
| queen16 ${ }^{16}$ | 0.49 | 30.00 | 0.00 | 9.71 | 30.00 | 0.00 | 0.00 | 0.00 |

1. Let $\left\{C_{1}, \ldots, C_{k}\right\}, k=|V|$, be a set of empty color classes.

## DSATUR

1. Let $\left\{\mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{k}}\right\}, \mathrm{k}=|\mathrm{V}|$, be a set of empty color classes.
2. Sort vertices in decreasing order of degree and insert first into $\mathrm{C}_{1}$
3. Choose the next vertex to be the one with largest saturation degree, that is, the number of differently colored adjacent vertices.
(break ties preferring vertices with the maximal number of adjacent, still uncolored vertices; otherwise randomly).
4. Let $\left\{\mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{k}}\right\}, \mathrm{k}=|\mathrm{V}|$, be a set of empty color classes.
5. Sort vertices in decreasing order of degree and insert first into $C_{1}$.
6. Choose the next vertex to be the one with largest saturation degree, that is, the number of differently colored adjacent vertices.
(break ties preferring vertices with the maximal number of adjacent, still uncolored vertices; otherwise randomly).
7. Color the vertex according to greedy heuristic.

## RLF

Recursive Largest First
Key idea: iteratively extract independent sets.

1. Let $\left\{C_{1}, \ldots, C_{k}\right\}, k=|V|$, be a set of empty color classes. Set $\mathfrak{i}=1$. Let $\mathrm{V}^{\prime}=\mathrm{V}$ be a set of of still uncolored vertices.
2. Let $\left\{\mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{k}}\right\}, \mathrm{k}=|\mathrm{V}|$, be a set of empty color classes.
3. Sort vertices in decreasing order of degree and insert first into $\mathrm{C}_{1}$.
4. Choose the next vertex to be the one with largest saturation degree, that is, the number of differently colored adjacent vertices.
(break ties preferring vertices with the maximal number of adjacent, still uncolored vertices; otherwise randomly).
5. Color the vertex according to greedy heuristic.
6. If still vertices to color, goto 3. Else stop.

## RLF

Recursive Largest First
Key idea: iteratively extract independent sets.

1. Let $\left\{\mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{k}}\right\}, \mathrm{k}=|\mathrm{V}|$, be a set of empty color classes. Set $\mathfrak{i}=1$. Let $\mathrm{V}^{\prime}=\mathrm{V}$ be a set of of still uncolored vertices.
2. Let $U=\emptyset$ set of vertices that cannot be added to color class $C_{i}$.

## RLF

Recursive Largest First
Key idea: iteratively extract independent sets.

1. Let $\left\{\mathrm{C}_{1}, \ldots, \mathrm{C}_{k}\right\}, k=|V|$, be a set of empty color classes. Set $\mathfrak{i}=1$. Let $\mathrm{V}^{\prime}=\mathrm{V}$ be a set of of still uncolored vertices.
2. Let $\mathrm{U}=\emptyset$ set of vertices that cannot be added to color class $\mathrm{C}_{\mathrm{i}}$.
3. Assign to $\mathrm{C}_{\mathrm{i}}$ a vertex $v \in \mathrm{~V}^{\prime}$ with maximal degree in $\mathrm{V}^{\prime}$

## RLF

Recursive Largest First
Key idea: iteratively extract independent sets.

1. Let $\left\{C_{1}, \ldots, C_{k}\right\}, k=|V|$, be a set of empty color classes. Set $\mathfrak{i}=1$. Let $\mathrm{V}^{\prime}=\mathrm{V}$ be a set of of still uncolored vertices.
2. Let $U=\emptyset$ set of vertices that cannot be added to color class $C_{i}$.
3. Assign to $\mathrm{C}_{\mathrm{i}}$ a vertex $v \in \mathrm{~V}^{\prime}$ with maximal degree in $\mathrm{V}^{\prime}$
4. Remove from $\mathrm{V}^{\prime}$ all vertices that are adjacent to $v$ and insert them into U.

## RLF

Recursive Largest First
Key idea: iteratively extract independent sets.

1. Let $\left\{\mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{k}}\right\}, \mathrm{k}=|\mathrm{V}|$, be a set of empty color classes. Set $\mathfrak{i}=1$. Let $\mathrm{V}^{\prime}=\mathrm{V}$ be a set of of still uncolored vertices.
2. Let $U=\emptyset$ set of vertices that cannot be added to color class $C_{i}$.
3. Assign to $\mathrm{C}_{\mathrm{i}}$ a vertex $v \in \mathrm{~V}^{\prime}$ with maximal degree in $\mathrm{V}^{\prime}$
4. Remove from $\mathrm{V}^{\prime}$ all vertices that are adjacent to $v$ and insert them into U.
5. while $V^{\prime}$ is not empty:

- add to $\mathrm{C}_{i}$ the vertex $v^{\prime} \in \mathrm{V}^{\prime}$ with largest number of edges $\left[v^{\prime}, u\right]$, with
- $u \in U$; (break ties randomly)
- remove $v^{\prime}$ from $\mathrm{V}^{\prime}$
- move into U all vertices in $\mathrm{V}^{\prime}$ adjacent to $v^{\prime}$.

6. Set $\mathrm{V}^{\prime}=\mathrm{U}$. If $\mathrm{V}^{\prime}$ not empty $\mathfrak{i}=\mathfrak{i}+1$ and goto 2 . Else stop.
