
DM204, 2010
SCHEDULING, TIMETABLING AND ROUTING

Lecture 12
Single Machine Models, Dynamic Programming

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Dispatching Rules
Single Machine ModelsOutline

1. Dispatching Rules

2. Single Machine Models

Marco Chiarandini .::. 2

Dispatching Rules
Single Machine ModelsOrganization

Next week exercise session on Monday or Wednesday?

Tomorrow: midterm evaluation

Project to be launched beginning next week

All elements for tackling it have been given during the past lectures

Lectures also during the break?

How the course will continue
We will look closer into scheduling models and learn:

special algorithms

application of general methods

Marco Chiarandini .::. 3

Dispatching Rules
Single Machine ModelsCourse Overview

4 Problem Introduction
4 Scheduling classification
4 Scheduling complexity
4 RCPSP

General Methods
4 Integer Programming
4 Constraint Programming
4 Heuristics

Dynamic Programming
Branch and Bound

Scheduling
Single Machine
Parallel Machine and Flow
Shop Models
Job Shop
Resource Constrained Project
Scheduling Model

Timetabling
Reservations and Education
University Timetabling
Crew Scheduling
Public Transports

Vechicle Routing
Capacited Models
Time Windows models
Rich Models

Marco Chiarandini .::. 4

Dispatching Rules
Single Machine ModelsOutline

1. Dispatching Rules

2. Single Machine Models

Marco Chiarandini .::. 5

Dispatching Rules
Single Machine ModelsDispatching rules

Distinguish static and dynamic rules.

Service in random order (SIRO)

Earliest release date first (ERD=FIFO)
tends to min variations in waiting time

Earliest due date (EDD)

Minimal slack first (MS)
j∗ = argminj{max(dj − pj − t, 0)}.
tends to min due date objectives (T,L)

Marco Chiarandini .::. 6

Dispatching Rules
Single Machine Models

(Weighted) shortest processing time first (WSPT)
j∗ = argmaxj{wj/pj}.
tends to min

P
wjCj and max work in progress and

Loongest processing time first (LPT)
balance work load over parallel machines

Shortest setup time first (SST)
tends to min Cmax and max throughput

Least flexible job first (LFJ)
eligibility constraints

Marco Chiarandini .::. 7

Dispatching Rules
Single Machine Models

Critical path (CP)
first job in the CP

tends to min Cmax

Largest number of successors (LNS)

Shortest queue at the next operation (SQNO)
tends to min idleness of machines

Marco Chiarandini .::. 8

Dispatching Rules
Single Machine ModelsDispatching Rules in Scheduling

RULE DATA OBJECTIVES
Rules Dependent ERD rj Variance in Throughput Times
on Release Dates EDD dj Maximum Lateness
and Due Dates MS dj Maximum Lateness

LPT pj Load Balancing over Parallel Machines
Rules Dependent SPT pj Sum of Completion Times, WIP
on Processing WSPT pj , wj Weighted Sum of Completion Times, WIP
Times CP pj , prec Makespan

LNS pj , prec Makespan
SIRO - Ease of Implementation

Miscellaneous SST sjk Makespan and Throughput
LFJ Mj Makespan and Throughput
SQNO - Machine Idleness

Marco Chiarandini .::. 9

Dispatching Rules
Single Machine Models

When dispatching rules are optimal?

Marco Chiarandini .::. 10

Dispatching Rules
Single Machine ModelsComposite dispatching rules

Why composite rules?

Example: 1 | | ∑wjTj :

WSPT, optimal if due dates are zero

EDD, optimal if due dates are loose

MS, tends to minimize T

ä The efficacy of the rules depends on instance factors

Marco Chiarandini .::. 11

Dispatching Rules
Single Machine Models

Instance characterization
Job attributes: {weight, processing time, due date, release date}

Machine attributes: {speed, num. of jobs waiting, num. of jobs eligible}

Possible instance factors:

1 | |P wjTj

θ1 = 1− d̄
Cmax

(due date tightness)

θ2 =
dmax − dmin

Cmax
(due date range)

1 | sjk |
P

wjTj

(θ1, θ2 with estimated Ĉmax =
nX

j=1

pj + ns̄)

θ3 =
s̄
p̄

(set up time severity)
Marco Chiarandini .::. 12

Dispatching Rules
Single Machine Models

1 | |∑wjTj , dynamic apparent tardiness cost (ATC)

Ij(t) =
wj

pj
exp

(
−max(dj − pj − t, 0)

Kp̄

)

1 | sjk |
∑

wjTj , dynamic apparent tardiness cost with setups (ATCS)

Ij(t, l) =
wj

pj
exp

(
−max(dj − pj − t, 0)

K1p̄

)
exp

(−sjk
K2s̄

)
after job l has finished.

