DM204, 2010
SCHEDULING, TIMETABLING AND ROUTING

Lecture 12
Single Machine Models, Dynamic Programming

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Organization

Next week exercise session on Monday or Wednesday?

@ Tomorrow: midterm evaluation

(]

Project to be launched beginning next week

All elements for tackling it have been given during the past lectures

Lectures also during the break?

@ How the course will continue
We will look closer into scheduling models and learn:

o special algorithms

e application of general methods

Marco Chiarandini .:.

Outline

1. Dispatching Rules

2. Single Machine Models

Course Overview

v/ Problem Introduction

¢ Scheduling classification
v/ Scheduling complexity
v RCPSP

@ General Methods

v Integer Programming

v’ Constraint Programming
v/ Heuristics

e Dynamic Programming
e Branch and Bound

Marco Chiarandini .::.

@ Scheduling
e Single Machine
o Parallel Machine and Flow
Shop Models
o Job Shop
o Resource Constrained Project
Scheduling Model

o Timetabling

Reservations and Education
University Timetabling
Crew Scheduling

Public Transports

@ Vechicle Routing

o Capacited Models
o Time Windows models
o Rich Models

Marco Chiarandini .::.



Dispatching Rules Dispatching Rules

Outline Dispatching rules

Distinguish static and dynamic rules.

_ . @ Service in random order (SIRO)
1. Dispatching Rules

o Earliest release date first (ERD=FIFO)

e tends to min variations in waiting time
o Earliest due date (EDD)

@ Minimal slack first (MS)
o j* = argminj{max(d; — pj — t,0)}.
o tends to min due date objectives (T,L)

Marco Chiarandini .::. 5 Marco Chiarandini .::. 6

Dispatching Rules Dispatching Rules

(]

(Weighted) shortest processing time first (WSPT)
o j* = argmaxj{w;/pj}.

_ . e Critical path (CP)
o tends to min > w;C; and max work in progress and

o first job in the CP

o tends to min Chax

(]

Loongest processing time first (LPT)

e balance work load over parallel machines
o Largest number of successors (LNS)

Shortest setup time first (SST)

o tends to min Comax and max throughput @ Shortest queue at the next operation (SQNO)

o tends to min idleness of machines

(]

Least flexible job first (LFJ)

o eligibility constraints

Marco Chiarandini .::. 7 Marco Chiarandini .::. 8



Dispatching Rules in Scheduling

Dispatching Rules
Single Machine Models

RULE DATA OBJECTIVES
Rules Dependent  ERD rj Variance in Throughput Times
on Release Dates EDD d; Maximum Lateness
and Due Dates MS d; Maximum Lateness
LPT pj Load Balancing over Parallel Machines
Rules Dependent  SPT pj Sum of Completion Times, WIP
on Processing WSPT  pj, w; Weighted Sum of Completion Times, WIP
Times CP pj, prec  Makespan
LNS pj, prec  Makespan
SIRO - Ease of Implementation
Miscellaneous SST Sjk Makespan and Throughput
LFJ M; Makespan and Throughput
SQNO - Machine Ildleness

Composite dispatching rules

Why composite rules?

o Example: 1[| > w;T;:

Marco Chiarandini .::. 9

Dispatching Rules
Single Machine Models

o WSPT, optimal if due dates are zero

o EDD, optimal if due dates are loose

o MS, tends to minimize T

» The efficacy of the rules depends on instance factors

Marco Chiarandini .::. 11

When dispatching rules are optimal?

Dispatching Rules
Single Machine Models

RULE DATA ENVIRONMENT

1 SIRO — —

2 ERD 7 1]r | Var(3(C; —rj)/n)
3 EDD d; Ll Linax

4 MS d; || e

5 SPT P, Pm|| ¥ CiiFmip;=p;|12C;
6 WSPT w;, p; Pm || Y w;C;

7 LPT P Pm ” Cma)c

8 SPT-LPT pj Fm | block, p;j = p; | Cinax
9 CP leprec Pm | prec ! Cm;ux

10 LNS pj.prec Pm | prec | Cpux

11 SST St 11855 | Cox

12 LFJ M,’ Pmlelcmax

13 LAPT Pij 02 || Coax

14 SQ — Pm| ¥ C;

15 SQNO — Jmly

Instance characterization

Marco Chiarandini .::. 10

Dispatching Rules
Single Machine Models

o Job attributes: {weight, processing time, due date, release date}

@ Machine attributes: {speed, num. of jobs waiting, num. of jobs eligible}

@ Possible instance factors:

o 1|2 wT;
d
61 =1 Cmax
dmax - dmin
62 B Cmax

o 1|su| > w;T;

(due date tightness)

(due date range)

(01, 0> with estimated Cpmax = ij + ns)

03 = (set up time

Tl | w»i

Jj=1

severity)

Marco Chiarandini .::. 12



Dispatching Rules
Single Machine Models

e 1|[>  w;T;, dynamic apparent tardiness cost (ATC)

W ( max(d; — p; — r7o>>

[i(t) = —jexp —

o 1|sy|> w;Tj, dynamic apparent tardiness cost with setups (ATCS)

t,0 -5
7)o

. d:i— p: —
T
J

after job / has finished.

