DM204, 2010 SCHEDULING, TIMETABLING AND ROUTING

Lecture 19 Flow Shop

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Flow Shop Job Shop

Outline

1. Flow Shop

Introduction Makespan calculation Johnson's algorithm Construction heuristics Iterated Greedy Efficient Local Search and Tabu Search

2. Job Shop

Modelling Exact Methods Local Search Methods

Course Overview

- Problem Introduction
 - ✓ Scheduling classification
 - ✓ Scheduling complexity
 - ✔ RCPSP
- ✔ General Methods
 - ✓ Integer Programming
 - Constraint Programming
 - Heuristics
 - ✔ Dynamic Programming
 - Branch and Bound

- Scheduling
 - Single Machine
 - Parallel Machine and Flow Shop Models
 - Job Shop
 - Resource Constrained Project Scheduling Model
- Timetabling
 - Reservations and Education
 - University Timetabling
 - Crew Scheduling
 - Public Transports
- Vechicle Routing
 - Capacited Models
 - Time Windows models
 - Rich Models

Outline

1. Flow Shop

Introduction Makespan calculation Johnson's algorithm Construction heuristics Iterated Greedy Efficient Local Search and Tabu Search

2. Job Shop

Modelling Exact Methods Local Search Methods

Flow Shop

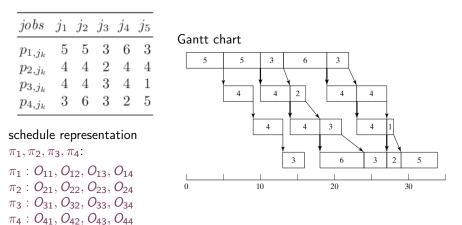
General Shop Scheduling:

- $J = \{1, \dots, N\}$ set of jobs; $M = \{1, 2, \dots, m\}$ set of machines
- $J_j = \{O_{ij} \mid i = 1, ..., n_j\}$ set of operations for each job
- p_{ij} processing times of operations O_{ij}
- $\mu_{ij} \subseteq M$ machine eligibilities for each operation
- precedence constraints among the operations
- one job processed per machine at a time, one machine processing each job at a time
- C_j completion time of job j
- Find feasible schedule that minimize some regular function of C_i

Flow Shop Scheduling:

- $\mu_{ij} = l, l = 1, 2, \dots, m$
- precedence constraints: $O_{ij} \rightarrow O_{i+1,j}$, i = 1, 2, ..., n for all jobs

Example

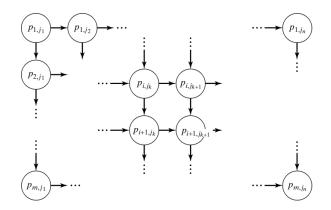


- 19 19 1 1 1
 - we assume unlimited buffer
 - if same job sequence on each machine ➡ permutation flow shop

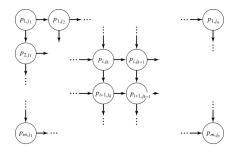
Directed Graph Representation

Given a sequence:

operation-on-node network, jobs on columns, and machines on rows



Directed Graph Representation



Recursion for C_{max}

$$C_{i,\pi(1)} = \sum_{l=1}^{i} p_{l,\pi(1)}$$

$$C_{1,\pi(j)} = \sum_{l=1}^{j} p_{l,\pi(l)}$$

$$C_{i,\pi(j)} = \max\{C_{i-1,\pi(j)}, C_{i,\pi(j-1)}\} + p_{i,\pi(j)}$$

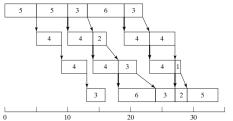
Marce

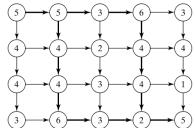
Marco Chiarandini .::. 10

Example

jobs	j_1	j_2	j_3	j_4	j_5
p_{1,j_k}	5	5	3	6	3
p_{2,j_k}	4	4	2	4	4
$p_{3,j_{k}}$	4	4	3	4	1
p_{4,j_k}	3	6	3	2	5

corresponds to longest path





Fm || C_{max}

Theorem

There always exist an optimum sequence without change in the first two and last two machines.

Proof: By contradiction.

Corollary

 $F2 \mid |C_{max} \text{ and } F3 \mid |C_{max} \text{ are permutation flow shop}$

Note: $F3 \mid C_{max}$ is strongly NP-hard

*F*2 | | *C*_{max}

Intuition: give something short to process to 1 such that 2 becomes operative and give something long to process to 2 such that its buffer has time to fill.

Construct a sequence $T : T(1), \ldots, T(n)$ to process in the same order on both machines by concatenating two sequences: a left sequence $L : L(1), \ldots, L(t)$, and a right sequence $R : R(t+1), \ldots, R(n)$, that is, $T = L \circ R$

[Selmer Johnson, 1954, Naval Research Logistic Quarterly] Let J be the set of jobs to process Let T, L, $R = \emptyset$ Step 1 Find (i^*, j^*) such that $p_{i^*, j^*} = \min\{p_{ij} \mid i \in 1, 2, j \in J\}$ Step 2 If $i^* = 1$ then $L = L \circ \{i^*\}$ else if $i^* = 2$ then $R = R \circ \{i^*\}$ Step 3 $J := J \setminus \{j^*\}$ Step 4 If $J \neq \emptyset$ go to Step 1 else $T = L \circ R$

Theorem

The sequence $T : T(1), \ldots, T(n)$ is optimal.

Proof

- Assume at one iteration of the algorithm that job k has the min processing time on machine 1. Show that in this case job k has to go first on machine 1 than any other job selected later.
- By contradiction, show that if in a schedule S a job j precedes k on machine 1 and has larger processing time on 1, then S is a worse schedule than S'.

