
DM204, 2010
SCHEDULING, TIMETABLING AND ROUTING

Lecture 8
Constraint Programming (2)

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Constraint Languages
Refinements on CP

Course Overview

4 Problem Introduction
4 Scheduling classification
4 Scheduling complexity
4 RCPSP

General Methods
4 Integer Programming

Constraint Programming
Heuristics
Dynamic Programming and
Branch and Bound

Scheduling
Single Machine
Parallel Machine and Flow
Shop Models
Job Shop
Resource Constrained Project
Scheduling Model

Timetabling
Reservations and Education
University Timetabling
Crew Scheduling
Public Transports

Vechicle Routing
Capacited Models
Time Windows models
Rich Models

Marco Chiarandini .::. 2

Constraint Languages
Refinements on CP

Outline

1. Constraint Languages

2. Refinements on CP
Refinements: Modeling
Refinements: Search
Refinements: Constraints
Symmetry Breaking
Reification
CP in Scheduling

Marco Chiarandini .::. 3

Constraint Languages
Refinements on CP

Optimization Problems

Objective function to minimize F (X1,X2, . . . ,Xn)

Solve a modified Constraint Satisfaction Problem by setting an (upper)
bound z∗ in the objective function
Dichotomic search: U upper bound, L lower bound

M =
U + L

2

Marco Chiarandini .::. 5



Constraint Languages
Refinements on CP

Outline

1. Constraint Languages

2. Refinements on CP
Refinements: Modeling
Refinements: Search
Refinements: Constraints
Symmetry Breaking
Reification
CP in Scheduling

Marco Chiarandini .::. 6

Constraint Languages
Refinements on CP

Constraint Programming Systems

Expressiveness language stream
(modelling)

+
(efficient solvers)
Algorithm stream

CP systems typically include

general purpose algorithms for constraint propagation
(arc consistency on finite domains)

built-in constraint propagation for various constraints
(eg, linear, boolean, global constraints)

built-in for constructing various forms of search

Marco Chiarandini .::. 7

Constraint Languages
Refinements on CP

Logic Programming

Logic programming is the use of mathematical logic for computer
programming.

First-order logic is used as a purely declarative representation language, and a
theorem-prover or model-generator is used as the problem-solver.

Logic programming supports the notion of logical variables

Syntax – Language
Alphabet
Well-formed Expressions
E.g., 4X + 3Y = 10; 2X - Y = 0

Semantics – Meaning
Interpretation
Logical Consequence

Calculi – Derivation
Inference Rule
Transition System

Marco Chiarandini .::. 8

Constraint Languages
Refinements on CP

Logic Programming

Example: Prolog
A logic program is a set of axioms, or rules, defining relationships
between objects.

A computation of a logic program is a deduction of consequences of
the program.

A program defines a set of consequences, which is its meaning.

Sterling and Shapiro: The Art of Prolog, Page 1.
To deal with the other constraints one has to add other constraint solvers to
the language. This led to Constraint Logic Programming

Marco Chiarandini .::. 9



Constraint Languages
Refinements on CP

Prolog Approach

Prolog II till Prolog IV [Colmerauer, 1990]

CHIP V5 [Dincbas, 1988] http://www.cosytec.com (commercial)

CLP [Van Hentenryck, 1989]

Ciao Prolog (Free, GPL)

GNU Prolog (Free, GPL)

SICStus Prolog

ECLiPSe [Wallace, Novello, Schimpf, 1997] http://eclipse-clp.org/
(Open Source)

Mozart programming system based on Oz language (incorporates
concurrent constraint programming) http://www.mozart-oz.org/
[Smolka, 1995]

Marco Chiarandini .::. 10

Constraint Languages
Refinements on CP

Example
The puzzle SEND+MORE = MONEY in ECLiPSe

Marco Chiarandini .::. 11

Constraint Languages
Refinements on CP

Other Approaches

Libraries:
Constraints are modelled as objects and are manipulated by means of special
methods provided by the given class.