Marco Chiarandini .::. 13

Dispatching Rules
Single Machine Models

Outlook
L[| X wG

L[| >2; U; : Moore’s algorithm

: weighted shortest processing time first is optimal

1| prec| Liax : Lawler's algorithm, backward dynamic programming in
O(n?) [Lawler, 1973]

11| > hi(G) : dynamic programming in O(2")
1] > w;T; : local search and dynasearch
1| rj, (prec) | Lmax : branch and bound

. in the special case, Gilmore and Gomory algorithm
optimal in O(n?)

1 | sjk ‘ Cmax

1] > w;T; : column generation approaches

Multicriteria

Marco Chiarandini .::. 17

Dispatching Rules
Single Machine Models

Outline

2. Single Machine Models

Marco Chiarandini .::. 16

Dispatching Rules
Single Machine Models

Summary

Single Machine Models:

@ C.x is sequence independent

o if j =0 and h; is monotone non decreasing in C; then optimal schedule
is nondelay and has no preemption.

Marco Chiarandini .::. 18



1 | | E W_l Cj Single Machine Models Single Machine Models

[Total weighted completion time]

Theorem J

The weighted shortest processing time first (WSPT) rule is optimal. Extensions to 1| rj, prmp | 5 w; C;

@ in the general case strongly NP-hard

Extensions to 1 | prec | 5" w;C; @ preemptive version of the WSPT if equal weights
i

@ in the general case strongly NP-hard o however, 1|r; | > w;C; is strongly NP-hard

@ chain precedences:
process first chain with highest p-factor up to, and included, job with
highest p-factor.

@ polytime algorithm also for tree and sp-graph precedences

Marco Chiarandini .::. 19 Marco Chiarandini .::. 20

1 | | Ej Uj Single Machine Models Dyna m ic progra m m i ng Single Machine Models

[Number of tardy jobs] Procedure based on divide and conquer

Principle of optimality the completion of an optimal sequence of decisions
must be optimal

@ Break down the problem into stages at which the decisions take place
© [Moore, 1968] algorithm in O(nlog n) e Find a recurrence relation that takes us backward (forward) from one
o Add jobs in increasing order of due dates stage to the previous (next)

o If inclusion of job j* results in this job being completed late e Typical technique: labelling with dominance criteria
discard the scheduled job k™ with the longest processing time

_ (In scheduling, backward procedure feasible only if the makespan is schedule
o 1] Zj w;U; is a knapsack problem hence NP-hard independent, eg, single machine problems without setups, multiple machines
problems with identical processing times.)

Marco Chiarandini .::. 21 Marco Chiarandini .::. 22



Dispatching Rules Dispatching Rules

]_ | pre C | hmax Single Machine Models 1 | | E hj ( C_[) Single Machine Models

0 hmax = max{hi(C), ho(C2), ..., ha(Cy)}, hj regular

o generalization of ) w; T; hence strongly NP-hard
@ special case: 1| prec| hpmax [maximum lateness|

o (forward) dynamic programming algorithm O(2")
@ solved by backward dynamic programming in O(n?) [Lawler, 1978]

J set of jobs already scheduled; J set of jobs already scheduled;
J¢ set of jobs still to schedule;
J' C J¢ set of schedulable jobs V() = >es hi(G)

Step 1: Set J =0, J={1,...,n} and J' the set of all jobs with no Step 1: Set J = 0, V(j) = hi(py), j=1,....n

successor
Step 2: Select j* such that j* = arg minjc ; { h; (Zkejc pk)}; S : :
tep 2. V(J) = i V(J - h;
add j* to J; remove j* from J¢; update J'. P (J) = minjes (VI = 1)+ hi (L Pr))
Step 3: If J¢ is empty then stop, otherwise go to Step 2. ) Step 3: If J={1,2,...,n} then V({1,2,...,n}) is optimum,
, therwi to Step 2.
@ For 1| | Lyax Earliest Due Date first otherwise go to Step /
® 1[rj|Lmax is instead strongly NP-hard
Marco Chiarandini .::. 23 Marco Chiarandini .::. 24

L] X h;i(C)) sndemechineriosss 1 || S° hi(C;) i e

A lot of work doneon 1 || > w;T; Local search (revisited)

[single-machine total weighted tardiness] 1. search space (solution representation)

2. initial solution
@ 1|| > T;is hard in ordinary sense, hence admits a pseudo polynomial 3. neghborhood function
Igorithm (d [ ing i 4 - . .
algorithm (dynamic programming in O(n* > p;)) 4. evaluation function
@ 1|| > w;T; strongly NP-hard (reduction from 3-partition) 5. step function
6. memory states
e exact solution via branch and bound feasible up to 40 jobs P .
7. termination predicte
[Potts and Wassenhove, Oper. Res., 1985] P )

o exact solution via time-indexed integer programming formulation used to
lower bound in branch and bound solves instances of 100 jobs in 4-9
hours [Pan and Shi, Math. Progm., 2007]

o dynasearch: results reported for 100 jobs within a 0.005% gap from
optimum in less than 3 seconds [Grosso et al., Oper. Res. Lett., 2004]

