Outline

DM204, 2010 SCHEDULING, TIMETABLING AND ROUTING

Lecture 22 Resource-Constrained Project Scheduling Model

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark 1. RCPS Model

Preliminaries Heuristics for RCPSP

Marco Chiarandini .::. 2

RCPS Model

Course Overview

- Problem Introduction
 - ✓ Scheduling classification
 - Scheduling complexity
 - ✓ RCPSP
- ✔ General Methods
 - ✔ Integer Programming
 - Constraint Programming
 - Heuristics
 - Dynamic Programming
 - ✓ Branch and Bound

- ✓ Scheduling Models
 - Single Machine
 - Parallel Machine and Flow Shop

RCPS Model

- ✓ Job Shop
- Resource-Constrained Project Scheduling
- Timetabling
 - Reservations and Education
 - University Timetabling
 - Crew Scheduling
 - Public Transports
- Vechicle Routing
 - Capacited Models
 - Time Windows models
 - Rich Models

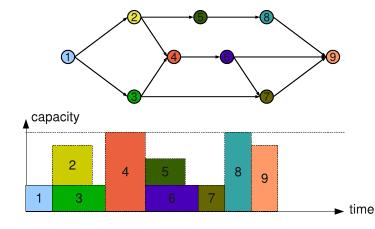
1. RCPS Model

Outline

Preliminaries Heuristics for RCPSP

RCPS Model

RCPS Model


Resource Constrained Project Scheduling Model **Given**:

• activities (jobs) $j = 1, \ldots, n$

- renewable resources $i = 1, \ldots, m$
- amount of resources available R_i
- processing times p_j
- amount of resource used r_{ij}
- precedence constraints $j \rightarrow k$

Further generalizations

- Time dependent resource profile $R_i(t)$ given by (t_i^{μ}, R_i^{μ}) where $0 = t_i^1 < t_i^2 < \ldots < t_i^{m_i} = T$
- Multiple modes for an activity *j* processing time and use of resource depends on its mode *m*: *p_{jm}*, *r_{jkm}*.

RCPS Model Modeling

Marco Chiarandini .::. 6

RCPS Model

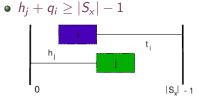
Modeling

Case 1

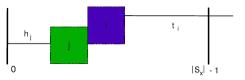
- A contractor has to complete *n* activities.
- The duration of activity *j* is *p_j*
- each activity requires a crew of size W_j .
- The activities are not subject to precedence constraints.
- $\bullet\,$ The contractor has $\,W\,$ workers at his disposal
- his objective is to complete all *n* activities in minimum time.

0

Case 2


- Exams in a college may have different duration.
- $\bullet\,$ The exams have to be held in a gym with W seats.
- The enrollment in course j is W_j and
- all W_j students have to take the exam at the same time.
- The goal is to develop a timetable that schedules all *n* exams in minimum time.
- Consider both the cases in which each student has to attend a single exam as well as the situation in which a student can attend more than one exam.

RCPS Model


- Precedence network must be acyclic
- Preprocessing: constraint propagation
- 1. conjunctions $i \to j$ [precedence constrains] $S_i + p_i \leq S_j$
- 2. parallelity constraints i || j[time windows $[r_j, d_j], [r_l, d_l]$ and $p_l + p_j > \max\{d_l, d_j\} - \min\{r_l, r_j\}$]
- 3. disjunctions i j[resource constraints: $r_{jk} + r_{lk} > R_k$] $S_i + p_i \le S_j \text{ or } S_j + p_j \le S_i$
- N. Strengthenings: symmetric triples, etc.

Let i, j be a pair of activities. A precedence relation is added between i and j if one of the following holds:

