
Lecture 7
Running Assignment

Marco Chiarandini

Deptartment of Mathematics & Computer Science
University of Southern Denmark

Loading Data

> F <- read.table("/home/marco/Teaching/Fall2009/DM811/GCP/results.txt")
> G1 <- read.table("/home/marco/Teaching/Fall2009/DM811/GCP/Task1.res")
> names(F) <- c("alg", "inst", "col", "time")
> names(G1) <- c("alg", "inst", "run", "col", "time")
> G <- G1[, c(1, 2, 4, 5)]
> Fqueen <- F[grep("queen", F$inst),]
> Gqueen <- G[grep("queen", G$inst),]
> FDSJC <- F[grep("DSJC", F$inst),]
> GDSJC <- G[grep("DSJC", G$inst),]
> DSJC <- rbind(FDSJC, GDSJC)
> queen <- rbind(Fqueen, Gqueen)

2

Experimental Set Up

12 instances divided into two sets
Queen Random
queen11_11 DSJC1000.1
queen12_12 DSJC1000.5
queen13_13 DSJC1000.9
queen14_14 DSJC500.1
queen15_15 DSJC500.5
queen16_16 DSJC500.9

Same computational environment to all algorithms on Intel(R)
Celeron(R) CPU 2.40GHz, 1GB RAM

ROS, RLF and DSATUR added

Problem: some algorithms are single-pass heuristics, other
metaheuristics with time limit 30 seconds.
Thought this should not be, analyzed together due to limited number of
submissions!

3

Experimental Set Up

Each algorithm run 10 times on each of the 12 instances
> all <- rbind(DSJC, queen)
> table(allalg, allinst)

DSJC1000.1 DSJC1000.5 DSJC1000.9 DSJC500.1 DSJC500.5 DSJC500.9 queen11_11
010287 10 10 10 11 10 10 10
081284 0 0 0 0 0 0 10
090289 10 10 10 10 10 10 10
090289-ls 10 10 10 10 10 10 10
111085 10 10 10 10 10 10 10
DSATUR 10 10 10 10 10 10 10
RLF 10 10 10 10 10 10 10
ROS 10 10 10 10 10 10 10

queen12_12 queen13_13 queen14_14 queen15_15 queen16_16
010287 10 10 10 10 10
081284 10 10 10 10 10
090289 10 10 10 10 10
090289-ls 10 10 10 10 10
111085 10 10 10 10 10
DSATUR 10 10 10 10 10
RLF 10 10 10 10 10
ROS 10 10 10 10 10

4

Comparative Analysis

> print(bwplot(reorder(alg, col) ~ col | inst, data = queen, layout = c(3,
+ 2)))

col

RLF

090289−ls

081284

111085

DSATUR

ROS

090289

010287

15 20 25

●

●

●

●

●

●

●

●

● ●

queen11_11

●

●

●

●

●

●

●

●

●● ●●

●●

queen12_12

15 20 25

●

●

●

●

●

●

●

●

● ●

queen13_13

RLF

090289−ls

081284

111085

DSATUR

ROS

090289

010287

●

●

●

●

●

●

●

●

●

●

queen14_14

15 20 25

●

●

●

●

●

●

●

●

●●

●

queen15_15

●

●

●

●

●

●

●

●

●

●

queen16_16

5

Comparative Analysis

> K <- aggregate(queen$col, list(alg = queen$alg, inst = queen$inst),
+ median)
> print(dotplot(reorder(alg, x) ~ x | reorder(inst, x), data = K, layout = c(3,
+ 2), scales = list(y = list(relation = "same"))))

x

090289−ls

RLF

081284

111085

DSATUR

ROS

090289

010287

15 20 25

●

●

●

●

●

●

●

●

queen11_11

●

●

●

●

●

●

●

●

queen12_12

15 20 25

●

●

●

●

●

●

●

●

queen13_13

090289−ls

RLF

081284

111085

DSATUR

ROS

090289

010287 ●

●

●

●

●

●

●

●

queen14_14

15 20 25

●

●

●

●

●

●

●

●

queen15_15

●

●

●

●

●

●

●

●

queen16_16

6

Comparative Analysis

> print(bwplot(reorder(alg, col) ~ col | reorder(inst, col), data = DSJC,
+ layout = c(3, 2)))

