Outline

DM204, 2010 SCHEDULING, TIMETABLING AND ROUTING

Lecture 12 Single Machine Models, Dynamic Programming

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark 1. Dispatching Rules

2. Single Machine Models

Marco Chiarandini .::. 2

Dispatching Rules Single Machine Models

- Scheduling
 - Single Machine
 - Parallel Machine and Flow Shop Models
 - Job Shop
 - Resource Constrained Project Scheduling Model
- Timetabling
 - Reservations and Education
 - University Timetabling
 - Crew Scheduling
 - Public Transports
- Vechicle Routing
 - Capacited Models
 - Time Windows models
 - Rich Models

Organization

Dispatching Rules Single Machine Models

Course Overview

- ✓ Problem Introduction
 - ✓ Scheduling classification
 - ✓ Scheduling complexity
 - 🖌 RCPSP
- General Methods
 - ✔ Integer Programming
 - ✔ Constraint Programming
 - Heuristics
 - Dynamic Programming
 - Branch and Bound

How the course will continue
 We will look closer into scheduling models and learn:

Project to be launched beginning next week

• Next week exercise session on Monday or Wednesday?

• All elements for tackling it have been given during the past lectures

special algorithms

• Tomorrow: midterm evaluation

• Lectures also during the break?

• application of general methods

1. Dispatching Rules

Dispatching rules

Distinguish static and dynamic rules.

- Service in random order (SIRO)
- Earliest release date first (ERD=FIFO)
 tends to min variations in waiting time
- Earliest due date (EDD)
- Minimal slack first (MS)
 - $j^* = \arg\min_j \{\max(d_j p_j t, 0)\}.$
 - tends to min due date objectives (T,L)

Marco Chiarandini .::. 5

Dispatching Rules Single Machine Models Marco Chiarandini .::. 6

Dispatching Rules Single Machine Models

- (Weighted) shortest processing time first (WSPT)
 - $j^* = \arg \max_j \{w_j / pj\}.$
 - tends to min $\sum w_j C_j$ and max work in progress and
- Loongest processing time first (LPT)
 - balance work load over parallel machines
- Shortest setup time first (SST)
 - tends to min C_{max} and max throughput
- Least flexible job first (LFJ)
 - eligibility constraints

- Critical path (CP)
 - ${\scriptstyle \bullet} \,$ first job in the CP
 - \bullet tends to min C_{max}
- Largest number of successors (LNS)
- Shortest queue at the next operation (SQNO)
 - tends to min idleness of machines

	RULE	DATA	OBJECTIVES	
Rules Dependent	ERD	rj	Variance in Throughput Times	
on Release Dates	EDD	di	Maximum Lateness	
and Due Dates	MS	ďj	Maximum Lateness	
	LPT	Pj	Load Balancing over Parallel Machines	
Rules Dependent	SPT	Pj	Sum of Completion Times, WIP	
on Processing	WSPT	p_j, w_j	Weighted Sum of Completion Times, WIP	
Times	CP	p _j , prec	Makespan	
	LNS	p _j , prec	Makespan	
	SIRO	-	Ease of Implementation	
Miscellaneous	SST	s _{jk}	Makespan and Throughput	
	LFJ	М _і	Makespan and Throughput	
	SQNO	-	Machine Idleness	

When dispatching rules are optimal?

	RULE	DATA	ENVIRONMENT
1	SIRO	_	-
2	ERD	r_j	$1 \mid r_j \mid \operatorname{Var}(\sum (C_j - r_j)/n)$
3	EDD	d_j	$1 \parallel L_{\max}$
4	MS	d_j	$1 \parallel L_{\max}$
5	SPT	P_j	$Pm \mid\mid \sum C_j; Fm \mid p_{ij} = p_j \mid \sum C_j$
6	WSPT	w_i, p_i	$Pm \parallel \sum w_i C_i$
7	LPT	p_i	$Pm \mid\mid C_{\max}$
8	SPT-LPT	p_i	$Fm \mid block, p_{ij} = p_j \mid C_{max}$
9	CP	$p_i, prec$	$Pm \mid prec \mid C_{max}$
10	LNS	$p_i, prec$	$Pm \mid prec \mid C_{max}$
11	SST	Sjk	$1 \mid s_{ik} \mid C_{\max}$
12	LFJ	M_{i}	$Pm \mid M_j \mid C_{\max}$
13	LAPT	Pij	$O2 \parallel C_{\max}$
14	SQ	_	$Pm \mid\mid \sum C_i$
15	SQNO	_	$Jm \parallel \gamma$

