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Course Overview

v/ Problem Introduction

v/ Scheduling classification
v/ Scheduling complexity
v’ RCPSP

v/ General Methods

v’ Integer Programming

v/ Constraint Programming
v/ Heuristics

v/ Dynamic Programming
v/ Branch and Bound

v/ Scheduling Models

v/ Single Machine

v/ Parallel Machine and Flow
Shop

v/ Job Shop

v/ Resource-Constrained Project

Scheduling

o Timetabling
v/ Reservations and Education
o Course Timetabling
o Crew Scheduling
o Public Transports

o Vehicle Routing

o Capacited Models
o Time Windows models
o Rich Models
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Course Timetabling

Course Timetabling

The weekly scheduling of the lectures/events/classes of courses avoiding
students, teachers and room conflicts.
Input:
@ A set of courses C = {(Cy,..., C,} each consisting of a set of lectures
Ci={Li,...,Ly}. Alternatively,
A set of lectures £ = {Ly,....,L}.
@ A set of curricula S = {S;,...,S,} that are groups of courses with
common students (curriculum based model). Alternatively,
A set of enrollments & = {S;,..., S} that are groups of courses that a
student wants to attend (Post enrollment model).

@ aset of time slots 7 = {T1,..., T,} (the available periods in the
scheduling horizon, one week).

o All lectures have the same duration (say one period)

Output:
An assignment of each lecture L; to some period in such a way that no
student is required to take more than one lecture at a time.
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IP model

Including the assignment of indistinguishable rooms
m; rooms = maximum number of lectures in time slot t

Variables

xi € {0,1} i=1,....nmt=1,...,p
Number of lectures per course

P

int:/, Vi=1,...,n

t=1

Number of lectures per time slot

n
ZX,'t S mg Vt
i=1

Il
=
©
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Graph model

Graph G = (V,E):
@ V correspond to lectures L;

@ E correspond to conflicts between lectures due to curricula or
enrollments

Time slots are colors =» Graph-Vertex Coloring problem =» NP-complete
(exact solvers max 100 vertices)

Typical further constraints:
@ Unavailabilities

@ Preassignments

The overall problem can still be modeled as Graph-Vertex Coloring. How?
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Number of lectures per time slot (students’ perspective)

zn:x,-tg Vi=1,...

C;GSJ'

If some preferences are added:

max 37 g D07 dieXie

Corresponds to a bounded coloring. [de Werra, 1985]
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Course Timetabling

Further complications:

@ Teachers that teach more than one course
(not really a complication: treated similarly to students’ enrollment)

o A set of rooms R = {Ry,...,R,}
with eligibility constraints
(this can be modeled as Hypergraph Coloring [de Werra, 1985]:

o introduce an (hyper)edge for events that can be scheduled in the same
room
o the edge cannot have more colors than the rooms available of that type)

Moreover,

Students' fairness

Logistic constraints: not two adjacent lectures if at different campus
Max number of lectures in a single day and changes of campuses.
Precedence constraints

Periods of variable length

© 6 6 06 ¢
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2D IP model including room eligibility [Lach and Liibbecke, 2008]
Decomposition of the problem in two stages:
Stage 1 assign courses to timeslots

Stage 2 match courses with rooms within each timeslot
solved by bipartite matching

Model in stage 1

Variables: course ¢ assigned to time slot t
X €40,1} ceCteT

Edge constraints
(forbids that ¢; is assigned to t; and ¢, to t, simultaneously)

Xey,ty +Xc2,t2 S 1 v((C17 tl)v (C27 t2)) € Econf
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IP approach

3D IP model including room eligibility [Lach and Liibbecke, 2008]

R(¢c) € R: rooms eligible for course ¢
Geonf = (Veont, Econf): conflict graph (vertices are pairs (c, t))

minZd(c, t)Xetr VeelC
ctr
D xeer =1(c) veecC
teT
reR(c)
Z Xetr < 1 Vte T,reR
ceER~1(r)
Z Xc1t1r + Z Xcztzr S 1 V((CL tl)(CZa t2)) S Econf
reR(cy) reR(c2)
xer € {1,0} V(c,t) € Veonr, r € R

