DM204, 2010 SCHEDULING, TIMETABLING AND ROUTING

Lecture 12 Single Machine Models, Dynamic Programming

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Outline

1. Dispatching Rules

2. Single Machine Models

Organization

- Next week exercise session on Monday or Wednesday?
- Tomorrow: midterm evaluation
- Project to be launched beginning next week
- All elements for tackling it have been given during the past lectures
- Lectures also during the break?
- How the course will continue We will look closer into scheduling models and learn:
 - special algorithms
 - application of general methods

Course Overview

- ✓ Problem Introduction
 - ✓ Scheduling classification
 - Scheduling complexity
 - ✓ RCPSP
- General Methods
 - ✓ Integer Programming
 - ✓ Constraint Programming
 - ✓ Heuristics
 - Dynamic Programming
 - Branch and Bound

Scheduling

- Single Machine
- Parallel Machine and Flow Shop Models
- Job Shop
- Resource Constrained Project Scheduling Model
- Timetabling
 - Reservations and Education
 - University Timetabling
 - Crew Scheduling
 - Public Transports
- Vechicle Routing
 - Capacited Models
 - Time Windows models
 - Rich Models

Outline

1. Dispatching Rules

Dispatching rules

Distinguish static and dynamic rules.

- Service in random order (SIRO)
- Earliest release date first (ERD=FIFO)
 - tends to min variations in waiting time
- Earliest due date (EDD)
- Minimal slack first (MS)
 - $j^* = \arg\min_{i} \{ \max(d_i p_i t, 0) \}.$
 - tends to min due date objectives (T,L)

- (Weighted) shortest processing time first (WSPT)
 - $j^* = \arg\max_{j} \{w_j/p_j\}.$
 - tends to min $\sum w_i C_i$ and max work in progress and
- Loongest processing time first (LPT)
 - balance work load over parallel machines
- Shortest setup time first (SST)
 - \bullet tends to min C_{max} and max throughput
- Least flexible job first (LFJ)
 - eligibility constraints

- Critical path (CP)
 - first job in the CP
 - tends to min C_{max}
- Largest number of successors (LNS)
- Shortest queue at the next operation (SQNO)
 - tends to min idleness of machines

Dispatching Rules in Scheduling

	RULE	DATA	OBJECTIVES	
Rules Dependent	ERD	r _i	r _i Variance in Throughput Times	
on Release Dates	EDD	d _i Maximum Lateness		
and Due Dates	MS	d_j	Maximum Lateness	
	LPT	Pi	Load Balancing over Parallel Machines	
Rules Dependent	SPT	p_i	Sum of Completion Times, WIP	
on Processing	WSPT	p_j , w_j	Weighted Sum of Completion Times, WIP	
Times	CP	p _i , prec	Makespan	
	LNS	p_j , prec	Makespan	
	SIRO	-	Ease of Implementation	
Miscellaneous	SST	sik	Makespan and Throughput	
	LFJ	M_j	Makespan and Throughput	
	SQNO		Machine Idleness	

When dispatching rules are optimal?

	RULE	DATA	ENVIRONMENT
1	SIRO	_	_
2	ERD	r_j	$1 \mid r_j \mid \text{Var}(\sum (C_j - r_j)/n)$
3	EDD	d_j	1 L _{max}
4	MS	d_j	1 L _{max}
5	SPT	p_j	$Pm \mid\mid \sum C_i; Fm \mid p_{ij} = p_i \mid \sum C_j$
6	WSPT	w_j, p_j	$Pm \mid \mid \sum w_i C_i$
7	LPT	p_j	$Pm \mid C_{\text{max}}$
8	SPT-LPT	p_i	$Fm \mid block, p_{ij} = p_j \mid C_{max}$
9	CP	$p_i, prec$	Pm prec C _{max}
10	LNS	$p_i, prec$	Pm prec C _{max}
11	SST	s_{jk}	$1 \mid s_{ik} \mid C_{\text{max}}$
12	LFJ	M_i	$Pm \mid M_i \mid C_{\text{max}}$
13	LAPT	p_{ij}	02 C _{max}
14	SQ		$Pm \mid \sum C_i$
15	SQNO	_	$Jm \mid \mid \gamma$

Composite dispatching rules

Why composite rules?