CHOCO (free) http://choco.sourceforge.net/

Kaolog (commercial) http://www.koalog.com/php/index.php

ILOG CP Optimizer www.cpoptimizer.ilog.com (ILOG, commercial)

Gecode (free) www.gecode.org
C++, Programming interfaces Java and MiniZinc

G12 Project
http://www.nicta.com.au/research/projects/constraint_
programming_platform

Marco Chiarandini .::. 12

Constraint Languages
Refinements on CP

Other Approaches

Modelling languages:

OPL [Van Hentenryck, 1999] ILOG CP Optimizer
www.cpoptimizer.ilog.com (ILOG, commercial)

MiniZinc [] (open source, works for various systems, ECLiPSe, Geocode)

Comet

Marco Chiarandini .::. 13



Constraint Languages
Refinements on CP

MiniZinc

Marco Chiarandini .::. 14

Constraint Languages
Refinements on CP

CP Languages

Greater expressive power than mathematical programming

constraints involving disjunction can be represented directly

constraints can be encapsulated (as predicates) and used in the
definition of further constrains

However, CP models can often be translated into MIP model by

eliminating disjunctions in favor of auxiliary Boolean variables

unfolding predicates into their definitions

Marco Chiarandini .::. 15

Constraint Languages
Refinements on CP

CP Languages

Fundamental difference to LP
language has structure (global constraints)

different solvers support different constraints

In its infancy

Key questions:
what level of abstraction?

solving approach independent: LP, CP, ...?

how to map to different systems?

modelling is very difficult for CP
requires lots of knowledge and tinkering

Marco Chiarandini .::. 16

Constraint Languages
Refinements on CP

Summary

Model your problem via Constraint Satisfaction Problem

Declare Constraints + Program Search

Constraint Propagation

Languages

Marco Chiarandini .::. 17



Constraint Languages
Refinements on CP

Refinements: Modeling
Refinements: Search
Refinements: Constraints
Symmetry Breaking
Reification
CP in SchedulingOutline

1. Constraint Languages

2. Refinements on CP
Refinements: Modeling
Refinements: Search
Refinements: Constraints
Symmetry Breaking
Reification
CP in Scheduling

Marco Chiarandini .::. 18

Constraint Languages
Refinements on CP

Refinements: Modeling
Refinements: Search
Refinements: Constraints
Symmetry Breaking
Reification
CP in SchedulingModelling

Different views to the problem

Adding implied constraints

Auxiliary variables to make it easier to state constraints and improve
constraint propagation

Marco Chiarandini .::. 20

Constraint Languages
Refinements on CP

Refinements: Modeling
Refinements: Search
Refinements: Constraints
Symmetry Breaking
Reification
CP in SchedulingA Puzzle Example

SEND +

MORE =

MONEY

GERALD +

DONALD =

ROBERT

Two representations

The first yields initially a weaker constraint propagation. The tree has 23
nodes and the unique solution is found after visiting 19 nodes

The second representation has a tree with 29 nodes and the unique
solution is found after visiting 23 nodes

However for the puzzle GERALD + DONALD = ROBERT the situation is reverse.
The first has 16651 nodes and 13795 visits while the second has 869 nodes
and 791 visits

 Finding the best model is an empirical science

Marco Chiarandini .::. 21

Constraint Languages
Refinements on CP

Refinements: Modeling
Refinements: Search
Refinements: Constraints
Symmetry Breaking
Reification
CP in SchedulingGuidelines

Rules of thumbs for modelling (to take with a grain of salt):

use representations that involve less variables and simpler constraints for
which constraint propagators are readily available

use constraint propagation techniques that require less preprocessing (ie,
the introduction of auxiliary variables) since they reduce the search space
better.
Disjunctive constraints may lead to an inefficient representation since
they can generate a large search space.

use global constraints (see below)

Marco Chiarandini .::. 22



Constraint Languages
Refinements on CP

Refinements: Modeling
Refinements: Search
Refinements: Constraints
Symmetry Breaking
Reification
CP in Scheduling

Backtracking

Branch and Bound

Local Search

Marco Chiarandini .::. 24

Constraint Languages
Refinements on CP

Refinements: Modeling
Refinements: Search
Refinements: Constraints
Symmetry Breaking
Reification
CP in SchedulingRandomization in Search Tree

Dynamical selection of solution components
in construction or choice points in backtracking.

Randomization of construction method or
selection of choice points in backtracking
while still maintaining the method complete
 randomized systematic search.

Randomization can also be used in incomplete search

Marco Chiarandini .::. 25

Constraint Languages
Refinements on CP

Refinements: Modeling
Refinements: Search
Refinements: Constraints
Symmetry Breaking
Reification
CP in SchedulingIncomplete Search

http://4c.ucc.ie/~hsimonis/visualization/techniques/partial_search/main.htm

Marco Chiarandini .::. 26

Constraint Languages
Refinements on CP

Refinements: Modeling
Refinements: Search
Refinements: Constraints
Symmetry Breaking
Reification
CP in SchedulingIncomplete Search

Credit-based search

Key idea: important decisions are
at the top of the tree

Credit = backtracking steps

Credit distribution: one half at
the best child the other divided
among the other children.

