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Crew Scheduling
Avanced Methods for IPCrew Scheduling

(sec. 12.6)

Input:
A set of m flight legs (departure, arrival, duration)

A set of crews

A set of n (very large) feasible and permissible combinations of flights
legs that a crew can handle (eg, round trips)

A flight leg i can be part of more than one round trip

Each round trip j has a cost cj

Output: A set of round trips of mimimun total cost

Set partitioning problem:

min c1x1 + c2x2 + . . .+ cnxn
a11x1 + a12x2 + . . .+ . . . a1nxn = 1
a21x1 + a22x2 + . . .+ . . . a2nxn = 1
...
am1x1 + am2x2 + . . .+ . . . amnxn = 1
xj ∈ {0, 1}, ∀j = 1, . . . , n
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Crew Scheduling
Avanced Methods for IPTruck Routing

(sec. 12.6)

Input:
Central depot and clients

Single delivery to each client.

Each truck can visit at most two costumers in each trip.

Output: Determine which truck should go to which client and the routing of
trucks that minimize the total distance travelled.

min c1x1 + c2x2 + . . .+ cnxn

a11x1 + a12x2 + . . .+ . . . a1nxn = 1
a21x1 + a22x2 + . . .+ . . . a2nxn = 1
...
am1x1 + am2x2 + . . .+ . . . amnxn = 1
xj ∈ {0, 1}, ∀j = 1, . . . , n
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Crew Scheduling
Avanced Methods for IP

Set partitioning or set covering??

Often treated as set covering because:
its linear programming relaxation is numerically more stable and thus
easier to solve
it is trivial to construct a feasible integer solution from a solution to the
linear programming relaxation
it makes it possible to restrict to only rosters of maximal length
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Crew Scheduling
Avanced Methods for IPTanker Scheduling

(sec. 11.2)

Input:

p ports

limits on the physical characteristics of the ships

n cargoes:

type, quantity, load port, delivery port, time window constraints on the
load and delivery times

ships (tanker): s company-owned plus others chartered
Each ship has a capacity, draught, speed, fuel consumption, starting
location and times

These determine the costs of a shipment: c l
i (company-owned) c∗j

(chartered)

Output: A schedule for each ship, that is, an itinerary listing the ports
visited and the time of entry in each port within the rolling horizon
such that the total cost of transportation is minimized
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Crew Scheduling
Avanced Methods for IP

Two phase approach:

1. determine for each ship i the set Si of all possible itineraries
2. select the itineraries for the ships by solving an IP problem

Phase 1 can be solved by some ad-hoc enumeration or heuristic algorithm
that checks the feasibility of the itinerary and its cost.
Phase 2 Set packing problem with additional constraints (next slide)

For each itinerary l of ship i compute the profit with respect to charter:

πl
i =

n∑
j=1

al
ijc
∗
j − c l

i

where al
ij = 1 if cargo j is shipped by ship i in itinerary l and 0 otherwise.
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A set packing model with additional constraints

Variables

x l
i ∈ {0, 1} ∀i = 1, . . . , s; l ∈ Si

Each cargo is assigned to at most one ship:

sX
i=1

X
l∈Si

al
ijx

l
i ≤ 1 ∀j = 1, . . . , n

Each tanker can be assigned at most one itineraryX
l∈Si

x l
i ≤ 1 ∀i = 1, . . . , s

Objective: maximize profit

max
sX

i=1

X
l∈Si

πl
i x

l
i



Crew Scheduling
Avanced Methods for IPDaily Aircraft Routing and Scheduling

(Sec. 11.3)

[Desaulniers, Desrosiers, Dumas, Solomon and Soumis, 1997]
Input:

L set of flight legs with airport of origin and arrival, departure time
windows [ei , li ], i ∈ L, duration, cost/revenue

Heterogeneous aircraft fleet T , with mt aircrafts of type t ∈ T

Output: For each aircraft, a sequence of operational flight legs and
departure times such that operational constraints are satisfied:

number of planes for each type

restrictions on certain aircraft types at certain times and certain airports

required connections between flight legs (thrus)

limits on daily traffic at certain airports

balance of airplane types at each airport

and the total profits are maximized.
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Crew Scheduling
Avanced Methods for IP

