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Who is taking the oral exam?

Watch out the schedule.

Exercise sessions from now mainly about help for the project.

Resume and Outlook

Watch out the list of questions
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4 Problem Introduction
4 Scheduling classification
4 Scheduling complexity
4 RCPSP

4 General Methods
4 Integer Programming
4 Constraint Programming
4 Heuristics
4 Dynamic Programming

Branch and Bound

Scheduling
Single Machine
Parallel Machine and Flow
Shop Models
Job Shop
Resource Constrained Project
Scheduling Model

Timetabling
Reservations and Education
University Timetabling
Crew Scheduling
Public Transports

Vechicle Routing
Capacited Models
Time Windows models
Rich Models
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Parallel Machine ModelsOutlook

1 | |
∑
wjCj : weighted shortest processing time first is optimal

1 | |
∑

j Uj : Moore’s algorithm

1 | prec| Lmax : Lawler’s algorithm, backward dynamic programming in
O(n2) [Lawler, 1973]

1 | |
∑
hj(Cj) : dynamic programming in O(2n)

1 | |
∑
wjTj : local search and dynasearch

1 | rj , (prec) | Lmax : branch and bound

1 | sjk | Cmax : in the special case, Gilmore and Gomory algorithm
optimal in O(n2)

1 | |
∑
wjTj : column generation approaches

Multicriteria Marco Chiarandini .::. 6
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Parallel Machine Models1 | rj |Lmax

[Maximum lateness with release dates]

Strongly NP-hard (reduction from 3-partition)

might have optimal schedule which is not non-delay

Branch and bound algorithm (valid also for 1 | rj , prec | Lmax)
Branching:
schedule from the beginning (level k, n!/(k − 1)! nodes)
elimination criterion: do not consider job jk if:

rj > min
l∈J
{max (t, rl) + pl} J jobs to schedule, t current time

Lower bounding: relaxation to preemptive case for which EDD is optimal
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Branch and Bound
S root of the branching tree

1 LIST := {S};
2 U:=value of some heuristic solution;
3 current_best := heuristic solution;
4 while LIST 6= ∅
5 Choose a branching node k from LIST;
6 Remove k from LIST;
7 Generate children child(i), i = 1, . . . , nk, and calculate corresponding lower

bounds LBi;
8 for i:=1 to nk

9 if LBi < U then
10 if child(i) consists of a single solution then
11 U :=LBi;
12 current_best:=solution corresponding to child(i)
13 else add child(i) to LIST
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Branch and bound vs backtracking

= a state space tree is used to solve a problem.

6= branch and bound does not limit us to any particular way of traversing
the tree (backtracking is depth-first)

6= branch and bound is used only for optimization problems.

Branch and bound vs A∗

= In A∗ the admissible heuristic mimics bounding

6= In A∗ there is no branching. It is a search algorithm.

6= A∗ is best first

Marco Chiarandini .::. 10



Single Machine Models
Parallel Machine ModelsBranch and Bound

[Jens Clausen (1999). Branch and Bound Algorithms
- Principles and Examples.]

Eager Strategy:

1. select a node
2. branch
3. for each subproblem compute bounds and compare with incumbent

solution
4. discard or store nodes together with their bounds

(Bounds are calculated as soon as nodes are available)

Lazy Strategy:

1. select a node
2. compute bound
3. branch
4. store the new nodes together with the bound of the father node

(often used when selection criterion for next node is max depth)
Marco Chiarandini .::. 11
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Components

1. Initial feasible solution (heuristic) – might be crucial!
2. Bounding function
3. Strategy for selecting
4. Branching
5. Fathoming (dominance test)

Marco Chiarandini .::. 12
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Bounding

min
s∈P

g(s) ≤
{

mins∈P f(s)
mins∈S g(s)

}
≤ min

s∈S
f(s)

P : candidate solutions; S ⊆ P feasible solutions

relaxation: mins∈P f(s)

solve (to optimality) in P but with g

Lagrangian relaxation combines the two

should be polytime and strong (trade off)
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Strategy for selecting next subproblem

best first
(combined with eager strategy but also with lazy)

breadth first
(memory problems)

depth first
works on recursive updates (hence good for memory)
but might compute a large part of the tree which is far from optimal

(enhanced by alternating search in lowest and largest bounds combined
with branching on the node with the largest difference in bound between
the children)
(it seems to perform best)
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Single Machine Models
Parallel Machine Models

Strategy for selecting next subproblem

best first
(combined with eager strategy but also with lazy)

breadth first
(memory problems)

depth first
works on recursive updates (hence good for memory)
but might compute a large part of the tree which is far from optimal
(enhanced by alternating search in lowest and largest bounds combined
with branching on the node with the largest difference in bound between
the children)
(it seems to perform best)

Marco Chiarandini .::. 14



Single Machine Models
Parallel Machine Models

Branching

dichotomic

polytomic

Overall guidelines

finding good initial solutions is important

if initial solution is close to optimum then the selection strategy makes
little difference

Parallel B&B: distributed control or a combination are better than
centralized control

parallelization might be used also to compute bounds if few nodes alive

parallelization with static work load distribution is appealing with large
search trees

