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Course Overview

v/ Problem Introduction v/ Scheduling Models
v/ Scheduling classification v’ Single Machine
v/ Scheduling complexity v/ Parallel Machine and Flow
v RCPSP Shop
v/ Job Shop
v/ General Methods v Resource-Constrained Project
v Integer Programming Scheduling
v/ Constraint Programming
v/ Heuristics o Timetabling
v/ Dynamic Programming v/ Reservations and Education
v/ Branch and Bound o Course Timetabling

o Crew Scheduling
o Public Transports

@ Vehicle Routing

o Capacited Models
e Time Windows models
o Rich Models
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Course Timetabling

Course Timetabling

The weekly scheduling of the lectures/events/classes of courses avoiding
students, teachers and room conflicts.
Input:
@ A set of courses C = {(y, ..., C,} each consisting of a set of lectures
Ci={Li,...,Ly}. Alternatively,
A set of lectures £ = {Ly,...,L;}.

o A set of curricula S = {S;,...,S,} that are groups of courses with
common students (curriculum based model). Alternatively,
A set of enrollments § = {S51,..., 5} that are groups of courses that a

student wants to attend (Post enrollment model).

@ aset of time slots 7 = {Ty,..., T,} (the available periods in the
scheduling horizon, one week).

o All lectures have the same duration (say one period)

Output:
An assignment of each lecture L; to some period in such a way that no
student is required to take more than one lecture at a time.
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Course Timetabling

Graph model

Graph G = (V,E):
@ V correspond to lectures L;
@ E correspond to conflicts between lectures due to curricula or

enrollments

Time slots are colors =¥ Graph-Vertex Coloring problem =» NP-complete
(exact solvers max 100 vertices)

Typical further constraints:
@ Unavailabilities

o Preassignments

The overall problem can still be modeled as Graph-Vertex Coloring. How?
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Course Timetablin
IP model )

Including the assignment of indistinguishable rooms
m; rooms = maximum number of lectures in time slot t

Variables

xi € {0,1} i=1,...,nmt=1,...,p

Number of lectures per course
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Course Timetabling

Number of lectures per time slot (students’ perspective)

n
Zx,-tgl Vi=1l,....nt=1...,p
C,'ES_,'

If some preferences are added:

P n
max i=1 Zi:l d,'tX,'t

Corresponds to a bounded coloring. [de Werra, 1985]
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Course Timetabling

Further complications:

@ Teachers that teach more than one course
(not really a complication: treated similarly to students’ enrollment)

@ A set of rooms R = {Ry,..., Ry}

with eligibility constraints
(this can be modeled as Hypergraph Coloring [de Werra, 1985]:

o introduce an (hyper)edge for events that can be scheduled in the same
room
o the edge cannot have more colors than the rooms available of that type)

Moreover,

o Students’ fairness

o Logistic constraints: not two adjacent lectures if at different campus
@ Max number of lectures in a single day and changes of campuses.

o Precedence constraints

o Periods of variable length
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Course Timetabling

IP approach

3D IP model including room eligibility [Lach and Liibbecke, 2008]

R(c) € R: rooms eligible for course ¢
Geonf = (Vieonf, Econs): conflict graph (vertices are pairs (c, t))

min Z d(c, t)Xeer VeelC
ctr
> xer = 1(c) veecC
teT
reR(c)
> xar <1 VteT,reR
ceER1(r)
Z Xeytyr + Z Xeatar > <1 V((Cl, tl)(C27 t2)) € Econr
reR(c1) reR(c2)
xeer € {1,0} V(c,t) € Veonf, F € R

This 3D model is too large in size and computationally hard to solve
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Course Timetabling

2D IP model including room eligibility [Lach and Liibbecke, 2008]
Decomposition of the problem in two stages:
Stage 1 assign courses to timeslots

Stage 2 match courses with rooms within each timeslot
solved by bipartite matching