This 3D model is too large in size and computationally hard to solve

Course Timetabling
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Hall’s constraints

(guarantee that in stage 1 we find only solutions that are feasible for stage 2)
Gy = (Ct U Ry, E;) bipartite graph for each ¢

G = UG

> xee < IN(U)

cel

YUeC,teT

If some preferences are added:

P n
maxXx E E ditXit

i=1 =1
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Course Timetabling

o Hall's constraints are exponentially many

@ [Lach and Liibbecke] study the polytope of the bipartite matching and
find strengthening conditions

(polytope: convex hull of all incidence vectors defining subsets of C perfectly
matched)

@ Algorithm for generating all facets not given but claimed efficient

@ Could solve the overall problem by branch and cut (separation problem is
easy).
However the the number of facet inducing Hall inequalities is in practice
rather small hence they can be generated all at once
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Examination Timetabling

By substituting lecture with exam we have the same problem!
However:

Course Timetabling Exam Timetabling

unlimited number of time slots,
seek to minimize

limited number of time slots

conflicts in single slots, seek to conflicts may involve entire days
compact and consecutive days, seek to
spread

one single course per room possibility to set more than one
exam in a room with capacity

constraints

lectures have fixed duration exams have different duration
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So far feasibility.

Course Timetabling

Preferences (soft constraints) may be introduced [Lach and Liibbecke, 2008b]

Compactness or distribution
Minimum working days

Room stability

Student min max load per day
Travel distance

Room eligibility

Double lectures

Professors’ preferences for time slots

Different ways to model them exist.
Often the auxiliary variables have to be introduced

international
TIMETABLING COMPETITION

Home
Overview
Introducing the Team
Competitien Tracks
The Rules
Benchmarking
Winner

Finalist Ordering
Solutions
Discussion Forum
Download Datasets

Papers

R.NOW

K Hefe fo 405

Contact Details

Dr Barry MeColm
SARC Bliking

Seheol of Ekclrerics, Ekctical
Engnesting & Compter Scisnce
Queenis Universiy Belast

Phons: 444 (1) 280007 4622
Faux: +44 (0] 2BO007 5655
Email: bmecolbm@ab.ac

Finalist Ordering
The following infamalion defaiks 1he firaisis for each irack in place order

Pleass nofe fhal & report detaiing 1he background fa fhe compstilion can be found hers, This has
been submitied fer coreideration fo INFORMS Jourral en Cempuing,

Examination Track

Bes recorded scores may be viswed hers, By clicking cnindividel rames mers defaik relfing fo
sceres are avaikble

151 Place: Tomas Wiiler (US4)
2% Place; Cristos Gogos (Greece)

el PlaceMitsuroei Afstia, Kof Nercbe, and Tes itick Ibaraki (Japan)
4th Piace: Geofrey De Smet (Bekium)

5ih Place: Nefshia Fillay (Soulh Aliica)

Post Enrolment based Course Timetabling

#n excell spreadsheet cortairing all he scores can be cownkaded ere. This information is akie
avaikibk as csv or s fomat

151 Phace: Hackien Cambazard, Emmarvel Hebrard, Barry Of Sulivan, Akxande
Papaccpeuice (e ) (pet descriplion)

2l Place: Mitsuror Atsta, Kof Nervbe, and Tostitic Ibarcki (Japar ipd
cescriplion)

el Place: Marco C Hararvdri, Chis Fawcett, Hokger H Hoos (Dermark) ipd
cescriplion)

1 Place; Clemens Nofheger, Aled Mayer, Ancieas Chwatal, Guniher Raicl
{Austia) ipel descripiior)

5ih Place: Temas Mailler (US4) il descriplion)