col

RLF

DSATUR

090289−ls

010287

111085

090289

ROS

0 100 200 300

●

●

●

●

●

●

●

●●

●

●

DSJC500.1

●

●

●

●

●

●

●

●

●

DSJC1000.1

0 100 200 300

●

●

●

●

●

●

●

●●●

●

●

●●●●

DSJC500.5

RLF

DSATUR

090289−ls

010287

111085

090289

ROS

●

●

●

●

●

●

●

●

●

DSJC1000.5

0 100 200 300

●

●

●

●

●

●

●

●●

●

DSJC500.9

●

●

●

●

●

●

●

DSJC1000.9

7

Comparative Analysis

> print(bwplot(reorder(alg, col) ~ col | reorder(inst, col), data = DSJC,
+ layout = c(3, 2), col = "blue", scales = (x = list(relation = "free"))))

col

RLF

DSATUR

090289−ls

010287

111085

090289

ROS

14 16 18 20

●

●

●

●

●

●

●

●●

●

●

DSJC500.1

RLF

DSATUR

090289−ls

010287

111085

090289

ROS

24 26 28 30 32

●

●

●

●

●

●

●

●

●

DSJC1000.1

RLF

DSATUR

090289−ls

010287

111085

090289

ROS

60 65 70

●

●

●

●

●

●

●

●● ●

●

●

● ●● ●

DSJC500.5

RLF

DSATUR

090289−ls

010287

111085

090289

ROS

110 115 120 125 130

●

●

●

●

●

●

●

●

●

DSJC1000.5

RLF

DSATUR

090289−ls

010287

111085

090289

ROS

155 160 165 170 175 180

●

●

●

●

●

●

●

●●

●

DSJC500.9

RLF

DSATUR

090289−ls

010287

111085

090289

ROS

280 290 300 310 320 330

●

●

●

●

●

●

●

DSJC1000.9

8

Comparative Analysis

Aggregating raw data on the random graphs
> print(bwplot(reorder(alg, col) ~ col, data = DSJC))

col

RLF

DSATUR

090289−ls

010287

111085

090289

ROS

0 100 200 300

●

●

●

●

●

●

●

9

Comparative Analysis

View of raw data ranked within instances and aggregated between

rank

081284

RLF

DSATUR

090289−ls

111085

010287

ROS

090289

0 20 40 60

●

●

●

●

●

●

●

●

●● ●●

queen

0 20 40 60

●

●

●

●

●

●

●

●

●●

●

●●●●●●●●●●

DSJC

10

Trade off Solution Quality vs Run Time

> print(xyplot(time ~ col | inst, groups = alg, data = DSJC, pch = c(1:7),
+ scales = list(relation = "free"), auto.key = list(pch = c(1:7),
+ columns = 5)))

col

tim
e

0
5

10
15

20
25

30

24 26 28 30 32

●●●●●●●●●●
●●●● ● ●● ●●●

DSJC1000.1

0
5

10
15

20
25

30

110 115 120 125 130

●●●●●●●●●●

●●●● ●●● ●● ●

DSJC1000.5

0
5

10
15

20
25

30

280 290 300 310 320 330

●●●●●●●●●●

● ● ● ●● ●● ●● ●

DSJC1000.9

0
5

10
15

20
25

30

14 16 18 20

●●●●●●●●●●●
●●● ●●●●● ●●

DSJC500.1

0
5

10
15

20
25

30

60 65 70

●●●●●●●●●●
● ●●● ●●●● ●●

DSJC500.5

0
5

10
15

20
25

30

155 160 165 170 175 180

●●●●●●●●●●
● ●● ● ●● ●● ●●

DSJC500.9

010287
081284

090289
090289−ls

111085
DSATUR

RLF
ROS

●

●

●

●

●

●

●

●

11

Trade off Solution Quality vs Run Time

Solution quality ranked within instances
Data aggregated by median value between instances

Quality

Ti
m

e

10^−2

10^−1

10^0

10^1

10 20 30 40 50 60

010287

090289

090289−ls

111085

DSATUR

RLF

ROS

DSJC

10^−3

10^−2

10^−1

10^0

10^1

10 20 30 40 50 60 70

010287

081284

090289

090289−ls

111085

DSATUR

RLF

ROS

queen

12

Numerical Results

Best Solutions
inst x.010287 x.081284 x.090289 x.090289-ls x.111085 x.DSATUR x.RLF x.ROS
DSJC1000.1 30 31 26 29 26 24 30
DSJC1000.5 124 127 126 124 113 107 126
DSJC1000.9 317 321 321 317 297 281 315
DSJC500.1 18 20 16 18 15 14 18
DSJC500.5 71 72 63 69 64 60 72
DSJC500.9 181 175 169 174 160 155 174
queen11_11 18 14 17 13 15 15 13 16
queen12_12 20 15 20 14 16 16 14 17
queen13_13 21 16 21 16 18 17 15 19
queen14_14 23 17 23 16 19 18 17 20
queen15_15 25 18 25 18 20 19 18 21
queen16_16 27 20 25 19 22 20 19 23