Model in stage 1
Variables: course ¢ assigned to time slot ¢
xe € {0,1} ceCteT

Edge constraints
(forbids that ¢; is assigned to t; and ¢, to t, simultaneously)

Xep oty + Xea,ta S 1 v ((C17 tl)a (C27 t2)) S Econf

Marco Chiarandini .::.
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Course Timetabling

Hall's constraints

(guarantee that in stage 1 we find only solutions that are feasible for stage 2)
G = (Ct URy, E;) bipartite graph for each t
G - Uth

Y xae <IN(U)|  VUeCteT
cel

If some preferences are added:

P n
max E E ditXit

i=1 i=1
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Course Timetabling

Hall's constraints are exponentially many

[Lach and Liibbecke] study the polytope of the bipartite matching and
find strengthening conditions

(polytope: convex hull of all incidence vectors defining subsets of C perfectly
matched)

Algorithm for generating all facets not given but claimed efficient

Could solve the overall problem by branch and cut (separation problem is
easy).

However the the number of facet inducing Hall inequalities is in practice
rather small hence they can be generated all at once
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Course Timetabling

So far feasibility.

Preferences (soft constraints) may be introduced [Lach and Liibbecke, 2008b]
@ Compactness or distribution
@ Minimum working days
@ Room stability
@ Student min max load per day

@ Travel distance

(]

Room eligibility
@ Double lectures
o Professors’ preferences for time slots

Different ways to model them exist.
Often the auxiliary variables have to be introduced
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Examination Timetabling

By substituting lecture with exam we have the same problem!

However:

Course Timetabling

Exam Timetabling

limited number of time slots

conflicts in single slots, seek to
compact

one single course per room

lectures have fixed duration

unlimited number of time slots,
seek to minimize

conflicts may involve entire days
and consecutive days, seek to
spread

possibility to set more than one
exam in a room with capacity
constraints

exams have different duration

Course Timetabling
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Course Timetabling

2007 Competition

o Constraint Programming is shown by [Cambazard et al. (PATAT 2008)] to
be not yet competitive

o Integer programming is promising [Lach and Liibbecke] and under active
development (see J.Marecek
http://www.cs.nott.ac.uk/~jxm/timetabling/)
however it was not possible to submit solvers that make use of IP
commercial programs

@ Two teams submitted to all three tracks:

o [Ibaraki, 2008] models everything in terms of CSP in its optimization
counterpart. The CSP solver is relatively very simple, binary variables +
tabu search

o [Tomas Mueller, 2008] developed an open source Constraint Solver
Library based on local search to tackle University course timetabling
problems (http://www.unitime.org)

o All methods ranked in the first positions are heuristic methods based on
local search
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Course Timetabling

Heuristic Methods

Hybrid Heuristic Methods

@ Some metaheuristic solve the general problem while others or exact
algorithms solve the special problem

@ Replace a component of a metaheuristic with one of another or of an
exact method (ILS+ SA, VLSN)

@ Treat algorithmic procedures (heuristics and exact) as black boxes and
serialize

o Let metaheuristics cooperate (evolutionary + tabu search)

o Use different metaheuristics to solve the same solution space or a
partitioned solution space
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Course Timetabling

Configuration Problem

Algorithms must be configured and tuned and the best selected.

This has to be done anew every time because constraints and their density
(problem instance) are specific of the institution.

Appropriate techniques exist to aid in the experimental assessment of
algorithms. Example: F-race [Birattari et al. 2002]
(see: http://www.imada.sdu.dk/ marco/exp/ for a full list of references)

4
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Post Enrollment Timetabling

Definition
Find an assignment of lectures to time slots and rooms which is

Feasible

rooms are only used by one lecture at a time,

each lecture is assigned to a suitable room,

no student has to attend more than one lecture at once,
lectures are assigned only time slots where they are available;
precedences are satisfied;

and Good

no more than two lectures in a row for a student,
unpopular time slots avoided (last in a day),
students do not have one single lecture in a day.

