Outline

DM204, 2010

SCHEDULING, TIMETABLING AND ROUTING

Lecture 23

Timetabling: Reservations and Education

Marco Chiarandini
Department of Mathematics \& Computer Science University of Southern Denmark

1. Reservations without slack
2. Reservations with slack
3. Timetabling with one Operator
4. Timetabling with Operators
5. Educational Timetabling

Introduction
School Timetabling
\checkmark Problem Introduction
\checkmark Scheduling classification
\checkmark Scheduling complexity
\checkmark RCPSP
\checkmark General Methods
\checkmark Integer Programming
\checkmark Constraint Programming
\checkmark Heuristics
\checkmark Dynamic Programming
\checkmark Branch and Bound
\checkmark Scheduling Models
\checkmark Single Machine
\checkmark Parallel Machine and Flow Shop
\checkmark Job Shop
\checkmark Resource-Constrained Project Scheduling

- Timetabling
- Reservations and Education
- University Timetabling
- Crew Scheduling
- Public Transports
- Vechicle Routing
- Capacited Models
- Time Windows models
- Rich Models

1. Reservations without slack
2. Reservations with slack
3. Timetabling with one Operator
4. Timetabling with Operators
5. Educational Timetabling

Introduction
School Timetabling

Reservations without slack
Reservations with slack
Reservations without slack
Timetabling with one Op .
Timetabing with one Op.
Timetalling w. Operators
Educational Timetabling

1. $p_{j}=1$

Solve an assignment problem at each time slot
2. $w_{j}=1, M_{j}=M, \mathrm{Obj}$. minimize resources used

- Corresponds to coloring interval graphs with minimal number of colors
- Optimal greedy algorithm (First Fit):

$$
\text { order } r_{1} \leq r_{2} \leq \ldots \leq r_{n}
$$

Step 1 assign resource 1 to activity 1
Step 2 for j from 2 to n do
Assume k resources have been used.
Assign activity j to the resource with minimum feasible value from $\{1, \ldots, k+1\}$

Reservations without slack

Given:

- m parallel machines (resources)
- n activities
- r_{j} starting times (integers) d_{j} termination (integers),
w_{j} or $w_{i j}$ weight,
M_{j} eligibility
- without slack $p_{j}=d_{j}-r_{j}$

Task: Maximize weight of assigned activities
Examples: Hotel room reservation, Car rental

Polynomially solvable cases

3. $w_{j}=1, M_{j}=M$ Obj. maximize activities assigned

- Corresponds to coloring max \# of vertices in interval graphs with k colors
- Optimal k-coloring of interval graphs:

$$
\begin{aligned}
& \text { order } r_{1} \leq r_{2} \leq \ldots \leq r_{n} \\
& J=\emptyset, j=1
\end{aligned}
$$

Step 1 if a resource is available at time r_{j} then assign activity j to that resource; include j in J; go to Step 3
Step 2 Else, select j^{*} such that $C_{j^{*}}=\max C_{j}$
if $C_{j}=r_{j}+p_{j}>C_{j^{*}}$ go to Step 3 else remove j^{*} from J, assign j in J
Step 3 if $j=n$ STOP else $j=j+1$ go to Step 1

Marco Chiarandini .:.. 10

Reservations without slack Reservations with slack Timetalling with one Op.
 Timetabling with one Op.

Outline

Reservations with Slack

```
Reservations without slack
Reservations with slack
Timetabling wo Operators
Educational Timetabling
```


Given:

- m parallel machines (resources)
- n activities
- r_{j} starting times (integers),
d_{j} termination (integers),
w_{j} or $w_{i j}$ weight,
M_{j} eligibility
- with slack $p_{j} \leq d_{j}-r_{j}$