Lt denotes the set of flights that can be flown by aircraft of type t

St the set of feasible schedules for an aircraft of type t (inclusive of the
empty set)

al
ti = {0, 1} indicates if leg i is covered by l ∈ St

πti profit of covering leg i with aircraft of type i

πl
t =

∑
i∈Lt

πtial
ti for l ∈ St

P set of airports, Pt set of airports that can accommodate type t

o l
tp and d l

tp equal to 1 if schedule l , l ∈ St starts and ends, resp., at
airport p
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A set partitioning model with additional constraints

Variables

x l
t ∈ {0, 1} ∀t ∈ T ; l ∈ St and x0

t ∈ N ∀t ∈ T

Maximum number of aircraft of each type:X
l∈St

x l
t = mt ∀t ∈ T

Each flight leg is covered exactly once:X
t∈T

X
l∈St

al
tix

l
t = 1 ∀i ∈ L

Flow conservation at the beginning and end of day for each aircraft typeX
l∈St

(o l
tp − d l

tp)x
l
t = 0 ∀t ∈ T ; p ∈ P

Maximize total anticipate profit

max
X
t∈T

X
l∈St

πl
tx

l
t



Crew Scheduling
Avanced Methods for IP

Solution Strategy: branch-and-price

At the high level branch-and-bound similar to the Tanker Scheduling case

Upper bounds obtained solving linear relaxations by column generation.

Decomposition into
Restricted Master problem, defined over a restricted number of schedules

Subproblem, used to test the optimality or to find a new feasible schedule
to add to the master problem (column generation)

Each restricted master problem solved by LP.
It finds current optimal solution and dual variables

Subproblem (or pricing problem) corresponds to finding longest path with
time windows in a network defined by using dual variables of the current
optimal solution of the master problem. Solve by dynamic programming.
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Crew Scheduling
Avanced Methods for IPOR in Air Transport Industry

Aircraft and Crew Schedule Planning
Schedule Design (specifies legs and times)
Fleet Assignment
Aircraft Maintenance Routing
Crew Scheduling

crew pairing problem
crew assignment problem (bidlines)

Airline Revenue Management
number of seats available at fare level
overbooking
fare class mix (nested booking limits)

Aviation Infrastructure
airports

runaways scheduling (queue models, simulation; dispatching, optimization)
gate assignments

air traffic management
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Crew Scheduling
Avanced Methods for IP

Dantzig-Wolfe Decomposition
Delayed Column Generation
Ryan’s branching ruleDantzig-Wolfe Decomposition

Motivation: Large difficult IP models
è split them up into smaller pieces

Applications
Cutting Stock problems

Multicommodity Flow problems

Facility Location problems

Capacitated Multi-item Lot-sizing problem

Air-crew and Manpower Scheduling

Vehicle Routing Problems

Scheduling (current research)

Leads to methods also known as:
Branch-and-price (column generation + branch and bound)

Branch-and-cut-and-price (column generation + branch and bound +
cutting planes)
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Crew Scheduling
Avanced Methods for IP

Dantzig-Wolfe Decomposition
Delayed Column Generation
Ryan’s branching rule

Dantzig-Wolfe Decomposition
The problem is split into a master problem and a subproblem

+ Tighter bounds

+ Better control of subproblem

− Model may become (very) large

Delayed column generation
Write up the decomposed model gradually as needed

Generate a few solutions to the subproblems

Solve the master problem to LP-optimality

Use the dual information to find most promising solutions to the
subproblem

Extend the master problem with the new subproblem solutions.
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Dantzig-Wolfe Decomposition
Delayed Column Generation
Ryan’s branching ruleDelayed Column Generation

Delayed column generation, linear master

Master problem can (and will) contain many columns

To find bound, solve LP-relaxation of master

Delayed column generation gradually writes up master
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Crew Scheduling
Avanced Methods for IP

Dantzig-Wolfe Decomposition
Delayed Column Generation
Ryan’s branching ruleReduced Costs