Marco Chiarandini .::. 15
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Parallel Machine Models1 | |

∑∑∑
wjTj

Branching:
work backward in time

elimination criterion:
if pj ≤ pk and dj ≤ dk and wj ≥ wk then there is an optimal schedule
with j before k

Lower Bounding:
relaxation to preemptive case
transportation problem

min

n∑
j=1

Cmax∑
t=1

cjtxjt

s.t.
Cmax∑
t=1

xjt = pj , ∀j = 1, . . . , n

n∑
j=1

xjt ≤ 1, ∀t = 1, . . . , Cmax

xjt ≥ 0 ∀j = 1, . . . , n; t = 1, . . . , Cmax
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[Pan and Shi, 2007]’s lower bounding through time indexed
Stronger but computationally more expensive

min

n∑
j=1

T−1∑
t=1

cjtyjt

s.t.
T−pj∑
t=1

cjt ≤ hj(t+ pj)

T−pj∑
t=1

yjt = 1, ∀j = 1, . . . , n

n∑
j=1

t∑
s=t−pj+1

yjt ≤ 1, ∀t = 1, . . . , Cmax

yjt ≥ 0 ∀j = 1, . . . , n; t = 1, . . . , Cmax
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Single machine, single criterion problems 1 | | γ:

Cmax P
Tmax P
Lmax P
hmax P∑
Cj P∑
wjCj P∑
U P∑
wjUj weakly NP-hard∑
T weakly NP-hard∑
wjTj strongly NP-hard∑
hj(Cj) strongly NP-hard
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1|prec|
∑

wjCj

Sequencing (linear ordering) variables

min

n∑
j=1

n∑
k=1

wjpkxkj +

n∑
j=1

wjpj

s.t. xkj + xlk + xjl ≥ 1 j, k, l = 1, . . . , nj 6= k, k 6= l

xkj + xjk = 1 ∀j, k = 1, . . . , n, j 6= k

xjk ∈ {0, 1} j, k = 1, . . . , n

xjj = 0 ∀j = 1, . . . , n

Marco Chiarandini .::. 20
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1|prec|Cmax

Completion time variables

min

n∑
j=1

wjzj

s.t. zk − zj ≥ pk for j → k ∈ A
zj ≥ pj , for j = 1, . . . , n

zk − zj ≥ pk or zj − zk ≥ pj , for (i, j) ∈ I
zj ∈ R, j = 1, . . . , n
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1||

∑
hj(Cj)

Time indexed variables

min

n∑
j=1

T−pj+1∑
t=1

hj(t+ pj)xjt

s.t.
T−pj+1∑

t=1

xjt = 1, for all j = 1, . . . , n

n∑
j=1

t∑
s=max 0,t−pj+1

xjs ≤ 1, for each t = 1, . . . , T

xjt ∈ {0, 1}, for each j = 1, . . . , n; t = 1, . . . , T

+ This formulation gives better bounds than the two preceding

− pseudo-polynomial number of variables
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1 | |
∑
wjCj : weighted shortest processing time first is optimal

1 | |
∑

j Uj : Moore’s algorithm

1 | prec| Lmax : Lawler’s algorithm, backward dynamic programming in
O(n2) [Lawler, 1973]

1 | |
∑
hj(Cj) : dynamic programming in O(2n)

1 | |
∑
wjTj : local search and dynasearch

1 | rj , (prec) | Lmax : branch and bound

1 | sjk | Cmax : in the special case, Gilmore and Gomory algorithm
optimal in O(n2)

1 | |
∑
wjTj : column generation approaches

Multiobjective: Multicriteria Optimization Marco Chiarandini .::. 23
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Multiobjective scheduling
Resolution process and decision maker intervention:

a priori methods (definition of weights, importance)
goal programming

weighted sum

...

interactive methods

a posteriori methods
Pareto optimality

...

Marco Chiarandini .::. 24



Single Machine Models
Parallel Machine ModelsLexicographic Order

α | β | γ1(opt)γ2

Find all solutions optimal for γ1 and among them those optimal for γ2
Examples:

1||
∑
Cj(opt), Lmax

solved by breaking ties: SPT/EDD

1||Lmax(opt),
∑
Cj

impose Lmax as hard constraint on due dates
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S set of solutions =⇒ ~z ∈ Rk image in the objective space

partial order structure defined in Rk:
∀x, y ∈ Rk : x ≤ y ⇔ xi ≤ yi∀i = 1, . . . , k

Definition (Weak Pareto optimium)

x ∈ S is a weak Pareto optimium (weakly efficient solution)
⇔6 ∃y ∈ S | ∀i = 1, . . . , k, zi(y) < zi(x)

Definition (Strong Pareto optimium)

x ∈ S is a weak Pareto optimium (weakly efficient solution)
⇔6 ∃y ∈ S | ∀i = 1, . . . , k, zi(y) ≤ zi(x)
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(without preemption)

P∞ | prec | Cmax CPM

Pm | | Cmax LPT heuristic, approximation ratio: 4
3 −

1
3m

Pm | prec | Cmax strongly NP-hard, LNS heuristic (non optimal)

Pm | pj = 1,Mj | Cmax LFJ-LFM (optimal if Mj are nested)
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