Outline

DM204, 2010 SCHEDULING, TIMETABLING AND ROUTING

Lecture 19 Flow Shop

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

1. Flow Shop

Introduction Makespan calculation Johnson's algorithm Construction heuristics Iterated Greedy Efficient Local Search and Tabu Search

2. Job Shop

Modelling Exact Methods Local Search Methods

Marco Chiarandini .::. 2

Flow Shop Job Shop

Course Overview

- Problem Introduction
 - Scheduling classification
 - Scheduling complexity
 - ✔ RCPSP
- ✔ General Methods
 - ✓ Integer Programming
 - Constraint Programming
 - Heuristics
 - ✓ Dynamic Programming
 - Branch and Bound

Flow Shop Job Shop

Scheduling

- Single Machine
- Parallel Machine and Flow Shop Models
- Job Shop
- Resource Constrained Project Scheduling Model
- Timetabling
 - Reservations and Education
 - University Timetabling
 - Crew Scheduling
 - Public Transports
- Vechicle Routing
 - Capacited Models
 - Time Windows models
 - Rich Models

Outline

1. Flow Shop

Introduction Makespan calculation Johnson's algorithm Construction heuristics Iterated Greedy Efficient Local Search and Tabu Search

2. Job Sho

Modelling Exact Methods Local Search Methods

Flow Shop

General Shop Scheduling:

- $J = \{1, ..., N\}$ set of jobs; $M = \{1, 2, ..., m\}$ set of machines
- $J_i = \{O_{ij} \mid i = 1, \dots, n_i\}$ set of operations for each job
- p_{ii} processing times of operations O_{ii}
- $\mu_{ii} \subseteq M$ machine eligibilities for each operation
- precedence constraints among the operations
- one job processed per machine at a time, one machine processing each job at a time
- C_i completion time of job j
- Find feasible schedule that minimize some regular function of C_i

Flow Shop Scheduling:

- $\mu_{ii} = l, l = 1, 2, ..., m$
- precedence constraints: $O_{ii} \rightarrow O_{i+1,i}$, i = 1, 2, ..., n for all jobs

Marco Chiarandini .::. 6

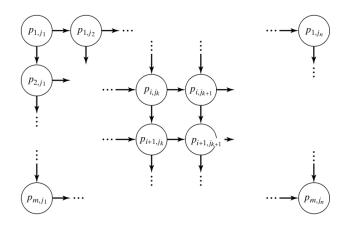
Flow Shop

Flow Shop

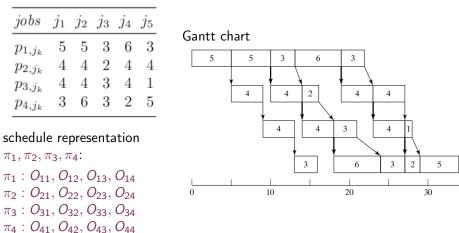
Job Shor

Directed Graph Representation

Given a sequence: operation-on-node network, jobs on columns, and machines on rows



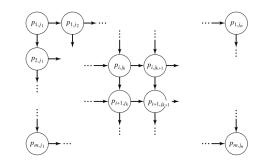
Example



- we assume unlimited buffer
- if same job sequence on each machine **Permutation** flow shop

Marco Chiarandini .::. 7

Directed Graph Representation



Recursion for C_{max}

$$C_{i,\pi(1)} = \sum_{l=1}^{i} p_{l,\pi(1)}$$

$$C_{1,\pi(j)} = \sum_{l=1}^{j} p_{l,\pi(l)}$$

$$C_{i,\pi(j)} = \max\{C_{i-1,\pi(j)}, C_{i,\pi(j-1)}\} + p_{i,\pi(j)}$$

Marce

Marco Chiarandini .::. 9

Marco Chiarandini .::. 10

Flow Shop Job Shor

Example

5

4

4

3

4

jobs	j_1	j_2	j_3	j_4	j_5
p_{1,j_k}	5	5	3	6	3
p_{2,j_k}	4	4	2	4	4
$p_{3,j_{k}}$	4	4	3	4	1
p_{4,j_k}	3	6	3	2	5

Flow Shop Job Shop

3

Marco Chiarandini .::. 11

Flow Shop

Job Shor

 $C_{max} = 34$

corresponds to longest path

$Fm \mid \mid C_{max}$

Theorem

There always exist an optimum sequence without change in the first two and last two machines.