Curriculum based Course Timetabling

#n excell dooument cortairing all the scores can be found here. THis information s abio availbie
a5 csv orxml ferma

151 Place: Tomas Wiiler (US4)
2 Plae: ZHipeng Luand Jin-Kao Hao (France)

el Place: MitsLror Afsua, Koj Nencbe, and Testitick Ibaraki (Japar
4th Pace: Marfin Joset Geiger (Germary)

5ih Place: Michas| Clark, Marfin Here, ard Bruce Love (Singapare)
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2007 Competition

Course Timetabling

o Constraint Programming is shown by [Cambazard et al. (PATAT 2008)] to
be not yet competitive

@ Integer programming is promising [Lach and Liibbecke] and under active
development (see J.Marecek

http://www.cs.nott.ac.uk/~jxm/timetabling/)

however it was not possible to submit solvers that make use of IP
commercial programs

@ Two teams submitted to all three tracks:

o [lbaraki, 2008] models everything in terms of CSP in its optimization

counterpart. The CSP solver is relatively very simple, binary variables +
tabu search

o [Tomas Mueller, 2008] developed an open source Constraint Solver
Library based on local search to tackle University course timetabling
problems (http://www.unitime.org)

o All methods ranked in the first positions are heuristic methods based on

local search
Marco Chiarandini .::. 18
) I
Basic | Metaheuristics , Assemblage
components | / \
\
I \
| N
| Guided Local Search \
nteger !
Prograr%ming Variable Neighborhood Search \\
Beam Search \
\
Constraint Tabu Search \
Programming algorithm
Simulated Annealing configurations
— =
!
Constnchion lterated Local Search .
Heuristics Iterated Greedy /
1/
. Ant Colony Optimization /
Neighborhood yoP K
Search Evolutionary Algorithm /
i
Testable !
units !

Solving sub—problems
Graph Coloring, Bipartite Matching,
Hard constraints, Soft Constraints

Testable \ ,
units | ,
Solving the Testable

I N
| global problem units

Heuristic Methods

Hybrid Heuristic Methods
@ Some metaheuristic solve the general problem while others or exact
algorithms solve the special problem

Replace a component of a metaheuristic with one of another or of an
exact method (ILS+ SA, VLSN)

Treat algorithmic procedures (heuristics and exact) as black boxes and
serialize

Let metaheuristics cooperate (evolutionary + tabu search)

Use different metaheuristics to solve the same solution space or a
partitioned solution space
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Configuration Problem

Algorithms must be configured and tuned and the best selected.

This has to be done anew every time because constraints and their density
(problem instance) are specific of the institution.

Appropriate techniques exist to aid in the experimental assessment of
algorithms. Example: F-race [Birattari et al. 2002]

(see: http://www.imada.sdu.dk/ “marco/exp/ for a full list of references)
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Post Enrollment Timetabling

Definition
Find an assignment of lectures to time slots and rooms which is

Feasible

rooms are only used by one lecture at a time,

each lecture is assigned to a suitable room,

no student has to attend more than one lecture at once,
lectures are assigned only time slots where they are available;
precedences are satisfied;

and Good

no more than two lectures in a row for a student,
unpopular time slots avoided (last in a day),
students do not have one single lecture in a day.

Hard
Constraints

Soft

Constraints

Course Timetabling

Course Timetabling

Graph models

We define:

e precedence digraph D = (V/, A): directed graph having a vertex for each
lecture in the vertex set V and an arc from u to v, u,v € V, if the
corresponding lecture u must be scheduled before v.

