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Course Overview

4 Problem Introduction
4 Scheduling classification
4 Scheduling complexity
4 RCPSP

General Methods
Integer Programming
Constraint Programming
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Dynamic Programming and
Branch and Bound

Scheduling
Single Machine
Parallel Machine and Flow
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Job Shop
Resource Constrained Project
Scheduling Model

Timetabling
Reservations and Education
University Timetabling
Crew Scheduling
Public Transports

Vechicle Routing
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Time Windows models
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Min cost flow problem

Min cost flow problem is a central model in network flows:

min
∑

(i,j)∈A

cijxij (1)

s.t.
∑

j :(i,j)∈A

xij −
∑

j :(j,i)∈A

xji = bi , for all i ∈ N (2)

lij ≤ xij ≤ uij ∀(i , j) ∈ A (3)
xjt ∈ R (4)

(2) mass balance constrains Nx = b
(3) flow bound constraint l ≤ x ≤ u
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Min Cost Flow Models

Shortest path

Max flow ≡ min cut

Assignment

Transportation

Network transformations: node splitting
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Simplex: Recap.
Simplex in matrix form

min {cx | Ax = b, x ≥}

In matrix form: [
0 A
−1 c

] [
z
x

]
=

[
b
0

]

B = {1, 2, . . . , p} basic variables

L = {1, 2, . . . , q} non-basis variables (will be set to lower bound = 0)

(B,L) basis structure

xB, xL, cB, cL,

B = [A1, A2, . . . ,Ap], L = [Ap+1, Ap+2, . . . ,Ap+q]

[
0 B L
−1 cB cL

] z
xB
xL

 =

[
b
0

]
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BxB + LxL = b ⇒ xB + B−1LxL = B−1b ⇒
[

xL = 0
xB = B−1b

When is xB = B−1b integer? When det(B) = ±1

Totally unimodular matrices (TUM)

Node-arc incidence matrix for directed graph are TUM

Node-arc incidence matrix for undirected graph are TUM if they do not
contain odd cycles

Matching problems: bipartite/nonbipartite and cardinality/weighted

Marco Chiarandini .::. 6

Multi commodity flows

commodities that share arc capacity

min
∑

1≤k≤K

ck
ij x

k
ij (1)

s.t.
∑

1≤k≤K

xk
ij ≤ uij∀(i , j) ∈ A (2)

Nxk = bk for all i ∈ N (3)

0 ≤ xk
jt ≤ uk

ij ∀(i , j) ∈ A (4)

(5)

(2) bundle constraints
(3) mass balance constraints Nx = b
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