Median Time (sec.)
inst x.010287 x.081284 x.090289 x.090289-ls x.111085 x.DSATUR x.RLF x.ROS
DSJC1000.1 1.06 0.01 9.87 30.00 0.01 0.04 0.01
DSJC1000.5 2.01 0.02 9.85 30.00 0.04 0.82 0.04
DSJC1000.9 3.02 0.02 9.87 30.00 0.07 3.98 0.06
DSJC500.1 0.74 0.00 9.91 30.00 0.00 0.01 0.00
DSJC500.5 0.99 0.01 9.87 30.00 0.01 0.12 0.01
DSJC500.9 1.25 0.01 9.77 30.00 0.02 0.54 0.02
queen11_11 0.23 30.00 0.00 9.88 30.00 0.00 0.00 0.00
queen12_12 0.27 30.00 0.00 9.88 30.00 0.00 0.00 0.00
queen13_13 0.31 30.00 0.00 9.76 30.00 0.00 0.00 0.00
queen14_14 0.36 30.00 0.00 9.82 30.00 0.00 0.00 0.00
queen15_15 0.39 30.00 0.00 9.89 30.00 0.00 0.00 0.00
queen16_16 0.49 30.00 0.00 9.71 30.00 0.00 0.00 0.00

13

DSATUR

1. Let {C1, . . . , Ck}, k = |V |, be a set of empty color classes.

2. Sort vertices in decreasing order of degree and insert first into C1.

3. Choose the next vertex to be the one with largest saturation degree, that
is, the number of differently colored adjacent vertices.
(break ties preferring vertices with the maximal number of adjacent, still
uncolored vertices; otherwise randomly).

4. Color the vertex according to greedy heuristic.

5. If still vertices to color, goto 3. Else stop.

14

DSATUR

1. Let {C1, . . . , Ck}, k = |V |, be a set of empty color classes.

2. Sort vertices in decreasing order of degree and insert first into C1.

3. Choose the next vertex to be the one with largest saturation degree, that
is, the number of differently colored adjacent vertices.
(break ties preferring vertices with the maximal number of adjacent, still
uncolored vertices; otherwise randomly).

4. Color the vertex according to greedy heuristic.

5. If still vertices to color, goto 3. Else stop.

14

DSATUR

1. Let {C1, . . . , Ck}, k = |V |, be a set of empty color classes.

2. Sort vertices in decreasing order of degree and insert first into C1.

3. Choose the next vertex to be the one with largest saturation degree, that
is, the number of differently colored adjacent vertices.
(break ties preferring vertices with the maximal number of adjacent, still
uncolored vertices; otherwise randomly).

4. Color the vertex according to greedy heuristic.

5. If still vertices to color, goto 3. Else stop.

14

DSATUR

1. Let {C1, . . . , Ck}, k = |V |, be a set of empty color classes.

2. Sort vertices in decreasing order of degree and insert first into C1.

3. Choose the next vertex to be the one with largest saturation degree, that
is, the number of differently colored adjacent vertices.
(break ties preferring vertices with the maximal number of adjacent, still
uncolored vertices; otherwise randomly).

4. Color the vertex according to greedy heuristic.

5. If still vertices to color, goto 3. Else stop.

14

DSATUR

1. Let {C1, . . . , Ck}, k = |V |, be a set of empty color classes.

2. Sort vertices in decreasing order of degree and insert first into C1.

3. Choose the next vertex to be the one with largest saturation degree, that
is, the number of differently colored adjacent vertices.
(break ties preferring vertices with the maximal number of adjacent, still
uncolored vertices; otherwise randomly).

4. Color the vertex according to greedy heuristic.

5. If still vertices to color, goto 3. Else stop.

14

RLF
Recursive Largest First

Key idea: iteratively extract independent sets.

1. Let {C1, . . . , Ck}, k = |V |, be a set of empty color classes. Set i = 1.
Let V ′ = V be a set of of still uncolored vertices.