@ Transitive closure of D: D" = (V,A)

e conflict graph G = (V, E): edges connecting pairs of lectures if:

o the two lectures share students;

o the two lectures can only be scheduled in a room that is the same for
both;

o there is an arc between the lectures in the digraph D’.
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A look at the instances

5] year lecs studs rooms |lecs/stud [studs/lec [rooms/leddegree |slotsjlec |slotsjlec |slotsflec |Prec. Rel, Prec.,
1 2007 400 500 10 21.02 26.27 4.08 0.34 16 25.34 34 40 14
2 2007 400 500 10 21.03 26.29 3.95 0.37 17 25.69 33 36 14
3 2007 200 1000 20 13.38 66.92 5.04 0.47 19 25.54 33 20 11
4 2007 200 1000 20 13.40 66.98 6.40 0.52 15 25.68 33 20 9
5 2007 400 300 20 20.82 15.69 6.80 0.31 16 25.43 34 120 43
6 2007 400 300 20 20.73 15.54 5.07 0.30 13 25.39 36 119 32
7 2007 200 500 20 13.47 33.66 1.57 0.53 9 17.86 26 20 10
8 2007 200 500 20 13.83 34.58 1.92 052 11 17.17 26 21 13
9 2007 400 500 10 21.43 26.79 291 0.34 17 25.42 34 41 18

10 2007 400 500 10 20.98 26.23 3.20 0.38 14 25.47 34 40 13
11 2007 200 1000 10 13.61 58.04 3.38 0.50 17 25.32 35 21 17
12 2007 200 1000 10 13.61 68.03 3.35 0.58 15 25.67 35 20 13
13 2007 400 300 20 21.18 15.88 8.68 0.32 17 25.75 34 116 34
14 2007 400 300 20 20.86 15.64 7.56 0.32 17 25.44 36 118 46
15 2007 200 500 10 13.05 32.63 2.23 0.54 11 17.28 24 21 13
16 2007 200 500 10 13.64 34.08 1.74 0.45 10 17.57 25 19 10

These are large scale instances.
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Course Timetabling

A look at the evaluation of a timetable can help
in understanding the solution strategy

High level solution strategy:

@ Single phase strategy (not well suited here due to soft constraints)

@ =» Two phase strategy: Feasibility first, quality second

Searching a feasible solution:

o Room eligibility complicate the use of IP and CP.

o Heuristics:

1. Complete assignment of lectures
2. Partial assignment of lectures

o Room assignment:

A. Left to matching algorithm
B. Carried out heuristically (matrix representation of solutions)
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Solution Representation

A. Room assignment left to matching algorithm:

Array of Lectures and Time-slots and/or

Collection of sets Lectures, one for each Time-slot

B. Room assignment included

Assignment Matrix

Course Timetabling

Time-slots
. 1> T; T; Tus
" R | -1 L4 L1 Lig -1
£ Ry | Ly Ls L1y Lis -1
0(2 R3 L2 L6 |.12 —1 -1
R | Lz Ly L13 Lie -1

Local Search Algorithms

Neighborhood Operators:

A. Room assignment left to matching algorithm

The problem becomes a bounded graph coloring

Course Timetabling

=> Apply well known algorithms for GCP with few adaptations

Ex:

1. complete assignment representation: TabuCol with one exchange

2. partial assignment representation: PartialCol with j-swaps

See [Bldchliger and N. Zufferey, 2008] for a description
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Construction Heuristic

most-constrained lecture on least constraining time slot

Course Timetabling

Step 1. Initialize the set L of all unscheduled lectures with L=L.
Step 2. Choose a lecture L; € L according to a heuristic rule.

Step 3. Let X be the set of all positions for L; in the assignment matrix

with minimal violations of the hard constraints H.
Step 4. Let X C X be the subset of positions of X with minimal
violations of the soft constraints %.
Step 5. Choose an assignment for L; in X according to a heuristic rule.

Update information.

Step 6. Remove L; from L, and go to step 2 until L is not empty.