Marco Chiarandini .::. 10

Dispatching Rules Single Machine Models

Composite dispatching rules

Dispatching Rules Single Machine Models

Marco Chiarandini .::. 9

Instance characterization

- Job attributes: {weight, processing time, due date, release date}
- Machine attributes: {speed, num. of jobs waiting, num. of jobs eligible}
- Possible instance factors:

• $1 | | \sum w_j T_j$

$$egin{aligned} & heta_1 = 1 - rac{ar{d}}{C_{max}} & (\mbox{due date tightness}) \ & heta_2 = rac{d_{max} - d_{min}}{C_{max}} & (\mbox{due date range}) \end{aligned}$$

•
$$1 | s_{jk}| \sum w_j T_j$$

 $(\theta_1, \theta_2 \text{ with estimated } \hat{C}_{max} = \sum_{j=1}^n p_j + n\bar{s})$
 $\theta_3 = \frac{\bar{s}}{\bar{p}}$ (set up time severity)

Why composite rules?

• Example: $1 \mid \sum w_j T_j$:

- WSPT, optimal if due dates are zero
- EDD, optimal if due dates are loose
- MS, tends to minimize T

> The efficacy of the rules depends on instance factors

Outline

• $1 \mid \mid \sum w_j T_j$, dynamic apparent tardiness cost (ATC)

$$I_j(t) = rac{w_j}{p_j} \exp\left(-rac{\max(d_j - p_j - t, 0)}{K ar{p}}
ight)$$

• $1 |s_{jk}| \sum w_j T_j$, dynamic apparent tardiness cost with setups (ATCS)

$$I_j(t, l) = \frac{w_j}{p_j} \exp\left(-\frac{\max(d_j - p_j - t, 0)}{K_1 \bar{p}}\right) \exp\left(\frac{-s_{jk}}{K_2 \bar{s}}\right)$$

after job / has finished.

2. Single Machine Models

Outlook

- $1 \mid \sum w_j C_j$: weighted shortest processing time first is optimal
- $1 \mid \sum_{j} U_{j}$: Moore's algorithm
- $1 \mid prec \mid L_{max}$: Lawler's algorithm, backward dynamic programming in $O(n^2)$ [Lawler, 1973]
- $1 \mid \mid \sum h_j(C_j)$: dynamic programming in $O(2^n)$
- $1 \mid \sum w_j T_j$: local search and dynasearch
- $1 \mid r_j, (prec) \mid L_{max}$: branch and bound
- $1 \mid s_{jk} \mid C_{max}$: in the special case, Gilmore and Gomory algorithm optimal in $O(n^2)$
- $1 \mid \mid \sum w_j T_j$: column generation approaches

Dispatching Rules Single Machine Models

Summary

Single Machine Models:

- C_{max} is sequence independent
- if $r_j = 0$ and h_j is monotone non decreasing in C_j then optimal schedule is nondelay and has no preemption.

Dispatching Rules Single Machine Models

$1 \mid \sum w_j C_j$

Dispatching Rules Single Machine Models

[Total weighted completion time]

Theorem

The weighted shortest processing time first (WSPT) rule is optimal.

Extensions to $1 | prec | \sum w_i C_i$

- in the general case strongly NP-hard
- chain precedences: process first chain with highest ρ -factor up to, and included, job with highest ρ -factor.
- polytime algorithm also for tree and sp-graph precedences

Extensions to $1 | r_i, prmp | \sum w_i C_i$

- in the general case strongly NP-hard
- preemptive version of the WSPT if equal weights
- however, $1 | r_i | \sum w_i C_i$ is strongly NP-hard

Marco Chiarandini .::. 19 Marco Chiarandini .::. 20 Dispatching Rules Single Machine Models $1 \mid \sum_{j} U_{j}$

[Number of tardy jobs]

- [Moore, 1968] algorithm in $O(n \log n)$
 - Add jobs in increasing order of due dates
 - If inclusion of job j^* results in this job being completed late discard the scheduled job k^* with the longest processing time
- $1 \mid \sum_{i} w_{j} U_{j}$ is a knapsack problem hence NP-hard

Dynamic programming

Dispatching Rules Single Machine Models

Procedure based on divide and conquer

Principle of optimality the completion of an optimal sequence of decisions must be optimal

- Break down the problem into stages at which the decisions take place
- Find a recurrence relation that takes us backward (forward) from one stage to the previous (next)
- Typical technique: labelling with dominance criteria

(In scheduling, backward procedure feasible only if the makespan is schedule independent, eg, single machine problems without setups, multiple machines problems with identical processing times.)