When credits run out follow
deterministic best-search

In addition: allow limited
backtracking steps (eg, 5) at the
bottom

Control parameters: initial credit,
distribution of credit among the
children, amount of local
backtracking at bottom.Marco Chiarandini .::. 27



Constraint Languages
Refinements on CP

Refinements: Modeling
Refinements: Search
Refinements: Constraints
Symmetry Breaking
Reification
CP in SchedulingIncomplete Search

Limited Discrepancy Search (LDS)

Key observation that often the
heuristic used in the search is
nearly always correct with just a
few exceptions.

Explore the tree in increasing
number of discrepancies,
modifications from the heuristic
choice.

Eg: count one discrepancy if
second best is chosen
count two discrepancies either if
third best is chosen or twice the
second best is chosen

Control parameter: the number of
discrepanciesMarco Chiarandini .::. 28

Constraint Languages
Refinements on CP

Refinements: Modeling
Refinements: Search
Refinements: Constraints
Symmetry Breaking
Reification
CP in SchedulingIncomplete Search

Barrier Search

Extension of LDS

Key idea: we may encounter
several, independent problems in
our heuristic choice. Each of
these problems can be overcome
locally with a limited amount of
backtracking.

At each barrier start LDS-based
backtracking

Marco Chiarandini .::. 29

Constraint Languages
Refinements on CP

Refinements: Modeling
Refinements: Search
Refinements: Constraints
Symmetry Breaking
Reification
CP in SchedulingHandling special constraints

Higher order constraints

Definition
Global constraints are complex constraints that are taken care of by means of
a special purpose algorithm.

Modelling by means of global constraints is more efficient than relying on the
general purpose constraint propagator.

Examples:
alldiff

for m variables and n values cannot be satisfied if m > n,
consider first singleton variables
propagation based on bipartite matching considerations

Marco Chiarandini .::. 32

Constraint Languages
Refinements on CP

Refinements: Modeling
Refinements: Search
Refinements: Constraints
Symmetry Breaking
Reification
CP in Scheduling

sum(x , z , c): z =
∑

i cixi

knapsack(x , z , c): minD(z) ≤∑
i cixi ≤ maxD(z)

binpacking(x |w , u, k) pack items in k bins such that they do not
exceed capacity u

alldifferent(x) = {(d1, . . . , dn)|∀idi ∈ D(xi ),∀i 6=jdi 6= dj}

element(y , z , x) : {e, f , d1, . . . , dn)|e ∈ D(y), f ∈ D(z),∀idi ∈
D(xi ), f = de}
aka: channeling

change(x |k, rel) k be the number of times two consecutive variables
xi , xi+1 satisfy xi rel xi+1

Marco Chiarandini .::. 33



Constraint Languages
Refinements on CP

Refinements: Modeling
Refinements: Search
Refinements: Constraints
Symmetry Breaking
Reification
CP in Scheduling

gcc(x1, . . . , xn, cv1 , . . . , cvm ) = the number of occurrences of vj in
d ∈ D(X ) is in D(cvj )

aka:
cardinality(l , x , u) if there are at least li variables in array x that are
assigned value vi and at most upj variables in array x that are assigned
value vj .

cardinality(x |v , l , u) at least lj and at most uj of the variables take
the value vj

among(x |v , l , u) at least l and at most v variables take values in the set
v .

atmost, atleast among

Marco Chiarandini .::. 34

Constraint Languages
Refinements on CP

Refinements: Modeling
Refinements: Search
Refinements: Constraints
Symmetry Breaking
Reification
CP in Scheduling

circuit(x) imposes Hamiltonian cycle on digraph.

clique(x |G , k) requires that a given graph contain a clique

conditional(D, C) between set of constrains D ⇒ C

cutset(x |G , k) requires that for the set of selected vertices V ′, the set
V \ V ′ induces a subgraph of G that contains no cycles.

cycle(x |y) select edges such that they form exactly y cycles. directed
cycles in a graph.

diffn((x1,∆x1), . . . , (xm,∆xm)) arranges a given set of
multidimensional boxes in n-space such that they do not overlap

...
Marco Chiarandini .::. 35

Constraint Languages
Refinements on CP

Refinements: Modeling
Refinements: Search
Refinements: Constraints
Symmetry Breaking
Reification
CP in Scheduling

cumulative for RCPSP [Aggoun and Beldiceanu, 1993]

Sj starting times of jobs

Pj duration of job

Rj resource consumption

R limit not to be exceeded at any point in time

cumulative([Sj ], [Pj ], [Rj ],R) :=

{([sj ], [pj ], [rj ]R) | ∀t
∑

i | si≤t≤si+pi

ri ≤ R}

The special purpose algorithm employes the edge-finding technique
(enforce precedences)