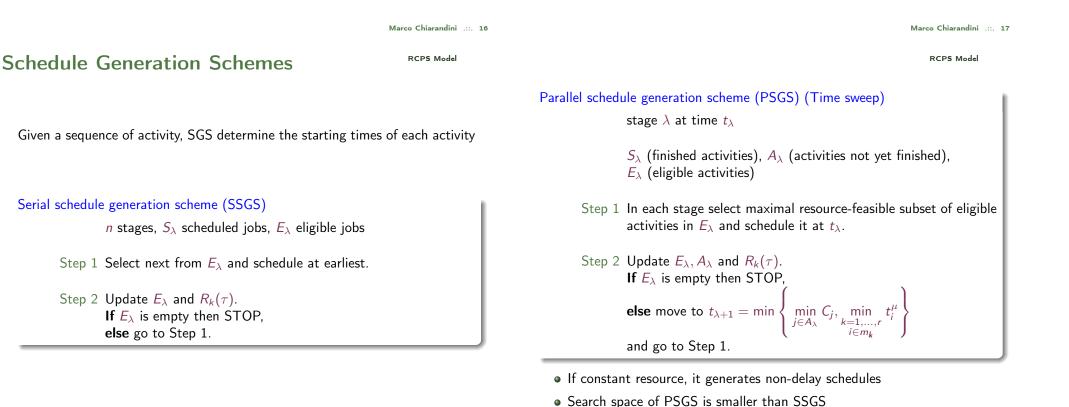
• $h_j + p_j + p_i + q_i > |S_x| - 1$ \land $\exists k = 1, ..., m : r_{ik} + r_{jk} > R_k$

 $\begin{array}{l} \min \ \max_{j=1}^{n} \{S_{j} + p_{j}\} \\ \text{s.t.} \ S_{j} \geq S_{i} + p_{i}, \qquad j = 1, \dots, n, \forall (i,j) \in A \\ \sum_{j \in J(t)} r_{jk} \leq R_{k}, \qquad k = 1, \dots, m, t = 1 \dots, T \\ S_{j} \geq 0, \qquad j = 1, \dots, n \\ \text{where} \ J(t) = \{j = 1, \dots, n | S_{j} \leq t \leq S_{j} + p_{j}\}. \end{array}$

Preprocessing: Temporal Analysis

- When a schedule S_x with makespan $|S_x|$ is found, we are only interested in solutions S_x with $|S_x| = |S_x| 1$.
- Precedence augmentation adds new precedence relations which must be satisfied for the makespan to improve.
- Heads r_j and Tails q_j ⇐ Longest paths ⇐ Topological ordering (deadlines d_i can be obtained as UB - q_i)

Solutions


RCPS Mode

Task: Find a schedule indicating the starting time of each activity

- All solution methods restrict the search to feasible schedules, S, S'
- Types of schedules
 - Local left shift (LLS): $S \to S'$ with $S'_j < S_j$ and $S'_l = S_l$ for all $l \neq j$.
 - ${\scriptstyle \bullet }$ Global left shift (GLS): LLS passing through infeasible schedule
 - Semi active schedule: no LLS possible
 - $\bullet\,$ Active schedule: no GLS possible
 - Non-delay schedule: no GLS and LLS possible even with preemption
- $\bullet\,$ If regular objectives \Longrightarrow exists an optimum which is active

Hence:

- Schedule not given by start times S_i
 - space too large $O(T^n)$
 - difficult to check feasibility
- Sequence (list, permutation) of activities $\pi = (j_1, \dots, j_n)$
- π determines the order of activities to be passed to a schedule generation scheme

RCPS Model

Dispatching Rules

• activity based

network based

resource based

path based

Static vs Dynamic

the schedule generation scheme

Determines the sequence of activities to pass to

Possible uses:

- Forward
- Backward
- Bidirectional
- Forward-backward improvement (justification techniques)

 $\left[\mathsf{V}. \ \mathsf{Valls}, \ \mathsf{F}. \ \mathsf{Ballestin} \ \mathsf{and} \ \mathsf{S}. \ \mathsf{Quintanilla}. \ \mathsf{Justification} \ \mathsf{and} \ \mathsf{RCPSP} : \ \mathsf{A} \ \mathsf{technique} \ \mathsf{that} \ \mathsf{pays}. \ \mathsf{EJOR}, \ \mathsf{165}: \mathsf{375}\text{-}\mathsf{386}, \ \mathsf{2005} \right]$

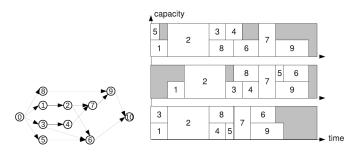


Fig. from [D. Debels, R. Leus, and M. Vanhoucke. A hybrid scatter search/electromagnetism meta-heuristic for project scheduling. EJOR, 169(2):638Â653, 2006] Marco Chiarandini .::. 21

Local Search

RCPS Model

Marco Chiarandini .::. 22

RCPS Model

All typical neighborhood operators can be used:

- Swap
- Interchange
- Insert

reduced to only those moves compatible with precedence constraints

Recombination operator:

- One point crossover
- Two point crossover
- Uniform crossover

Implementations compatible with precedence constraints