Hard
Constraints

Soft
Constraints

Course Timetabling

Marco Chiarandini .::.
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Course Timetabling

Graph models

We define:

o precedence digraph D = (V/, A): directed graph having a vertex for each
lecture in the vertex set V and an arc from v to v, u,v € V, if the
corresponding lecture u must be scheduled before v.

@ Transitive closure of D: D' = (V, A")

o conflict graph G = (V, E): edges connecting pairs of lectures if:

o the two lectures share students;

o the two lectures can only be scheduled in a room that is the same for
both;

o there is an arc between the lectures in the digraph D’.
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A look at the instances

Course Timetabling

5} year lecs studs rooms__|lecs/stud |studsjlec [rooms/leddegree |[slots/lec |slotsflec [slots/lec |Prec. Rel. Prec,
1 2007 400 500 10 21.02 26.27 4.08 034 16 25.34 34 40 14
2 2007 400 500 10 21.03 26.29 3.95 037 17 25.69 33 36 14
3 2007 200 1000 20 1338 66.92 5.04 0.47 19 25.54 33 20 11
4 2007 200 1000 20 1340 66.98 6.40 052 15 25.66 33 20 9
5 2007 400 300 20 2092 15.69 6.80 031 16 25.43 24 120 43
6 2007 400 300 20 2073 15.54 5.07 0.30 13 25.39 35 119 32
7 2007 200 500 20 1347 33.66 157 053 El 17.86 26 20 10
8 2007 200 500 20 13.83 34.58 1.92 0.52 11 17.17 28 21 13
9 2007 400 500 10 21.43 26.79 2.91 0.34 17 25.42 34 a1 18

10 2007 400 500 10 20.98 26.23 3.20 0.38 14 25.47 34 40 13
11 2007 200 1000 10 1361 68.04 3.38 0.50 17 25.32 35 21 17
12 2007 200 1000 10 1361 68.03 3.35 0.58 15 25.67 35 20 13
13 2007 400 300 20 21.19 15.89 8.58 0.32 17 25.75 34 116 34
14 2007 400 300 20 2086 15.64 7.56 032 17 25.44 35 118 45
15 2007 200 500 10 13.05 32.63 2.23 054 11 17.38 24 21 13
16 2007 200 500 10 1364 34.09 174 0.46 10 17.57 25 19 10

These are large scale instances.

Marco Chiarandini
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Course Timetabling

A look at the evaluation of a timetable can help
in understanding the solution strategy

High level solution strategy:

o Single phase strategy (not well suited here due to soft constraints)
@ -» Two phase strategy: Feasibility first, quality second

Searching a feasible solution:

o Room eligibility complicate the use of IP and CP.

o Heuristics:

1. Complete assignment of lectures
2. Partial assignment of lectures

o Room assignment:

A. Left to matching algorithm
B. Carried out heuristically (matrix representation of solutions)
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Solution Representation

A. Room assignment left to matching algorithm:

Array of Lectures and Time-slots and/or

Collection of sets Lectures, one for each Time-slot

B. Room assignment included

Assignment Matrix

Rooms

Time-slots
T, 1> T; T; Tas
R =1 L, 1o L1a —1
R | L1 Ls L1y Lis -1
Ry | Ly Lg L1 1 1
R-| L3 Ly Li3 Lie -1

Course Timetabling

Chi Ty




Course Timetabling

Construction Heuristic

most-constrained lecture on least constraining time slot

Step 1.
Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Initialize the set L of all unscheduled lectures with L=1L.
Choose a lecture L; € L according to a heuristic rule.

Let X be the set of all positions for L; in the assignment matrix
with minimal violations of the hard constraints H.

Let X C X be the subset of positions of X with minimal
violations of the soft constraints Y.

Choose an assignment for L; in X according to a heuristic rule.
Update information. R

Remove L; from L, and go to step 2 until L is not empty.