Task: Maximize weight of assigned activities

Heuristics

Most constrained variable, least constraining value heuristic
$\left|M_{j}\right|$ indicates how much constrained an activity is
$\nu_{i t}$: \# activities that can be assigned to i in $[t-1, t]$
Select activity j with smallest $l_{j}=f\left(\frac{w_{j}}{p_{j}},\left|M_{j}\right|\right)$
Select resource i with smallest $g\left(\nu_{i, t+1}, \ldots, \nu_{i, t+p_{j}}\right)$ (or discard j if no place free for j)

Examples for f and g :

$$
\begin{gathered}
f\left(\frac{w_{j}}{p_{j}},\left|M_{j}\right|\right)=\frac{\left|M_{j}\right|}{w_{j} / p_{j}} \\
g\left(\nu_{i, t+1}, \ldots, \nu_{i, t+p_{j}}\right)=\max \left(\nu_{i, t+1}, \ldots, \nu_{i, t+p_{j}}\right)
\end{gathered}
$$

$$
g\left(\nu_{i, t+1}, \ldots, \nu_{i, t+p_{j}}\right)=\sum_{l=1}^{p_{j}} \frac{\nu_{i, t+l}}{p_{j}}
$$

```
Reservations without slack
```

Reservations with slack
3. Timetabling with one Operator
4. Timetabling with Operators
5. Educational Timetabling

Introduction
School Timetabling

Marco Chiarandini .:i. 15

Reservations without slack
 Reservations with slack Timetabling w. Operato

Example: Exam scheduling

- Exams in a college with same duration.
- The exams have to be held in a gym with W seats.
- The enrollment in course j is W_{j} and
- all W_{j} students have to take the exam at the same time.
- The goal is to develop a timetable that schedules all n exams in minimum time.
- Each student has to attend a single exam.
- Bin Packing model
- In the more general (and realistic) case it is a RCPSP

```
Reservations without slack
Timetabling with one O
Timetabling w. Operators
```

Heuristics for Bin Packing

- Construction Heuristics
- Best Fit Decreasing (BFD)
- First Fit Decreasing (FFD)

$$
C_{\max }(F F D) \leq \frac{11}{9} C_{\max }(O P T)+\frac{6}{9}
$$

- Local Search:
[Alvim and Aloise and Glover and Ribeiro, 1999]
Step 1: remove one bin and redistribute items by BFD
Step 2: if infeasible, re-make feasible by redistributing items for pairs of bins, such that their total weights becomes equal (number partitioning problem)

Outline
Timetating w. Operators

Reservations without slack
imetabling with one O
Timetabing w. Operator

The solution before local search (the bin capacity is 10): The bins: $\quad|333| 621|52| 43|72| 54 \mid$

Open the two smallest bins:
Remaining: $\quad|333| 621|72| 54 \mid$

Free items: $\quad 5,4,3,2$

Try to replace 2 current items by 2 free items, 2 current by 1 free or 1 current by 1 free:
First bin: $\quad 333 \rightarrow 352$ new free: $4,3,3,3$
Second bin: $\quad 621 \rightarrow 64$ new free: $3,3,3,2,1$
Third bin: $\quad 72 \rightarrow 73$ new free: $3,3,2,2,1$
Fourth bin: $\quad 54$ stays the same
Reinsert the free items using FFD:
Fourth bin: $\quad 54 \rightarrow 541$
Make new bin: 3322
Final solution: $\quad|352| 64|73| 541|3322|$

Reservations without slack
Reservations with slack
imetabling w. Operato

Timetabling with Operators

- There are several operators and activities can be done by an operator only if he is available
- Two activities that share an operator cannot be scheduled at the same time

Examples:

- aircraft repairs
- scheduling of meetings (people \rightarrow operators; resources \rightarrow rooms)
- exam scheduling (students may attend more than one exam \rightarrow operators)

If $p_{j}=1 \rightarrow$ Graph-Vertex Coloring (still NP-hard)

Mapping to Graph-Vertex Coloring

- activities \rightarrow vertices
- if 2 activities require the same operators \rightarrow edges
- time slots $\boldsymbol{\rightarrow}$ colors
- feasibility problem (if \# time slots is fixed)
- optimization problem