Proof: By contradiction.

Corollary

 $F2 \mid |C_{max} \text{ and } F3 \mid |C_{max} \text{ are permutation flow shop}$

Note: $F3 \mid C_{max}$ is strongly NP-hard

Marco Chiarandini .::. 13

Flow Shop

Job Shor

Flow Shop Job Shop

Theorem

The sequence $T : T(1), \ldots, T(n)$ is optimal.

Proof

- Assume at one iteration of the algorithm that job k has the min processing time on machine 1. Show that in this case job k has to go first on machine 1 than any other job selected later.
- By contradiction, show that if in a schedule *S* a job *j* precedes *k* on machine 1 and has larger processing time on 1, then *S* is a worse schedule than *S'*.

There are three cases to consider.

- Iterate the proof for all jobs in *L*.
- Prove symmetrically for all jobs in *R*.

Marco Chiarandini .::. 14

$F2 \mid \mid C_{max}$

Intuition: give something short to process to 1 such that 2 becomes operative and give something long to process to 2 such that its buffer has time to fill.

4

3

20

Construct a sequence $T : T(1), \ldots, T(n)$ to process in the same order on both machines by concatenating two sequences: a left sequence $L : L(1), \ldots, L(t)$, and a right sequence $R : R(t+1), \ldots, R(n)$, that is, $T = L \circ R$

[Selmer Johnson, 1954, Naval Research Logistic Quarterly]

```
Let J be the set of jobs to process

Let T, L, R = \emptyset

Step 1 Find (i^*, j^*) such that p_{i^*, j^*} = \min\{p_{ij} \mid i \in 1, 2, j \in J\}

Step 2 If i^* = 1 then L = L \circ \{i^*\}

else if i^* = 2 then R = R \circ \{i^*\}

Step 3 J := J \setminus \{j^*\}

Step 4 If J \neq \emptyset go to Step 1 else T = L \circ R
```

Construction Heuristics (1)

Fm | prmu | C_{max}

Slope heuristic

• schedule in decreasing order of $A_j = -\sum_{i=1}^m (m - (2i - 1))p_{ij}$

Campbell, Dudek and Smith's heuristic (1970)

extension of Johnson's rule to when permutation is not dominant

• recursively create 2 machines 1 and m-1

$$p'_{ij} = \sum_{k=1}^{i} p_{kj}$$
 $p''_{ij} = \sum_{k=m-i+1}^{m} p_{kj}$

and use Johnson's rule

- repeat for all m-1 possible pairings
- return the best for the overall *m* machine problem

Marco Chiarandini .::. 18

Flow Shop

Iterated Greedy

Fm | prmu | C_{max}

Iterated Greedy [Ruiz, Stützle, 2007]

Destruction: remove d jobs at random

Construction: reinsert them with NEH heuristic in the order of removal

Local Search: insertion neighborhood (first improvement, whole evaluation $O(n^2m)$)

Acceptance Criterion: random walk, best, SA-like

Performance on up to $n = 500 \times m = 20$:

 $\bullet~$ NEH average gap 3.35% in less than 1 sec.

• IG average gap 0.44% in about 360 sec.

Construction Heuristics (2)

Fm | prmu | C_{max}

Nawasz, Enscore, Ham's heuristic (1983)

Step 1: order in decreasing $\sum_{i=1}^{m} p_{ij}$ Step 2: schedule the first 2 jobs at best Step 3: insert all others in best position

Implementation in $O(n^2m)$

[Framinan, Gupta, Leisten (2004)] examined 177 different arrangements of jobs in Step 1 and concluded that the NEH arrangement is the best one for C_{max} .

Marco Chiarandini .::. 19

Flow Shop

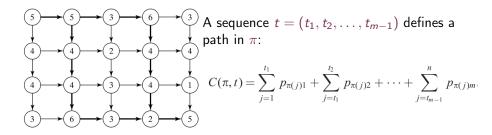
Efficient local search for $Fm | prmu | C_{max}$

Tabu search (TS) with insert neighborhood.