B. Room assignment included
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Monday Tuesday Wednesday

T1|T2|T3|T4|T5|T6|T7|T8|T9|T10|T11|T12(T13(T14({T15|T16|T17|T18|T19|T20(T21(T22(T23|T24|T25|T26(T27
R1|187|239|378| 66 (380| 53 (208|279 300|350(211|375|254(366|369|223|163|298 118(368|234( 97 |329|274| 58
R2|360(345| 2 (153 354| 91 | 61 |319|349(278| 86 |204|316(220(323|176 314| 7 (108 50 [312(235|330
R3 |263| 71 |186( 67 88( 99 | 24 237 232|253(117 195(203(10 07(287|290(146(286|358(303|277
R4 |181(160 90 | 82 193 206|156(152 341(179|171(226 4 |348(127 365(213| 80
R5 |324(291|309(339(267|283| 269(170(299(311| 34 65 [216 275|199 26 27 |327| 33 | 39 |285
R6 |322(225|352( 28 (168| 72| 49 | 69 | 12 | 92 | 38 |373|390(164|135|121|268|115| 75 | 87 |140|165(104(137|133(385|346
R7 |228| 31 |107(371| 30 |355| 46 |227(246|271|182|313|224(128 89 |258(356|343(280( 35 |109(306| 43 | 83 | 11 |154
R8 |256( 32 |147|270|289(130| 48 (282 0 [116|251(307| 44 (260 79 |296 242|150| 81 |353(158(293|338(218(|161
R9 |396(144|173| 78 | 25 |183|387|337(240|132|328|212|370(308|336|244(|126| 14 |231| 51 |342|136| 93 (129|266(393|155
R10|382| 1 | 56 (362 45 |247|392| 85 (389|384| 17 (394|200 204|273(391|180| 42 (157|388|397(331|131(363|383

@ Nj: One Exchange
o Ny: Swap
@ Ns: Insert + Rematch

@ N3: Period Swap

o Nj;: Kempe Chain Interchange

@ Ng: Swap + Rematch
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Example of stochastic local search for Hard Constraints, representation A.

initialize data (fast updates, dont look bit, etc.)
while (hcv!=0 && stillTime && idle iterations < PARAMETER)
shuffle the time slots
for each lecture L causing a conflict
for each time slot T
if not dont look bit
if lecture is available in T
if lectures in T < number of rooms
try to insert L in T
compute delta
if delta < 0 || with a PARAMETER probability if delta==0
if there exists a feasible matching room-lectures
implement change
update data
if (delta==0) idle_iterations++ else idle_iterations=0;
break

for all lectures in time slot yes heurisdtifs with matching
- sed?
P QS=¢ one-ex and swap

if delta < 0 || with a PARAMETER probability if delta==
implement change
update data
if (delta==0) idle_iterations++ else idle_iterations=0;
break

Course Timetabling

Algorithm Flowchart

2

Construct
Timetable

~

It. Improvement

one-ex and swap

feasible?

/Hard Constraints Solver

It. Improvement
one-ex

Add into Archive

all

Select the best
from Archive

Course Timetabling

\\

Soft Constraints Optimizer

Simulated Annealing \

one-ex and swap )
with Matching

no
- any yes
improvement?
It. Improvement
Kempe—chains

It. Improvement
timeslot swap

It. Improvement
one-ex and swap

It. Improvement

—/

one—ex
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In Practice

A timetabling system consists of:

@ Information management (database maintenance)
@ Solver (written in a fast language, i.e., C, C++)

@ Input and Output management (various interfaces to handle input and
output)

@ Interactivity: Declaration of constraints (professors' preferences may be

inserted directly through a web interface and stored in the information
system of the University)

See examples http://www.easystaff.it
http://www.eventmap-uk.com
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The timetabling process

1. Collect data from the information system

2. Execute a few runs of the Solver starting from different solutions
selecting the timetable of minimal cost. The whole computation time
should not be longer than say one night. This becomes a “draft”
timetable.

3. The draft is shown to the professors who can require adjustments. The
adjustments are obtained by defining new constraints to pass to the
Solver.

4. Post-optimization of the “draft” timetable using the new constraints

5. The timetable can be further modified manually by using the Solver to
validate the new timetables.
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