$1 \mid prec \mid h_{max}$

- $h_{max} = \max\{h_1(C_1), h_2(C_2), \dots, h_n(C_n)\}, h_j \text{ regular}$
- special case: $1 \mid prec \mid h_{max}$ [maximum lateness]
- solved by backward dynamic programming in $O(n^2)$

J set of jobs already scheduled;

- J^c set of jobs still to schedule;
- $J' \subseteq J^c$ set of schedulable jobs
- Step 1: Set $J = \emptyset$, $J^c = \{1, \dots, n\}$ and J' the set of all jobs with no successor
- Step 2: Select j^* such that $j^* = \arg \min_{j \in J'} \{h_j (\sum_{k \in J^c} p_k)\};$ add j^* to J; remove j^* from J^c ; update J'.
- Step 3: If J^c is empty then stop, otherwise go to Step 2.
- For $1 \mid \mid L_{max}$ Earliest Due Date first
- $1|r_j|L_{max}$ is instead strongly NP-hard

$1 \mid \mid \sum h_j(C_j)$

Marco Chiarandini .::. 23

Dispatching Rules Single Machine Models

Dispatching Rules Single Machine Models

[Lawler, 1978]

A lot of work done on $1 \mid \sum w_j T_j$

[single-machine total weighted tardiness]

- $1 \mid \sum T_j$ is hard in ordinary sense, hence admits a pseudo polynomial algorithm (dynamic programming in $O(n^4 \sum p_j)$)
- $1 \mid \sum w_j T_j$ strongly NP-hard (reduction from 3-partition)
 - exact solution via branch and bound feasible up to 40 jobs [Potts and Wassenhove, Oper. Res., 1985]
 - exact solution via time-indexed integer programming formulation used to lower bound in branch and bound solves instances of 100 jobs in 4-9 hours [Pan and Shi, Math. Progm., 2007]
 - dynasearch: results reported for 100 jobs within a 0.005% gap from optimum in less than 3 seconds [Grosso et al., Oper. Res. Lett., 2004]

- generalization of $\sum w_j T_j$ hence strongly NP-hard
- (forward) dynamic programming algorithm $O(2^n)$

J set of jobs already scheduled; $V(J) = \sum_{j \in J} h_j(C_j)$ Step 1: Set $J = \emptyset$, $V(j) = h_j(p_j)$, j = 1, ..., nStep 2: $V(J) = \min_{j \in J} (V(J - \{j\}) + h_j (\sum_{k \in J} p_k))$ Step 3: If $J = \{1, 2, ..., n\}$ then $V(\{1, 2, ..., n\})$ is optimum, otherwise go to Step 2.

Marco Chiarandini .::. 24

Dispatching Rules Single Machine Models

$1 \mid \mid \sum h_j(C_j)$

Local search (revisited)

- 1. search space (solution representation)
- 2. initial solution
- 3. neghborhood function
- 4. evaluation function
- 5. step function
- 6. memory states
- 7. termination predicte

Speedups Techniques for Efficient Neighborhood Search

- 1) Incremental updates
- 2) Neighborhood pruning

$1 \mid \mid \sum h_j(C_j)$

Neighborhood updates and pruning

- Interchange neigh.: size $\binom{n}{2}$ and O(|i-j|) evaluation each
 - first-improvement: π_j, π_k
 - $p_{\pi_j} \leq p_{\pi_k}$ for improvements, $w_j T_j + w_k T_k$ must decrease because jobs in π_j, \ldots, π_k can only increase their tardiness.
 - $p_{\pi_j} \geq p_{\pi_k}$ possible use of auxiliary data structure to speed up the computation
 - best-improvement: π_j, π_k
 - $p_{\pi_j} \leq p_{\pi_k}$ for improvements, $w_j T_j + w_k T_k$ must decrease at least as the best interchange found so far because jobs in π_j, \ldots, π_k can only increase their tardiness.
 - $p_{\pi_j} \geq p_{\pi_k}$ possible use of auxiliary data structure to speed up the computation
- Swap: size n-1 and O(1) evaluation each
- Insert: size $(n-1)^2$ and O(|i-j|) evaluation each
- But possible to speed up with systematic examination by means of swaps: an interchange is equivalent to |i j| swaps hence overall examination takes $O(n^2)$