Speedups Techniques for Efficient Neighborhood Search

1) Incremental updates

2) Neighborhood pruning

Marco Chiarandini .::. 25 Marco Chiarandini .::. 27



Dispatching Rules Dispatching Rules
1 | | h . C . Single Machine Models Single Machine Models
E J J

Neighborhood updates and pruning

5) and O(|i — j|) evaluation each Dynasearch

o first-improvement: 7,
pr; < P, for improvements, w; T+ wy T must decrease because jobs

@ Interchange neigh.: size (

@ two interchanges dj and ¢, are independent
if max{j, k} < min{/, m} or min{/, k} > max{/, m};

in 7j, ..., T can only increase their tardiness.
pr; > Pr,  possible use of auxiliary data structure to speed up the com- _ _ _ _ _
putation @ the dynasearch neighborhood is obtained by a series of independent
o best-improvement: 7;, mx interchanges;
Pr; < Pry for improvements, w; T; + wy Tx must decrease at least as
the best interchange found so far because jobs in 7, ..., 7 o it has size 271 — 1:

can only increase their tardiness.
pr; > Pr,  possible use of auxiliary data structure to speed up the com-

. @ but a best move can be found in O(n*) searched by dynamic
putation

) ) programming;
@ Swap: size n — 1 and O(1) evaluation each

o Insert: size (n —1)° and O(|/ — j|) evaluation each o it yields in average better results than the interchange neighborhood
But possible to speed up with systematic examination by means of alone.

swaps: an interchange is equivalent to |/ — j| swaps hence overall
examination takes O(n?)

Marco Chiarandini .::. 28 Marco Chiarandini .::. 29
Dispatching Rules Dispatching Rules
Single Machine Models Single Machine Models

Table 1 Data for the Problem Instance @ state (k’ 7")

dob ! 2 8 4 5 6 @ 7 is the partial sequence at state (k, ) that has min > wT
Processing time p; 3 1 1 5 1 5
Weight 3 5 1 1 4 4 . . .
DjelgdatzV]dl ] 5 03 1 3 9 @ 7 is obtained from state (/,7)
Table2  Swaps Made by Best-Improve Descent appending JOb 7'1'(/() after 7T(I) | = k -1
Iteration Current Sequence TO?;F\Q’iiLQ:StEU appending JOb W(k) and interChanging ﬂ—(I + 1) and T(k) 0<i< k-1
1234\/56 109
1 1235@ 90
2 123564 75 +
3 523164 70 o F(m) =0; F(m) = (1) (pﬂ(l) - dﬂ(l)) ;
Table3  Dynasearch Swaps +
o F(mi1) + Wa) (Crgry = driiy) .
Iteration Current Sequence Tardiness min F . W, C7r 3 - o dw
123456 109 F(ﬂ-k) = min 1§i<k7<1{ (771) + (k) ( (1) +p (k) (k)) ++
—1
' e - + 302 Wa() (G + Pr(k) = Pr(i+1) ~ drj)) "+
3 512364 67 +Wa(it1) (Cﬂ(k) — d7r(i+1)) }

Marco Chiarandini .::. 30 Marco Chiarandini .::. 31



Single Machine Models

@ The best choice is computed by recursion in O(n*) and the optimal
series of interchanges for F(7,) is found by backtrack.

@ Local search with dynasearch neighborhood starts from an initial
sequence, generated by ATC, and at each iteration applies the best
dynasearch move, until no improvement is possible (that is,

F(xt) = F(Wntfl)), for iteration t).

@ Speedups:
e pruning with considerations on p, () and py(is1)
e maintainig a string of late, no late jobs
o he largest index s.t. 7"V (k) = n(*=2)(k) for k = 1,..., h; then

F(wff*l)) = F(wff*z)) for k =1,..., h: and at iter t no need to consider
i < ht.

Marco Chiarandini .::. 32

Single Machine Models

Performance:

@ exact solution via branch and bound feasible up to 40 jobs
[Potts and Wassenhove, Oper. Res., 1985]

@ exact solution via time-indexed integer programming formulation used to
lower bound in branch and bound solves instances of 100 jobs in 4-9
hours [Pan and Shi, Math. Progm., 2007]

@ dynasearch: results reported for 100 jobs within a 0.005% gap from
optimum in less than 3 seconds [Grosso et al., Oper. Res. Lett., 2004]

v

Marco Chiarandini .::. 34

Single Machine Models

Dynasearch, refinements:

@ [Grosso et al. 2004] add insertion moves to interchanges.

@ [Ergun and Orlin 2006] show that dynasearch neighborhood can be
searched in O(n?).

Marco Chiarandini .::. 33

S umma ry Single Machine Models

1| > w;C; : weighted shortest processing time first is optimal
L[ >2; Uj : Moore’s algorithm

1| prec| Liax : Lawler's algorithm, backward dynamic programming in
O(n?) [Lawler, 1973]

L[| > hi(G) : dynamic programming in O(2")

1| > w;T; : local search and dynasearch

Marco Chiarandini .::. 35