There are three cases to consider.

- Iterate the proof for all jobs in L.
- Prove symmetrically for all jobs in *R*.

Construction Heuristics (1)

Slope heuristic

• schedule in decreasing order of $A_j = -\sum_{i=1}^m (m - (2i - 1))p_{ij}$

Campbell, Dudek and Smith's heuristic (1970)

extension of Johnson's rule to when permutation is not dominant ${\mbox{\circ}}$ recursively create 2 machines 1 and m-1

$$p'_{ij} = \sum_{k=1}^{i} p_{kj}$$
 $p''_{ij} = \sum_{k=m-i+1}^{m} p_{kj}$

and use Johnson's rule

- repeat for all m-1 possible pairings
- return the best for the overall *m* machine problem

Construction Heuristics (2) *Fm* | *prmu* | *C_{max}*

Nawasz, Enscore, Ham's heuristic (1983)

Step 1: order in decreasing $\sum_{i=1}^{m} p_{ij}$

Step 2: schedule the first 2 jobs at best

Step 3: insert all others in best position

Implementation in $O(n^2m)$

[Framinan, Gupta, Leisten (2004)] examined 177 different arrangements of jobs in Step 1 and concluded that the NEH arrangement is the best one for C_{max} .

Iterated Greedy

Iterated Greedy [Ruiz, Stützle, 2007]

Destruction: remove d jobs at random

Construction: reinsert them with NEH heuristic in the order of removal

Local Search: insertion neighborhood (first improvement, whole evaluation $O(n^2m)$)

Acceptance Criterion: random walk, best, SA-like

Performance on up to $n = 500 \times m = 20$:

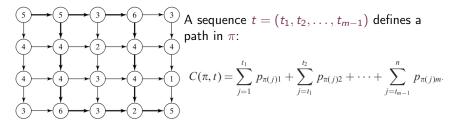
- NEH average gap 3.35% in less than 1 sec.
- IG average gap 0.44% in about 360 sec.

Efficient local search for $Fm | prmu | C_{max}$

Tabu search (TS) with insert neighborhood.

TS uses best strategy. ➡ need to search efficiently!

Neighborhood pruning [Novicki, Smutnicki, 1994, Grabowski, Wodecki, 2004]

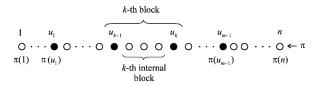


 C_{max} expression through critical path:

$$C_{\max}(\pi) = \max_{1 \le t_1 \le t_2 \le \dots \le t_{m-1} \le n} \left(\sum_{j=1}^{t_1} p_{\pi(j)1} + \sum_{j=t_1}^{t_2} p_{\pi(j)2} + \dots + \sum_{j=t_{m-1}}^{n} p_{\pi(j)m} \right)_{\text{Marco Chiarandini}}$$

critical path: $\vec{u} = (u_1, u_2, \dots, u_m) : C_{max}(\pi) = C(\pi, u)$

Block B_k and Internal Block B_k^{Int}



Theorem (Werner, 1992)

Let $\pi, \pi' \in \Pi$, if π' has been obtained from π by a job insert so that $C_{\max}(\pi') < C_{\max}(\pi)$ then in π' :

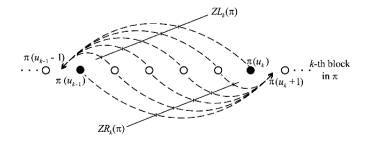
a) at least one job $j \in B_k$ precedes job $\pi(u_{k-1}), k = 1, ..., m$, or

b) at least one job $j \in B_k$ succeeds job $\pi(u_k), k = 1, ..., m$

Corollary (Elimination Criterion)

If π' is obtained by π by an "internal block insertion" then $C_{\max}(\pi') \ge C_{\max}(\pi)$.

Hence we can restrict the search to where the good moves can be:



Further speedup: Use of lower bounds in delta evaluations: Let δ_{x,u_k}^r indicate insertion of x after u_k (move of type $ZR_k(\pi)$)

$$\Delta(\delta_{x,u_{k}}^{r}) = \begin{cases} p_{\pi(x),k+1} - p_{\pi(u_{k}),k+1} & x \neq u_{k-1} \\ p_{\pi(x),k+1} - p_{\pi(u_{k}),k+1} + p_{\pi(u_{k-1}+1),k-1} - p_{\pi(x),k-1} & x = u_{k-1} \end{cases}$$

That is, add and remove from the adjacent blocks It can be shown that:

$$C_{\max}(\delta_{x,u_k}^r(\pi)) \ge C_{\max}(\pi) + \Delta(\delta_{x,u_k}^r)$$

Theorem (Nowicki and Smutnicki, 1996, EJOR) The neighborhood thus defined is connected.

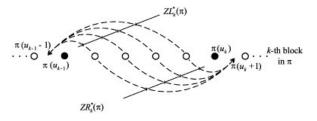
Metaheuristic details:

Prohibition criterion:

an insertion δ_{x,u_k} is tabu if it restores the relative order of $\pi(x)$ and $\pi(x+1)$.

Tabu length: $TL = 6 + \left[\frac{n}{10m}\right]$

Perturbation



- perform all *inserts* among all the blocks that have $\Delta < 0$
- activated after MaxIdleIter idle iterations

Tabu Search: the final algorithm:

- Initialization : $\pi = \pi_0$, $C^* = C_{max}(\pi)$, set iteration counter to zero.
 - Searching : Create UR_k and UL_k (set of non tabu moves)
- Perturbation : Apply perturbation if MaxIdleIter done.
- Stop criterion : Exit if MaxIter iterations are done.