Marco Chiarandini .::. 28

Dispatching Rules Single Machine Models

Table 1	Data	for	the	Problem	Instance	

Job <i>j</i>	1	2	3	4	5	6
Processing time p_j	3	1	1	5	1	5
Weight w _i	3	5	1	1	4	4
Due date d_j	1	5	3	1	3	1

Table 2 Swaps Made by Best-Improve Descent

Iteration	Current Sequence	Total Weighted Tardiness
	123456	109
1	123546	90
2	123564	75
3	523164	70

Table 3 Dynasearch Swaps

Iteration	Current Sequence	Total Weighted Tardiness		
	123456	109		
1	132546	89		
2	152364	68		
3	512364	67		

Dynasearch

- two interchanges δ_{jk} and δ_{lm} are independent if max{j, k} < min{l, m} or min{l, k} > max{l, m};
- the dynasearch neighborhood is obtained by a series of independent interchanges;
- it has size $2^{n-1} 1$;
- but a best move can be found in $O(n^3)$ searched by dynamic programming;
- it yields in average better results than the interchange neighborhood alone.

```
Marco Chiarandini .::. 29
```

Dispatching Rules Single Machine Models

• state (k, π)

0

- π_k is the partial sequence at state (k,π) that has min $\sum wT$
- π_k is obtained from state (i, π)
 - $\begin{cases} \text{appending job } \pi(k) \text{ after } \pi(i) & i = k 1 \\ \text{appending job } \pi(k) \text{ and interchanging } \pi(i+1) \text{ and } \pi(k) & 0 \le i < k 1 \end{cases}$

$$F(\pi_0) = 0; \qquad F(\pi_1) = w_{\pi(1)} \left(p_{\pi(1)} - d_{\pi(1)} \right)^+;$$

$$F(\pi_k) = \min \begin{cases} F(\pi_{k-1}) + w_{\pi(k)} \left(C_{\pi(k)} - d_{\pi(k)} \right)^+, \\ \min_{1 \le i < k-1} \left\{ F(\pi_i) + w_{\pi(k)} \left(C_{\pi(i)} + p_{\pi(k)} - d_{\pi(k)} \right)^+ + \right. \\ \left. + \sum_{j=i+2}^{k-1} w_{\pi(j)} \left(C_{\pi(j)} + p_{\pi(k)} - p_{\pi(i+1)} - d_{\pi(j)} \right)^+ + \right. \\ \left. + w_{\pi(i+1)} \left(C_{\pi(k)} - d_{\pi(i+1)} \right)^+ \right\}$$

- The best choice is computed by recursion in $O(n^3)$ and the optimal series of interchanges for $F(\pi_n)$ is found by backtrack.
- Local search with dynasearch neighborhood starts from an initial sequence, generated by ATC, and at each iteration applies the best dynasearch move, until no improvement is possible (that is, F(π^t_n) = F(π^(t-1)_n), for iteration t).
- Speedups:
 - pruning with considerations on $p_{\pi(k)}$ and $p_{\pi(i+1)}$
 - maintainig a string of late, no late jobs
 - h_t largest index s.t. $\pi^{(t-1)}(k) = \pi^{(t-2)}(k)$ for $k = 1, ..., h_t$ then $F(\pi_k^{(t-1)}) = F(\pi_k^{(t-2)})$ for $k = 1, ..., h_t$ and at iter t no need to consider $i < h_t$.

Dynasearch, refinements:

- [Grosso et al. 2004] add insertion moves to interchanges.
- [Ergun and Orlin 2006] show that dynasearch neighborhood can be searched in $O(n^2)$.

Marco Chiarandini 32 Dispatching Rules Single Machine Models Summary $1 \mid \mid \sum w_j C_j : weighted shortest processing time first is optimal$

- $1 \mid \mid \sum_{i} U_{j}$: Moore's algorithm
 - $1 | prec | L_{max}$: Lawler's algorithm, backward dynamic programming in $O(n^2)$ [Lawler, 1973]
 - $1 \mid \sum h_j(C_j)$: dynamic programming in $O(2^n)$
 - $1 \mid \sum w_j T_j$: local search and dynasearch

Performance:

- exact solution via branch and bound feasible up to 40 jobs [Potts and Wassenhove, Oper. Res., 1985]
- exact solution via time-indexed integer programming formulation used to lower bound in branch and bound solves instances of 100 jobs in 4-9 hours [Pan and Shi, Math. Progm., 2007]
- dynasearch: results reported for 100 jobs within a 0.005% gap from optimum in less than 3 seconds [Grosso et al., Oper. Res. Lett., 2004]