Marco Chiarandini .::. 13

Dispatching Rules
Single Machine ModelsOutline

1. Dispatching Rules

2. Single Machine Models

Marco Chiarandini .::. 16

Dispatching Rules
Single Machine ModelsOutlook

1 | | ∑wjCj : weighted shortest processing time first is optimal

1 | | ∑j Uj : Moore’s algorithm

1 | prec | Lmax : Lawler’s algorithm, backward dynamic programming in
O(n2) [Lawler, 1973]

1 | | ∑ hj(Cj) : dynamic programming in O(2n)

1 | | ∑wjTj : local search and dynasearch

1 | rj , (prec) | Lmax : branch and bound

1 | sjk | Cmax : in the special case, Gilmore and Gomory algorithm
optimal in O(n2)

1 | | ∑wjTj : column generation approaches

Multicriteria Marco Chiarandini .::. 17

Dispatching Rules
Single Machine ModelsSummary

Single Machine Models:

Cmax is sequence independent

if rj = 0 and hj is monotone non decreasing in Cj then optimal schedule
is nondelay and has no preemption.

Marco Chiarandini .::. 18

Dispatching Rules
Single Machine Models1 | | ∑∑∑w jC j

[Total weighted completion time]

Theorem

The weighted shortest processing time first (WSPT) rule is optimal.

Extensions to 1 | prec | ∑wjCj

in the general case strongly NP-hard

chain precedences:
process first chain with highest ρ-factor up to, and included, job with
highest ρ-factor.

polytime algorithm also for tree and sp-graph precedences

Marco Chiarandini .::. 19

Dispatching Rules
Single Machine Models

Extensions to 1 | rj , prmp | ∑wjCj

in the general case strongly NP-hard

preemptive version of the WSPT if equal weights

however, 1 | rj |
∑

wjCj is strongly NP-hard

Marco Chiarandini .::. 20

Dispatching Rules
Single Machine Models1 | | ∑∑∑j U j

[Number of tardy jobs]

[Moore, 1968] algorithm in O(n log n)

Add jobs in increasing order of due dates

If inclusion of job j∗ results in this job being completed late
discard the scheduled job k∗ with the longest processing time

1 | | ∑j wjUj is a knapsack problem hence NP-hard

Marco Chiarandini .::. 21

Dispatching Rules
Single Machine ModelsDynamic programming

Procedure based on divide and conquer

Principle of optimality the completion of an optimal sequence of decisions
must be optimal

Break down the problem into stages at which the decisions take place
Find a recurrence relation that takes us backward (forward) from one
stage to the previous (next)
Typical technique: labelling with dominance criteria

(In scheduling, backward procedure feasible only if the makespan is schedule
independent, eg, single machine problems without setups, multiple machines
problems with identical processing times.)

Marco Chiarandini .::. 22

Dispatching Rules
Single Machine Models1 | prec| hmax

hmax = max{h1(C1), h2(C2), . . . , hn(Cn)}, hj regular

special case: 1 | prec | hmax [maximum lateness]

solved by backward dynamic programming in O(n2) [Lawler, 1978]

J set of jobs already scheduled;
Jc set of jobs still to schedule;
J ′ ⊆ Jc set of schedulable jobs

Step 1: Set J = ∅, Jc = {1, . . . , n} and J ′ the set of all jobs with no
successor

Step 2: Select j∗ such that j∗ = argminj∈J′{hj
(∑

k∈Jc pk
)};

add j∗ to J; remove j∗ from Jc ; update J ′.
Step 3: If Jc is empty then stop, otherwise go to Step 2.

For 1 | | Lmax Earliest Due Date first

1|rj |Lmax is instead strongly NP-hard
Marco Chiarandini .::. 23

Dispatching Rules
Single Machine Models1 | | ∑∑∑hj(C j)

generalization of
∑

wjTj hence strongly NP-hard

(forward) dynamic programming algorithm O(2n)

J set of jobs already scheduled;

V (J) =
∑

j∈J hj(Cj)

Step 1: Set J = ∅, V (j) = hj(pj), j = 1, . . . , n

Step 2: V (J) = minj∈J
(
V (J − {j}) + hj

(∑
k∈J pk

))
Step 3: If J = {1, 2, . . . , n} then V ({1, 2, . . . , n}) is optimum,

otherwise go to Step 2.

Marco Chiarandini .::. 24

Dispatching Rules
Single Machine Models1 | | ∑∑∑hj(C j)

A lot of work done on 1 | | ∑wjTj
[single-machine total weighted tardiness]

1 | | ∑Tj is hard in ordinary sense, hence admits a pseudo polynomial
algorithm (dynamic programming in O(n4∑ pj))

1 | | ∑wjTj strongly NP-hard (reduction from 3-partition)

exact solution via branch and bound feasible up to 40 jobs
[Potts and Wassenhove, Oper. Res., 1985]

exact solution via time-indexed integer programming formulation used to
lower bound in branch and bound solves instances of 100 jobs in 4-9
hours [Pan and Shi, Math. Progm., 2007]

dynasearch: results reported for 100 jobs within a 0.005% gap from
optimum in less than 3 seconds [Grosso et al., Oper. Res. Lett., 2004]