- Example: $1 \mid | \sum w_i T_i$:
 - WSPT, optimal if due dates are zero
 - EDD, optimal if due dates are loose
 - MS, tends to minimize T

The efficacy of the rules depends on instance factors

Instance characterization

- Job attributes: {weight, processing time, due date, release date}
- Machine attributes: {speed, num. of jobs waiting, num. of jobs eligible}
- Possible instance factors:
 - $1 \mid \mid \sum w_j T_j$

$$heta_1 = 1 - rac{ar{d}}{C_{max}} \qquad ext{(due date tightness)}$$
 $heta_2 = rac{d_{max} - d_{min}}{C_{max}} \qquad ext{(due date range)}$

•
$$1 \mid s_{jk} \mid \sum w_j T_j$$

$$(\theta_1, \ \theta_2 \ \text{with estimated} \ \hat{C}_{max} = \sum_{j=1}^n p_j + n\bar{s})$$

$$\theta_3 = \frac{\bar{s}}{\bar{p}} \qquad \text{(set up time severity)}$$

• $1 \mid \mid \sum w_i T_i$, dynamic apparent tardiness cost (ATC)

$$I_j(t) = rac{w_j}{p_j} \exp\left(-rac{\max(d_j - p_j - t, 0)}{Kar{p}}
ight)$$

• $1 | s_{ik} | \sum w_i T_i$, dynamic apparent tardiness cost with setups (ATCS)

$$I_{j}(t,l) = \frac{w_{j}}{p_{j}} \exp\left(-\frac{\max(d_{j} - p_{j} - t, 0)}{K_{1}\bar{p}}\right) \exp\left(\frac{-s_{jk}}{K_{2}\bar{s}}\right)$$

after job / has finished.

Outline

2. Single Machine Models

Outlook

- $1 \mid \sum w_i C_i$: weighted shortest processing time first is optimal
 - $1 \mid \mid \sum_{i} U_{j}$: Moore's algorithm
- $1 \mid prec \mid L_{max}$: Lawler's algorithm, backward dynamic programming in $O(n^2)$ [Lawler, 1973]
- $1 \mid | \sum h_i(C_i) :$ dynamic programming in $O(2^n)$
 - $1 \mid \mid \sum w_i T_i$: local search and dynasearch
- $1 \mid r_i, (prec) \mid L_{max}$: branch and bound
 - $1 \mid s_{jk} \mid C_{max}$: in the special case, Gilmore and Gomory algorithm optimal in $O(n^2)$
 - $1 \mid | \sum w_i T_i :$ column generation approaches

Summary

Single Machine Models:

- C_{max} is sequence independent
- if $r_i = 0$ and h_i is monotone non decreasing in C_i then optimal schedule is nondelay and has no preemption.

$$1 \mid \mid \sum w_j C_j$$

[Total weighted completion time]

Theorem

The weighted shortest processing time first (WSPT) rule is optimal.

Extensions to $1 \mid prec \mid \sum w_i C_i$

- in the general case strongly NP-hard
- chain precedences: process first chain with highest ρ -factor up to, and included, job with highest ρ -factor.
- polytime algorithm also for tree and sp-graph precedences

Extensions to $1 \mid r_i, prmp \mid \sum w_i C_i$

- in the general case strongly NP-hard
- preemptive version of the WSPT if equal weights
- however, $1 \mid r_i \mid \sum w_i C_i$ is strongly NP-hard

$$1 \mid \mid \sum_{j} U_{j}$$

[Number of tardy jobs]

- [Moore, 1968] algorithm in $O(n \log n)$
 - Add jobs in increasing order of due dates
 - If inclusion of job j* results in this job being completed late discard the scheduled job k^* with the longest processing time
- $1 \mid \sum_{i} w_{i} U_{i}$ is a knapsack problem hence NP-hard

Dynamic programming

Procedure based on divide and conquer

Principle of optimality the completion of an optimal sequence of decisions must be optimal

- Break down the problem into stages at which the decisions take place
- Find a recurrence relation that takes us backward (forward) from one stage to the previous (next)
- Typical technique: labelling with dominance criteria

(In scheduling, backward procedure feasible only if the makespan is schedule independent, eg, single machine problems without setups, multiple machines problems with identical processing times.)