Marco Chiarandini .::.
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Local Search Algorithms
Neighborhood Operators:

A. Room assignment left to matching algorithm

The problem becomes a bounded graph coloring
=>» Apply well known algorithms for GCP with few adaptations

Ex:

1. complete assignment representation: TabuCol with one exchange

2. partial assignment representation: PartialCol with /-swaps

Course Timetabling

See [Blochliger and N. Zufferey, 2008] for a description

Marco Chiarandini .::.
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B. Room assignment included

Course Timetabling

Monday Tuesday

Wednesday

T1|T2|T3|T4|T5(T6|T7|T8|T9|T10(T11(T12|T13|T14|T15|T16(T17|T18|T19(T20|T21

T22|T23|T24

T27

368|234/ 97

R1 |187(239|378| 66 (380 53 |208|279 300(350|211(375|254|366(369|223|163|298 118

329

274

58

R2|360|345| 2 |153 354| 91 | 61 [319|349|278( 86 |[204(316(220|323|176 314| 7 (108

50 (312

235

330

R3|263| 71 |186| 67 88| 99 | 24 237 3 53|117 195|203(10: 07(287(290

146|286|358!

303

77

R4 |181(160 90 | 82 193 206(156|152] 341|179(171|226 4 (348|127

365

213

R5 |324|291|309|339(|267|283 269|170(299|311| 34 65 (216 275(199| 26

27 (327

39

285

R6 |3 352( 28 |168| 72 | 49 | 69 [ 12| 92 | 38 (373(390|164(135|121|268|115| 75 | 87 (140

165(104|137

133

385

346

R7 |228| 31 |107|371| 30 |355| 46 |227(246|271|182(313(224|128 89 |258|356|343|280| 35

109(306| 43

83

11

154

R8 |256| 32 |147(270|289|130| 48 |282 0 |116|251|307| 44 |260| 79 (296 242(150| 81

353(158(203!

338

218

161

RO |396(144(173| 78 | 25 (183(387|337(240|132(328(212|370|308|336|244(126| 14 |231( 51 |342

136( 93 |129

266

303

155

R10|382( 1 | 56 [362| 45 (247|392| 85 |389|384| 17 |394|200 294(273|391|180| 42 |157|388

397(331|131

363

383

@ Nj: One Exchange o N3: Period Swap
o Np: Swap @ Nj: Kempe Chain Interchange
@ Ns: Insert + Rematch o Ng: Swap + Rematch

Marco Chiarandini
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Example of stochastic local search for Hard Constraints, representation A.

initialize data (fast updates, dont look bit, etc.)
while (hcv!=0 && stillTime && idle iterations < PARAMETER)

shuffle the time slots

for each lecture L causing a conflict

for each time slot T
if not dont look bit
if lecture is available in T
if lectures in T < number of rooms
try to insert L in T

compute delta
if delta < O || with a PARAMETER probability if delta==0

if there exists a feasible matching room-lectures
implement change
update data
if (delta==0) idle_iterations++ else idle_iterations=0;
break
for all lectures in time slot
try to swap time slots

compute delta
if delta < O || with a PARAMETER probability if delta==0

implement change

update data
if (delta==0) idle_iterations++ else idle_iterations=0;

break



Algorithm Flowchart
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Course Timetabling

In Practice

A timetabling system consists of:

o Information management (database maintenance)
@ Solver (written in a fast language, i.e., C, C++)

@ Input and Output management (various interfaces to handle input and
output)

@ Interactivity: Declaration of constraints (professors’ preferences may be

inserted directly through a web interface and stored in the information
system of the University)

See examples http://www.easystaff.it
http://www.eventmap-uk.com
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Course Timetabling

The timetabling process

1.

Collect data from the information system

. Execute a few runs of the Solver starting from different solutions

selecting the timetable of minimal cost. The whole computation time
should not be longer than say one night. This becomes a “draft”
timetable.

The draft is shown to the professors who can require adjustments. The
adjustments are obtained by defining new constraints to pass to the
Solver.

. Post-optimization of the “draft” timetable using the new constraints

. The timetable can be further modified manually by using the Solver to

validate the new timetables.
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