2. Let U = ∅ set of vertices that cannot be added to color class Ci.

3. Assign to Ci a vertex v ∈ V ′ with maximal degree in V ′

4. Remove from V ′ all vertices that are adjacent to v and insert them into
U.

5. while V ′ is not empty:

add to Ci the vertex v ′ ∈ V ′ with largest number of edges [v ′, u],
with

u ∈ U; (break ties randomly)

remove v ′ from V ′

move into U all vertices in V ′ adjacent to v ′.

6. Set V ′ = U. If V ′ not empty i = i + 1 and goto 2. Else stop.

15

RLF
Recursive Largest First

Key idea: iteratively extract independent sets.

1. Let {C1, . . . , Ck}, k = |V |, be a set of empty color classes. Set i = 1.
Let V ′ = V be a set of of still uncolored vertices.

2. Let U = ∅ set of vertices that cannot be added to color class Ci.

3. Assign to Ci a vertex v ∈ V ′ with maximal degree in V ′

4. Remove from V ′ all vertices that are adjacent to v and insert them into
U.

5. while V ′ is not empty:

add to Ci the vertex v ′ ∈ V ′ with largest number of edges [v ′, u],
with

u ∈ U; (break ties randomly)

remove v ′ from V ′

move into U all vertices in V ′ adjacent to v ′.

6. Set V ′ = U. If V ′ not empty i = i + 1 and goto 2. Else stop.

15

RLF
Recursive Largest First

Key idea: iteratively extract independent sets.

1. Let {C1, . . . , Ck}, k = |V |, be a set of empty color classes. Set i = 1.
Let V ′ = V be a set of of still uncolored vertices.

2. Let U = ∅ set of vertices that cannot be added to color class Ci.

3. Assign to Ci a vertex v ∈ V ′ with maximal degree in V ′

4. Remove from V ′ all vertices that are adjacent to v and insert them into
U.

5. while V ′ is not empty:

add to Ci the vertex v ′ ∈ V ′ with largest number of edges [v ′, u],
with

u ∈ U; (break ties randomly)

remove v ′ from V ′

move into U all vertices in V ′ adjacent to v ′.

6. Set V ′ = U. If V ′ not empty i = i + 1 and goto 2. Else stop.

15

RLF
Recursive Largest First

Key idea: iteratively extract independent sets.

1. Let {C1, . . . , Ck}, k = |V |, be a set of empty color classes. Set i = 1.
Let V ′ = V be a set of of still uncolored vertices.

2. Let U = ∅ set of vertices that cannot be added to color class Ci.

3. Assign to Ci a vertex v ∈ V ′ with maximal degree in V ′

4. Remove from V ′ all vertices that are adjacent to v and insert them into
U.

5. while V ′ is not empty:

add to Ci the vertex v ′ ∈ V ′ with largest number of edges [v ′, u],
with

u ∈ U; (break ties randomly)

remove v ′ from V ′

move into U all vertices in V ′ adjacent to v ′.

6. Set V ′ = U. If V ′ not empty i = i + 1 and goto 2. Else stop.

15

RLF
Recursive Largest First

Key idea: iteratively extract independent sets.

1. Let {C1, . . . , Ck}, k = |V |, be a set of empty color classes. Set i = 1.
Let V ′ = V be a set of of still uncolored vertices.

2. Let U = ∅ set of vertices that cannot be added to color class Ci.

3. Assign to Ci a vertex v ∈ V ′ with maximal degree in V ′

4. Remove from V ′ all vertices that are adjacent to v and insert them into
U.

5. while V ′ is not empty:

add to Ci the vertex v ′ ∈ V ′ with largest number of edges [v ′, u],
with

u ∈ U; (break ties randomly)

remove v ′ from V ′

move into U all vertices in V ′ adjacent to v ′.

6. Set V ′ = U. If V ′ not empty i = i + 1 and goto 2. Else stop.

15

RLF
Recursive Largest First

Key idea: iteratively extract independent sets.

1. Let {C1, . . . , Ck}, k = |V |, be a set of empty color classes. Set i = 1.
Let V ′ = V be a set of of still uncolored vertices.

2. Let U = ∅ set of vertices that cannot be added to color class Ci.

3. Assign to Ci a vertex v ∈ V ′ with maximal degree in V ′

4. Remove from V ′ all vertices that are adjacent to v and insert them into
U.

5. while V ′ is not empty:

add to Ci the vertex v ′ ∈ V ′ with largest number of edges [v ′, u],
with

u ∈ U; (break ties randomly)

remove v ′ from V ′

move into U all vertices in V ′ adjacent to v ′.

6. Set V ′ = U. If V ′ not empty i = i + 1 and goto 2. Else stop.

15