$1 | prec | h_{max}$

- $h_{max} = \max\{h_1(C_1), h_2(C_2), \dots, h_n(C_n)\}, h_j \text{ regular}$
- special case: $1 | prec| h_{max}$ [maximum lateness]
- solved by backward dynamic programming in $O(n^2)$

[Lawler, 1978]

J set of jobs already scheduled;

 J^c set of jobs still to schedule;

 $J' \subseteq J^c$ set of schedulable jobs

- Step 1: Set $J=\emptyset$, $J^c=\{1,\ldots,n\}$ and J' the set of all jobs with no successor
- Step 2: Select j^* such that $j^* = \arg\min_{j \in J'} \{h_j \left(\sum_{k \in J^c} p_k \right) \}$; add j^* to J; remove j^* from J^c ; update J'.
- Step 3: If J^c is empty then stop, otherwise go to Step 2.
- For $1 \mid \mid L_{max}$ Earliest Due Date first
- $1|r_i|L_{max}$ is instead strongly NP-hard

$1 \mid | \sum h_i(C_i)$

- generalization of $\sum w_i T_i$ hence strongly NP-hard
- (forward) dynamic programming algorithm $O(2^n)$

J set of jobs already scheduled;

$$V(J) = \sum_{j \in J} h_j(C_j)$$

Step 1: Set
$$J = \emptyset$$
, $V(j) = h_j(p_j)$, $j = 1, \dots, n$

Step 2:
$$V(J) = \min_{j \in J} \left(V(J - \{j\}) + h_j \left(\sum_{k \in J} p_k \right) \right)$$

Step 3: If $J = \{1, 2, ..., n\}$ then $V(\{1, 2, ..., n\})$ is optimum, otherwise go to Step 2.

$$1 \mid \mid \sum h_j(C_j)$$

A lot of work done on $1 \mid | \sum w_i T_i$ [single-machine total weighted tardiness]

- 1 | $\sum T_i$ is hard in ordinary sense, hence admits a pseudo polynomial algorithm (dynamic programming in $O(n^4 \sum p_i)$)
- 1 | $\sum w_i T_i$ strongly NP-hard (reduction from 3-partition)
 - exact solution via branch and bound feasible up to 40 jobs [Potts and Wassenhove, Oper. Res., 1985]
 - exact solution via time-indexed integer programming formulation used to lower bound in branch and bound solves instances of 100 jobs in 4-9 hours [Pan and Shi, Math. Progm., 2007]
 - dynasearch: results reported for 100 jobs within a 0.005% gap from optimum in less than 3 seconds [Grosso et al., Oper. Res. Lett., 2004]

$1 \mid \mid \sum h_j(C_j)$

Local search (revisited)

- 1. search space (solution representation)
- 2. initial solution
- 3. neghborhood function
- 4. evaluation function
- 5. step function
- 6. memory states
- 7. termination predicte

Speedups Techniques for Efficient Neighborhood Search

- 1) Incremental updates
- 2) Neighborhood pruning

Neighborhood updates and pruning

- Interchange neigh.: size $\binom{n}{2}$ and O(|i-j|) evaluation each
 - first-improvement: π_i, π_k

$$p_{\pi_j} \leq p_{\pi_k}$$
 for improvements, $w_j T_j + w_k T_k$ must decrease because jobs in π_j, \dots, π_k can only increase their tardiness.

 $p_{\pi_i} \geq p_{\pi_k}$ possible use of auxiliary data structure to speed up the computation

• best-improvement: π_i, π_k

$$p_{\pi_j} \leq p_{\pi_k}$$
 for improvements, $w_j T_j + w_k T_k$ must decrease at least as the best interchange found so far because jobs in π_j, \ldots, π_k can only increase their tardiness.

possible use of auxiliary data structure to speed up the com $p_{\pi_i} \geq p_{\pi_k}$ putation

- Swap: size n-1 and O(1) evaluation each
- Insert: size $(n-1)^2$ and O(|i-j|) evaluation each But possible to speed up with systematic examination by means of swaps: an interchange is equivalent to |i-j| swaps hence overall examination takes $O(n^2)$

Dynasearch

- two interchanges δ_{ik} and δ_{lm} are independent if $\max\{j, k\} < \min\{l, m\}$ or $\min\{l, k\} > \max\{l, m\}$;
- the dynasearch neighborhood is obtained by a series of independent interchanges;
- it has size $2^{n-1} 1$:
- but a best move can be found in $O(n^3)$ searched by dynamic programming;
- it yields in average better results than the interchange neighborhood alone.