Marco Chiarandini .::. 25

Dispatching Rules
Single Machine Models1 | | ∑∑∑hj(C j)

Local search (revisited)

1. search space (solution representation)
2. initial solution
3. neghborhood function
4. evaluation function
5. step function
6. memory states
7. termination predicte

Speedups Techniques for Efficient Neighborhood Search

1) Incremental updates

2) Neighborhood pruning

Marco Chiarandini .::. 27

Dispatching Rules
Single Machine Models1 | | ∑∑∑hj(C j)

Neighborhood updates and pruning

Interchange neigh.: size
(n
2

)
and O(|i − j |) evaluation each

first-improvement: πj , πk

pπj ≤ pπk for improvements, wjTj +wkTk must decrease because jobs
in πj , . . . , πk can only increase their tardiness.

pπj ≥ pπk possible use of auxiliary data structure to speed up the com-
putation

best-improvement: πj , πk

pπj ≤ pπk for improvements, wjTj + wkTk must decrease at least as
the best interchange found so far because jobs in πj , . . . , πk

can only increase their tardiness.
pπj ≥ pπk possible use of auxiliary data structure to speed up the com-

putation

Swap: size n − 1 and O(1) evaluation each
Insert: size (n − 1)2 and O(|i − j |) evaluation each
But possible to speed up with systematic examination by means of
swaps: an interchange is equivalent to |i − j | swaps hence overall
examination takes O(n2)

Marco Chiarandini .::. 28

Dispatching Rules
Single Machine Models

Dynasearch

two interchanges δjk and δlm are independent
if max{j , k} < min{l ,m} or min{l , k} > max{l ,m};

the dynasearch neighborhood is obtained by a series of independent
interchanges;

it has size 2n−1 − 1;

but a best move can be found in O(n3) searched by dynamic
programming;

it yields in average better results than the interchange neighborhood
alone.

Marco Chiarandini .::. 29

Dispatching Rules
Single Machine Models

Marco Chiarandini .::. 30

Dispatching Rules
Single Machine Models

state (k, π)

πk is the partial sequence at state (k, π) that has min
∑

wT

πk is obtained from state (i , π){
appending job π(k) after π(i) i = k − 1
appending job π(k) and interchanging π(i + 1) and π(k) 0 ≤ i < k − 1

F (π0) = 0; F (π1) = wπ(1)

(
pπ(1) − dπ(1)

)+;

F (πk) = min

F (πk−1) + wπ(k)

(
Cπ(k) − dπ(k)

)+
,

min
1≤i<k−1

{F (πi) + wπ(k)

(
Cπ(i) + pπ(k) − dπ(k)

)+
+

+
∑k−1

j=i+2 wπ(j)
(
Cπ(j) + pπ(k) − pπ(i+1) − dπ(j)

)+
+

+wπ(i+1)

(
Cπ(k) − dπ(i+1)

)+}
Marco Chiarandini .::. 31

Dispatching Rules
Single Machine Models

The best choice is computed by recursion in O(n3) and the optimal
series of interchanges for F (πn) is found by backtrack.

Local search with dynasearch neighborhood starts from an initial
sequence, generated by ATC, and at each iteration applies the best
dynasearch move, until no improvement is possible (that is,
F (πt

n) = F (π
(t−1)
n), for iteration t).

Speedups:
pruning with considerations on pπ(k) and pπ(i+1)

maintainig a string of late, no late jobs

ht largest index s.t. π(t−1)(k) = π(t−2)(k) for k = 1, . . . , ht then
F (π

(t−1)
k) = F (π

(t−2)
k) for k = 1, . . . , ht and at iter t no need to consider

i < ht .

Marco Chiarandini .::. 32

Dispatching Rules
Single Machine Models

Dynasearch, refinements:

[Grosso et al. 2004] add insertion moves to interchanges.

[Ergun and Orlin 2006] show that dynasearch neighborhood can be
searched in O(n2).

Marco Chiarandini .::. 33

Dispatching Rules
Single Machine Models

Performance:
exact solution via branch and bound feasible up to 40 jobs
[Potts and Wassenhove, Oper. Res., 1985]

exact solution via time-indexed integer programming formulation used to
lower bound in branch and bound solves instances of 100 jobs in 4-9
hours [Pan and Shi, Math. Progm., 2007]

dynasearch: results reported for 100 jobs within a 0.005% gap from
optimum in less than 3 seconds [Grosso et al., Oper. Res. Lett., 2004]

Marco Chiarandini .::. 34

Dispatching Rules
Single Machine ModelsSummary

1 | | ∑wjCj : weighted shortest processing time first is optimal

1 | | ∑j Uj : Moore’s algorithm

1 | prec | Lmax : Lawler’s algorithm, backward dynamic programming in
O(n2) [Lawler, 1973]

1 | | ∑ hj(Cj) : dynamic programming in O(2n)

1 | | ∑wjTj : local search and dynasearch

Marco Chiarandini .::. 35

