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Flow Shop
General Shop Scheduling:

J = {1, . . . ,N} set of jobs; M = {1, 2, . . . ,m} set of machines

Jj = {Oij | i = 1, . . . , nj} set of operations for each job

pij processing times of operations Oij

µij ⊆ M machine eligibilities for each operation

precedence constraints among the operations

one job processed per machine at a time,
one machine processing each job at a time

Cj completion time of job j

è Find feasible schedule that minimize some regular function of Cj

Flow Shop Scheduling:

µij = l , l = 1, 2, . . . ,m

precedence constraints: Oij → Oi+1,j , i = 1, 2, . . . , n for all jobs

Marco Chiarandini .::. 6

Flow Shop
Job Shop

Example

schedule representation
π1, π2, π3, π4:
π1 : O11,O12,O13,O14
π2 : O21,O22,O23,O24
π3 : O31,O32,O33,O34
π4 : O41,O42,O43,O44

Gantt chart

we assume unlimited buffer

if same job sequence on each machine è permutation flow shop
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Directed Graph Representation

Given a sequence: operation-on-node network,
jobs on columns, and machines on rows
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Directed Graph Representation

Recursion for Cmax

Ci,π(1) =
i∑

l=1

pl,π(1)

C1,π(j) =

j∑
l=1

pl,π(l)

Ci,π(j) = max{Ci−1,π(j),Ci,π(j−1)}+ pi,π(j)

Computation cost?
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Example

Cmax = 34

corresponds to longest path
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Fm | |Cmax

Theorem
There always exist an optimum sequence without change in the first two and
last two machines.

Proof: By contradiction.

Corollary

F2 | | Cmax and F3 | | Cmax are permutation flow shop

Note: F3 | | Cmax is strongly NP-hard
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F2 | |Cmax

Intuition: give something short to process to 1 such that 2 becomes
operative and give something long to process to 2 such that its buffer has
time to fill.

Construct a sequence T : T (1), . . . ,T (n) to process in the same order on
both machines by concatenating two sequences:
a left sequence L : L(1), . . . , L(t), and a right sequence
R : R(t + 1), . . . ,R(n), that is, T = L ◦ R

[Selmer Johnson, 1954, Naval Research Logistic Quarterly]

Let J be the set of jobs to process
Let T , L,R = ∅

Step 1 Find (i∗, j∗) such that pi∗,j∗ = min{pij | i ∈ 1, 2, j ∈ J}
Step 2 If i∗ = 1 then L = L ◦ {i∗}

else if i∗ = 2 then R = R ◦ {i∗}
Step 3 J := J \ {j∗}
Step 4 If J 6= ∅ go to Step 1 else T = L ◦ R
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Theorem

The sequence T : T (1), , . . . ,T (n) is optimal.

Proof

Assume at one iteration of the algorithm that job k has the min
processing time on machine 1. Show that in this case job k has to go
first on machine 1 than any other job selected later.

By contradiction, show that if in a schedule S a job j precedes k on
machine 1 and has larger processing time on 1, then S is a worse
schedule than S ′.
There are three cases to consider.

Iterate the proof for all jobs in L.

Prove symmetrically for all jobs in R.
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Construction Heuristics (1)
Fm | prmu |Cmax

Slope heuristic

schedule in decreasing order of Aj = −∑m
i=1(m − (2i − 1))pij

Campbell, Dudek and Smith’s heuristic (1970)

extension of Johnson’s rule to when permutation is not dominant
recursively create 2 machines 1 and m − 1

p′ij =
i∑

k=1

pkj p′′ij =
m∑

k=m−i+1

pkj

and use Johnson’s rule

repeat for all m − 1 possible pairings

return the best for the overall m machine problem
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Construction Heuristics (2)
Fm | prmu |Cmax

Nawasz, Enscore, Ham’s heuristic (1983)

Step 1: order in decreasing
∑m

i=1 pij

Step 2: schedule the first 2 jobs at best

Step 3: insert all others in best position

Implementation in O(n2m)

[Framinan, Gupta, Leisten (2004)] examined 177 different arrangements of jobs
in Step 1 and concluded that the NEH arrangement is the best one for Cmax .
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Iterated Greedy
Fm | prmu |Cmax

Iterated Greedy [Ruiz, Stützle, 2007]

Destruction: remove d jobs at random

Construction: reinsert them with NEH heuristic in the order of removal

Local Search: insertion neighborhood
(first improvement, whole evaluation O(n2m))

Acceptance Criterion: random walk, best, SA-like

Performance on up to n = 500×m = 20 :
NEH average gap 3.35% in less than 1 sec.

IG average gap 0.44% in about 360 sec.
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Efficient local search for Fm |prmu |Cmax

Tabu search (TS) with insert neighborhood.

TS uses best strategy. è need to search efficiently!

Neighborhood pruning [Novicki, Smutnicki, 1994, Grabowski, Wodecki, 2004]

A sequence t = (t1, t2, . . . , tm−1) defines a
path in π:

Cmax expression through critical path:
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critical path: ~u = (u1, u2, . . . , um) : Cmax(π) = C (π, u)

Block Bk and Internal Block B Int
k

Theorem (Werner, 1992)

Let π, π′ ∈ Π, if π′ has been obtained from π by a job insert so that
Cmax(π′) < Cmax(π) then in π′:
a) at least one job j ∈ Bk precedes job π(uk−1), k = 1, . . . ,m, or

b) at least one job j ∈ Bk succeeds job π(uk), k = 1, . . . ,m
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Corollary (Elimination Criterion)

If π′ is obtained by π by an “internal block insertion” then
Cmax(π′) ≥ Cmax(π).

Hence we can restrict the search to where the good moves can be:
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Further speedup: Use of lower bounds in delta evaluations:
Let δrx,uk

indicate insertion of x after uk (move of type ZRk(π))

∆(δrx,uk
) =

{
pπ(x),k+1 − pπ(uk ),k+1 x 6= uk−1

pπ(x),k+1 − pπ(uk ),k+1 + pπ(uk−1+1),k−1 − pπ(x),k−1 x = uk−1

That is, add and remove from the adjacent blocks
It can be shown that:

Cmax(δrx,uk
(π)) ≥ Cmax(π) + ∆(δrx,uk

)

Theorem (Nowicki and Smutnicki, 1996, EJOR)

The neighborhood thus defined is connected.
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Metaheuristic details:

Prohibition criterion:
an insertion δx,uk is tabu if it restores the relative order of π(x) and π(x + 1).

Tabu length: TL = 6 +
[ n

10m

]
Perturbation

perform all inserts among all the blocks that have ∆ < 0
activated after MaxIdleIter idle iterations
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Tabu Search: the final algorithm:

Initialization : π = π0, C∗ = Cmax(π), set iteration counter to zero.
Searching : Create URk and ULk (set of non tabu moves)
Selection : Find the best move according to lower bound ∆.

Apply move. Compute true Cmax(δ(π)).
If improving compare with C∗ and in case update.
Else increase number of idle iterations.

Perturbation : Apply perturbation if MaxIdleIter done.
Stop criterion : Exit if MaxIter iterations are done.
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