Marco Chiarandini .::. 37

Constraint Languages
Refinements on CP

Refinements: Modeling
Refinements: Search
Refinements: Constraints
Symmetry Breaking
Reification
CP in Scheduling

atmost Resource Constraint

check the sum of minimum values of single domains
delete maximum values if not consistent with minimum values of others.

for large integer values not possible to represent the domain as a set of
integers but rather as bounds.
Then bounds propagation: Eg,

Flight271 ∈ [0, 165] and Flight272 ∈ [0, 385]
Flight271 + Flight272 ∈ [420, 420]
Flight271 ∈ [35, 165] and Flight272 ∈ [255, 385]

Marco Chiarandini .::. 38



Constraint Languages
Refinements on CP

Refinements: Modeling
Refinements: Search
Refinements: Constraints
Symmetry Breaking
Reification
CP in SchedulingGlobal Constraints Catalogue

http://www.emn.fr/x-info/sdemasse/gccat/

Marco Chiarandini .::. 40

Constraint Languages
Refinements on CP

Refinements: Modeling
Refinements: Search
Refinements: Constraints
Symmetry Breaking
Reification
CP in SchedulingKinds of symmetries

Variable symmetry:
permuting variables keeps solutions invariant (eg, N-queens)
{xi → vi} ∈ sol(P)⇔ {xπ(i) → vi} ∈ sol(P)

Value symmetry:
permuting values keeps solutions invariant (eg, GCP)
{xi → vi} ∈ sol(P)⇔ {xi → π(vi )} ∈ sol(P)

Variable/value symmetry:
permute both variables and values (eg, sudoku?)
{xi → vi} ∈ sol(P)⇔ {xπ(i) → π(vi )} ∈ sol(P)

Marco Chiarandini .::. 42

Constraint Languages
Refinements on CP

Refinements: Modeling
Refinements: Search
Refinements: Constraints
Symmetry Breaking
Reification
CP in SchedulingSymmetry

inherent in the problem (sudoku, queens)

artefact of the model (order of groups)

How can we avoid it?

... by model reformulation (eg, use set variables)

... by adding constraints to the model
(ruling out symmetric solutions)

... during search

... by dominance detection

Marco Chiarandini .::. 43

Constraint Languages
Refinements on CP

Refinements: Modeling
Refinements: Search
Refinements: Constraints
Symmetry Breaking
Reification
CP in SchedulingReified constraints

Constraints are in a big conjunction

How about disjunctive constraints?

A + B = C ∨ C = 0

or soft constraints?

Solution: reify the constraints:

(A + B = C ⇔ b0) ∧
(C = 0 ⇔ b1) ∧
(b0 ∨ b1 ⇔ true)

These kind of constraints are dealt with in efficient way by the systems

Then if optimization problem (soft constraints) ⇒ min
∑

i bi
Marco Chiarandini .::. 45



Constraint Languages
Refinements on CP

Refinements: Modeling
Refinements: Search
Refinements: Constraints
Symmetry Breaking
Reification
CP in SchedulingScheduling Models

Variable for start-time of task a start(a)

Precedence constraint:
start(a) + dur(a) ≤ start(b) (a before b)

Disjunctive constraint:
start(a) + dur(a) ≤ start(b) (a before b)
or
start(b) + dur(b) ≤ start(a) (b before a)
Solved by reification

Cumulative Constraints (renewable resources)
For tasks a and b on resource R

use(a) + use(b) ≤ cap(R)
or start(a) + dur(a) ≤ start(b)
or start(b) + dur(b) ≤ start(a)

Marco Chiarandini .::. 47

Constraint Languages
Refinements on CP

Refinements: Modeling
Refinements: Search
Refinements: Constraints
Symmetry Breaking
Reification
CP in SchedulingPropagators for Scheduling

Serialization: ordering of tasks on one machine
Consider all tasks on one resource

Deduce their order as much as possible

Propagators:
Timetabling: look at free/used time slots

Edge-finding: which task first/last?

Not-first / not-last

Marco Chiarandini .::. 48

Constraint Languages
Refinements on CP

Refinements: Modeling
Refinements: Search
Refinements: Constraints
Symmetry Breaking
Reification
CP in SchedulingJob Shop Problem

Hard problem!

6x6 instance solvable using Gecode
disjunction by reification

normal branching

Classic 10x10 instance not solvable using Gecode!
specialized propagators (edge-finding) and branchings needed

Marco Chiarandini .::. 49