Simplex in matrix form

min {cx | Ax = b, x ≥ 0}

In matrix form: [
A 0
c −1

] [
x
z

]
=

[
b
0

]
B = {1, 2, . . . , p} basic variables

L = {1, 2, . . . , q} non-basis variables (will be set to lower bound = 0)

(B,L) basis structure

xB, xL, cB, cL
B = [A1,A2, . . . ,Ap], L = [Ap+1,Ap+2, . . . ,Ap+q]

[
B L 0
cB cL −1

]xB
xL
z

 =

[
b
0

]

BxB + LxL = b ⇒ xB + B−1LxL = B−1b ⇒
[

xL = 0
xB = B−1b
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Dantzig-Wolfe Decomposition
Delayed Column Generation
Ryan’s branching rule

BxB + LxL = b ⇒ xB + B−1LxL = B−1b ⇒
[

xL = 0
xB = B−1b

Simplex algorithm sets xL = 0 and xB = B−1b
B invertible, hence rows linearly independent

The objective function is obtained by multiplying and subtracting constraints
by means of multipliers π (the dual variables)

z =

p∑
j=1

[
cj −

p∑
i=1

πiaij

]
xj +

p+q∑
j=p+1

[
cj −

p∑
i=1

πiaij

]
xj +

p∑
i=1

πibi

Each basic variable has cost null in the objective function

cj −
p∑

i=1

πiaij = 0 =⇒ π = B−1cB

Reduced costs of non-basic variables:

cj −
p∑

i=1

πiaij Marco Chiarandini .::. 36
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Dantzig-Wolfe Decomposition
Delayed Column Generation
Ryan’s branching rule

Questions

Will the process terminate?

Always improving objective value. Only a finite number of basis
solutions.

Can we repeat the same pattern?

No, since the objective functions is improved. We know the best solution
among existing columns. If we generate an already existing column, then
we will not improve the objective.
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Dantzig-Wolfe Decomposition
Delayed Column Generation
Ryan’s branching ruleBranch-and-Price

Terminology

Master Problem

Restricted Master Problem

Subproblem or Pricing Problem

Branch and cut:
Branch-and-bound algorithm using cuts to strengthen bounds.

Branch and price:
Branch-and-bound algorithm using column generation to derive bounds.
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Crew Scheduling
Avanced Methods for IP

Dantzig-Wolfe Decomposition
Delayed Column Generation
Ryan’s branching ruleBranch-and-price

LP-solution of master problem may have fractional solutions

Branch-and-bound for getting IP-solution

In each node solve LP-relaxation of master

Subproblem may change when we add constraints to master problem

Branching strategy should make subproblem easy to solve
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Dantzig-Wolfe Decomposition
Delayed Column Generation
Ryan’s branching rule

Tailing off effect
Column generation may converge slowly in the end

We do not need exact solution, just lower bound

Solving master problem for subset of columns does not give valid lower
bound (why?)

Instead we may use Lagrangian relaxation of joint constraint

“guess” lagrangian multipliers equal to dual variables from master
problem
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Dantzig-Wolfe Decomposition
Delayed Column Generation
Ryan’s branching ruleConvergence in CG

[plot by Stefano Gualandi, Milan University]Marco Chiarandini .::. 46

Crew Scheduling
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Dantzig-Wolfe Decomposition
Delayed Column Generation
Ryan’s branching rule

Heuristic solution (eg, in sec. 12.6)

Restricted master problem will only contain a subset of the columns

We may solve restricted master problem to IP-optimality

Restricted master is a “set-covering-like” problem which is not too
difficult to solve
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Dantzig-Wolfe Decomposition
Delayed Column Generation
Ryan’s branching ruleRyan’s branching rule in Set Partitioning

Solving the SCP integer program

Branch and bound

Generate routes such that:
they are good in terms of cost
they reduce the potential for fractional solutions

constraint branching [Ryan, Foster, 1981]

∃ constraints r1, r2 : 0 <
∑

j∈J(r1,r2)

xj < 1

J(r1, r2) all columns covering r1, r2 simultaneously. Branch on:

/ \∑
j∈J(r1,r2)

xj ≤ 0
∑

j∈J(r1,r2)

xj ≥ 1
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