Outline

1. Reservations without slack
2. Reservations with slack
3. Timetabling with one Operator
4. Timetabling with Operators
5. Educational Timetabling

Introduction
School Timetabling
Reservations without slack
Reservations with slack
Timetabling with one Op. Introduction
Timetabling wt Operators
School Timetabling
Educational Timetabling

```
Reservations with slack 
Educational Timetabling
```

DSATUR heuristic for Graph-Vertex Coloring
saturation degree: number of differently colored adjacent vertices
set of empty color classes $\left\{C_{1}, \ldots, C_{k}\right\}$, where $k=|V|$
Sort vertices in decreasing order of their degrees

Step 1 A vertex of maximal degree is inserted into C_{1}.

Step 2 The vertex with the maximal saturation degree is chosen and inserted according to the greedy heuristic (first feasible color). Ties are broken preferring vertices with the maximal number of adjacent, still uncolored vertices; if further ties remain, they are broken randomly.

Educational timetabling process

Phase:	Planning	Scheduling	Dispatching
Horizon:	Long Term	Timetable Period	Day Operation
Objective:	Service Level	Feasibility	Get it Done
Steps:	Manpower, Equipment	Weekly Timetabling	Repair

Reservations without slack
Reservations with slack
Reservations with slack
Timetabling with one Op.
. Introduction Timetabling w. Operators
Educational Timetabling

Reservations without slack
Reservations with slack
Timetabling with one O
Educational Timetabling

A recurrent sub-problem in Timetabling is Matching
Input: A (weighted) bipartite graph $G=(V, E)$ with bipartition $\{A, B\}$.
Task: Find the largest size set of edges $M \in E$ such that each vertex in V is incident to at most one edge of M.

Efficient algorithms for constructing matchings are based on augmenting paths in graphs. An implementation is available at:
http://www.cs.sunysb.edu/~algorith/implement/bipm/implement.shtml
Marco Chiarandini .

School Timetabling

```
Reservations without slack
Meservations with slack .Introduction
Timetabling w. Operators
```

[aka, teacher-class model]
The daily or weekly scheduling for all the classes of a high school, avoiding teachers meeting two classes in the same time.

Input:

- a set of classes $\mathcal{C}=\left\{C_{1}, \ldots, C_{m}\right\}$

A class is a set of students who follow exactly the same program. Each class has a dedicated room.

- a set of teachers $\mathcal{P}=\left\{P_{1}, \ldots, P_{n}\right\}$
- a requirement matrix $\mathcal{R}_{m \times n}$ where $R_{i j}$ is the number of lectures given by teacher R_{j} to class C_{i}.
- all lectures have the same duration (say one period)
- a set of time slots $\mathcal{T}=\left\{T_{1}, \ldots, T_{p}\right\}$ (the available periods in a day).

Output: An assignment of lectures to time slots such that no teacher or class is involved in more than one lecture at a time

IP formulation:
Binary variables: assignment of teacher P_{j} to class C_{i} in T_{k}

$$
x_{i j k}=\{0,1\} \quad \forall i=1, \ldots, m ; j=1, \ldots, n ; k=1, \ldots, p
$$

Constraints:

$$
\begin{aligned}
& \sum_{k=1}^{p} x_{i j k}=R_{i j} \quad \forall i=1, \ldots, m ; j=1, \ldots, n \\
& \sum_{j=1}^{k=1} x_{i j k} \leq 1 \quad \forall i=1, \ldots, m ; k=1, \ldots, p \\
& \sum_{i=1}^{m} x_{i j k} \leq 1 \quad \forall j=1, \ldots, n ; k=1, \ldots, p
\end{aligned}
$$

Reservations without slack Reservations with slack Timet
 Educational Timetabling

Extension
From daily to weekly schedule
(timeslots represent days)

- a_{i} max number of lectures for a class in a day
- b_{j} max number of lectures for a teacher in a day

IP formulation:

Variables: number of lectures to a class in a day

$$
x_{i j k} \in N \quad \forall i=1, \ldots, m ; j=1, \ldots, n ; k=1, \ldots, p
$$

Constraints:

$$
\begin{aligned}
& \sum_{\substack{k=1 \\
m}}^{x_{i j k}=R_{i j}} \quad \forall i=1, \ldots, m ; j=1, \ldots, n \\
& \sum_{\substack{i=1 \\
n}} x_{i j k} \leq b_{j} \quad \forall j=1, \ldots, n ; k=1, \ldots, p \\
& \sum_{j=1}^{n} x_{i j k} \leq a_{i} \quad \forall i=1, \ldots, m ; k=1, \ldots, p
\end{aligned}
$$

Graph model

Edge coloring model still valid but with

- no more than a_{i} edges adjacent to C_{i} have same colors and
- and more than b_{j} edges adjacent to T_{j} have same colors

Theorem: [König] There exists a solution to (2) iff:

$$
\begin{aligned}
& \sum_{i=1}^{m} R_{i j} \leq b_{j} p \quad \forall j=1, \ldots, n \\
& \sum_{i=1}^{n} R_{i j} \leq a_{i} p \quad \forall i=1, \ldots, m
\end{aligned}
$$

Reservations without slack
 $\begin{array}{ll}\text { Timetabling with one Op. } & \text { Introduction } \\ \text { School Timetablin }\end{array}$ Educational Timetabling

Graph model
Bipartite multigraph $G=(\mathcal{C}, \mathcal{P}, \mathcal{R})$:

- nodes \mathcal{C} and \mathcal{P} : classes and teachers
- $R_{i j}$ parallel edges

Time slots are colors \rightarrow Graph-Edge Coloring problem
Theorem: [König] There exists a solution to (1) iff

$$
\begin{aligned}
& \sum_{i=1}^{m} R_{i j} \leq p \quad \forall j=1, \ldots, n \\
& \sum_{i=1}^{n} R_{i j} \leq p \quad \forall i=1, \ldots, m
\end{aligned}
$$

Reservations without slack
Reservations with slack
Timetabling with one O
Timetabling w. Operato

- The edge coloring problem in the multigraph is solvable in polynomial time by solving a sequence of network flows problems p.
Possible approach: solve the weekly timetable first and then the daily timetable

Further constraints that may arise

- Preassignments
- Unavailabilities
(can be expressed as preassignments with dummy class or teachers)
They make the problem NP-complete.
- Bipartite matchings can still help in developing heuristics, for example, for solving $x_{i j k}$ keeping any index fixed.

Marco Chiarandini .:. 36

So far feasibility problem.

Preferences (soft constraints) may be introduced

- Desirability of assignment p_{j} to class c_{i} in t_{k}

$$
\min \sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{k=1}^{p} d_{i j k} x_{i j k}
$$

- Organizational costs: having a teacher available for possible temporary teaching posts
- Specific day off for a teacher

Further complications:

- Simultaneous lectures (eg, gymnastic)
- Subject issues (more teachers for a subject and more subject for a teacher)
- Room issues (use of special rooms)

Reservations without slack

Introducing soft constraints the problem becomes a multiobjective problem.
Possible ways of dealing with multiple objectives

- weighted sum
- lexicographic order
- minimize maximal cost
distance from optimal or nadir point

Pareto-frontier

Heuristic Methods
Reservations without slack
imetabling with one Op. Introduction
Timetabling w. Operator

Construction heuristic
Based on principles:

- most-constrained lecture on first (earliest) feasible timeslot
- most-constrained lecture on least constraining timeslot

Enhancements:

- limited backtracking
- local search optimization step after each assignment

Local Search Methods and Metaheuristics

High level strategy:

- Single stage (hard and soft constraints minimized simultaneously)
- Two stages (feasibility first and quality second)

Dealing with feasibility issue:

- partial assignment: do not permit violations of H but allow some lectures to remain unscheduled
- complete assignment: schedule all the lectures and seek to minimize H violations