Table 1 Data for the Problem Instance							
Job j		1	2	3	4	5	6
Processing	time p_i	3	1	1	5	1	5
Weight w;	,	3	5	1	1	4	4
Due date d	',	1	5	3	1	3	1

Job j	1	2	3	4	5	6
Processing time p_i	3	1	1	5	1	5
Weight w _i	3	5	1	1	4	4
Due date d_j	1	5	3	1	3	1

Swaps Made by Best-Improve Descent

Table 2

Iteration	Current Sequence	Total Weighted Tardiness
	123456	109
1	123546	90
2	123564	75
3	523164	70

Table 3	Dynasearch Swaps	
Iteration	Current Sequence	Total Weighted Tardiness
	123456	109
1	132546	89
2	152364	68
3	512364	67

- state (k, π)
- π_k is the partial sequence at state (k,π) that has min $\sum wT$
- π_k is obtained from state (i, π)

$$\begin{cases} \text{appending job } \pi(k) \text{ after } \pi(i) & i = k-1 \\ \text{appending job } \pi(k) \text{ and interchanging } \pi(i+1) \text{ and } \pi(k) & 0 \leq i < k-1 \end{cases}$$

$$F(\pi_{k}) = \min \begin{cases} F(\pi_{1}) = w_{\pi(1)} \left(p_{\pi(1)} - d_{\pi(1)} \right)^{+}; \\ F(\pi_{k}) = \min \begin{cases} F(\pi_{k-1}) + w_{\pi(k)} \left(C_{\pi(k)} - d_{\pi(k)} \right)^{+}, \\ \min_{1 \leq i < k-1} \left\{ F(\pi_{i}) + w_{\pi(k)} \left(C_{\pi(i)} + p_{\pi(k)} - d_{\pi(k)} \right)^{+} + \sum_{j=i+2}^{k-1} w_{\pi(j)} \left(C_{\pi(j)} + p_{\pi(k)} - p_{\pi(i+1)} - d_{\pi(j)} \right)^{+} + w_{\pi(i+1)} \left(C_{\pi(k)} - d_{\pi(i+1)} \right)^{+} \right\} \end{cases}$$

- The best choice is computed by recursion in $O(n^3)$ and the optimal series of interchanges for $F(\pi_n)$ is found by backtrack.
- Local search with dynasearch neighborhood starts from an initial sequence, generated by ATC, and at each iteration applies the best dynasearch move, until no improvement is possible (that is, $F(\pi_n^t) = F(\pi_n^{(t-1)})$, for iteration t).
- Speedups:
 - pruning with considerations on $p_{\pi(k)}$ and $p_{\pi(i+1)}$
 - maintainig a string of late, no late jobs
 - h_t largest index s.t. $\pi^{(t-1)}(k) = \pi^{(t-2)}(k)$ for $k = 1, \ldots, h_t$ then $F(\pi_k^{(t-1)}) = F(\pi_k^{(t-2)})$ for $k = 1, \ldots, h_t$ and at iter t no need to consider $i < h_t$.

Dynasearch, refinements:

- [Grosso et al. 2004] add insertion moves to interchanges.
- [Ergun and Orlin 2006] show that dynasearch neighborhood can be searched in $O(n^2)$.

Performance:

- exact solution via branch and bound feasible up to 40 jobs [Potts and Wassenhove, Oper. Res., 1985]
- exact solution via time-indexed integer programming formulation used to lower bound in branch and bound solves instances of 100 jobs in 4-9 hours [Pan and Shi, Math. Progm., 2007]
- dynasearch: results reported for 100 jobs within a 0.005% gap from optimum in less than 3 seconds [Grosso et al., Oper. Res. Lett., 2004]

Summary

- $1 \mid | \sum w_i C_i|$: weighted shortest processing time first is optimal
 - $1 \mid \mid \sum_{i} U_{j}$: Moore's algorithm
- $1 \mid prec \mid L_{max}$: Lawler's algorithm, backward dynamic programming in $O(n^2)$ [Lawler, 1973]
- $1 \mid \sum h_i(C_i)$: dynamic programming in $O(2^n)$
 - $1 \mid \sum w_i T_i$: local search and dynasearch