TS uses best strategy. ➡ need to search efficiently!

Neighborhood pruning

[Novicki, Smutnicki, 1994, Grabowski, Wodecki, 2004]



 C_{max} expression through critical path:

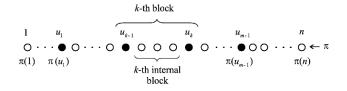
$$C_{\max}(\pi) = \max_{1 \leqslant t_1 \leqslant t_2 \leqslant \dots \leqslant t_{m-1} \leqslant n} \left(\sum_{j=1}^{t_1} p_{\pi(j)1} + \sum_{j=t_1}^{t_2} p_{\pi(j)2} + \dots + \sum_{j=t_{m-1}}^{n} p_{\pi(j)m} \right)_{\text{Marco Chiarandini 23}}$$

Flow Shop Job Shop

Flow Shop Job Shop

critical path:
$$\vec{u} = (u_1, u_2, \dots, u_m)$$
: $C_{max}(\pi) = C(\pi, u)$

Block B_k and Internal Block B_k^{Int}



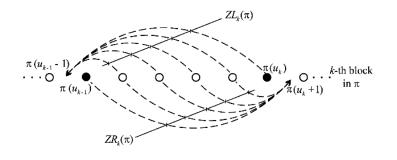
Theorem (Werner, 1992)

Let $\pi, \pi' \in \Pi$, if π' has been obtained from π by a job insert so that $C_{max}(\pi') < C_{max}(\pi)$ then in π' : a) at least one job $j \in B_k$ precedes job $\pi(u_{k-1}), k = 1, ..., m$, or b) at least one job $j \in B_k$ succeeds job $\pi(u_k), k = 1, ..., m$

Marco Chiarandini .::. 24

If π' is obtained by π by an "internal block insertion" then $C_{\max}(\pi') \ge C_{\max}(\pi)$.

Hence we can restrict the search to where the good moves can be:



Marco Chiarandini 25

Flow Shop Job Shop

Flow Shop Job Shop

Further speedup: Use of lower bounds in delta evaluations: Let δ_{x,u_k}^r indicate insertion of x after u_k (move of type $ZR_k(\pi)$)

$$\Delta(\delta_{x,u_{k}}^{r}) = \begin{cases} p_{\pi(x),k+1} - p_{\pi(u_{k}),k+1} & x \neq u_{k-1} \\ p_{\pi(x),k+1} - p_{\pi(u_{k}),k+1} + p_{\pi(u_{k-1}+1),k-1} - p_{\pi(x),k-1} & x = u_{k-1} \end{cases}$$

That is, add and remove from the adjacent blocks It can be shown that:

$$C_{\max}(\delta^r_{x,u_k}(\pi)) \ge C_{\max}(\pi) + \Delta(\delta^r_{x,u_k})$$

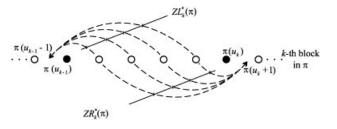
Theorem (Nowicki and Smutnicki, 1996, EJOR) The neighborhood thus defined is connected.

Metaheuristic details:

Prohibition criterion: an insertion δ_{x,u_k} is tabu if it restores the relative order of $\pi(x)$ and $\pi(x+1)$.

Tabu length: $TL = 6 + \left[\frac{n}{10m}\right]$

Perturbation



 $\bullet\,$ perform all inserts among all the blocks that have $\Delta < 0$

• activated after MaxIdleIter idle iterations

Tabu Search: the final algorithm:

Initialization : $\pi = \pi_0$, $C^* = C_{max}(\pi)$, set iteration counter to zero. Searching : Create UR_k and UL_k (set of non tabu moves) Selection : Find the best move according to lower bound Δ . Apply move. Compute true $C_{max}(\delta(\pi))$. If improving compare with C^* and in case update. Else increase number of idle iterations. Perturbation : Apply perturbation if MaxIdleIter done.

Stop criterion : Exit if MaxIter iterations are done.

Marco Chiarandini .::. 28