DM204, 2010 SCHEDULING, TIMETABLING AND ROUTING

Lecture 8
Constraint Programming (2)

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Course Overview

- ✔ Problem Introduction
 - ✓ Scheduling classification
 - ✓ Scheduling complexity
 - ✓ RCPSP
 - General Methods
 - ✓ Integer Programming
 - Constraint Programming
 - Heuristics
 - Dynamic Programming and Branch and Bound

Scheduling

- Single Machine
- Parallel Machine and Flow Shop Models
- Job Shop
- Resource Constrained Project Scheduling Model
- Timetabling
 - Reservations and Education
 - University Timetabling
 - Crew Scheduling
 - Public Transports
- Vechicle Routing
 - Capacited Models
 - Time Windows models
 - Rich Models

Outline

1. Constraint Languages

2. Refinements on CP

Refinements: Modeling

Refinements: Search

Refinements: Constraints

Symmetry Breaking

Reification

CP in Scheduling

Optimization Problems

Objective function to minimize $F(X_1, X_2, \dots, X_n)$

- Solve a modified Constraint Satisfaction Problem by setting an (upper) bound z^* in the objective function
- Dichotomic search: U upper bound, L lower bound

$$M = \frac{U+L}{2}$$

Outline

1. Constraint Languages

2. Refinements on CF

Refinements: Modeling

Refinements: Constraints

Symmetry Breaking

Reificatior

CP in Scheduling

Constraint Programming Systems

```
Expressiveness language stream (modelling) + (efficient solvers)
Algorithm stream
```

CP systems typically include

- general purpose algorithms for constraint propagation (arc consistency on finite domains)
- built-in constraint propagation for various constraints (eg, linear, boolean, global constraints)
- built-in for constructing various forms of search

Logic Programming

Logic programming is the use of mathematical logic for computer programming.

First-order logic is used as a purely declarative representation language, and a theorem-prover or model-generator is used as the problem-solver.

Logic programming supports the notion of logical variables

- Syntax Language
 - Alphabet
 - Well-formed Expressions

E.g.,
$$4X + 3Y = 10$$
; $2X - Y = 0$

- Semantics Meaning
 - Interpretation
 - Logical Consequence
- Calculi Derivation
 - Inference Rule
 - Transition System

Logic Programming

Example: Prolog

A logic program is a set of axioms, or rules, defining relationships between objects.

A computation of a logic program is a deduction of consequences of the program.

A program defines a set of consequences, which is its meaning.

Sterling and Shapiro: The Art of Prolog, Page 1.

To deal with the other constraints one has to add other constraint solvers to the language. This led to Constraint Logic Programming

Prolog Approach

- Prolog II till Prolog IV [Colmerauer, 1990]
- CHIP V5 [Dincbas, 1988] http://www.cosytec.com (commercial)
- CLP [Van Hentenryck, 1989]
- Ciao Prolog (Free, GPL)
- GNU Prolog (Free, GPL)
- SICStus Prolog
- ECLiPSe [Wallace, Novello, Schimpf, 1997] http://eclipse-clp.org/ (Open Source)
- Mozart programming system based on Oz language (incorporates concurrent constraint programming) http://www.mozart-oz.org/ [Smolka, 1995]

Example

The puzzle SEND+MORE = MONEY in ECLiPSe

```
:- lib(ic).
sendmore(Digits) :-
    Digits = [S,E,N,D,M,O,R,Y],
% Assign a finite domain with each letter - S, E, N, D, M, O, R, Y -
% in the list Digits
    Digits :: [0..9],
% Constraints
    alldifferent(Digits),
    S \# = 0.
    M \# = 0.
                 1000*S + 100*E + 10*N + D
               + 1000*M + 100*D + 10*R + E
    #= 10000*M + 1000*0 + 100*N + 10*E + Y,
```

% Search

labeling(Digits).
Marco Chiarandini .::.

Other Approaches

Libraries:

Constraints are modelled as objects and are manipulated by means of special methods provided by the given class.

- CHOCO (free) http://choco.sourceforge.net/
- Kaolog (commercial) http://www.koalog.com/php/index.php
- ILOG CP Optimizer www.cpoptimizer.ilog.com (ILOG, commercial)
- Gecode (free) www.gecode.org
 C++, Programming interfaces Java and MiniZinc
- G12 Project http://www.nicta.com.au/research/projects/constraint_ programming_platform

Other Approaches

Modelling languages:

- OPL [Van Hentenryck, 1999] ILOG CP Optimizer
 www.cpoptimizer.ilog.com (ILOG, commercial)
- MiniZinc [] (open source, works for various systems, ECLiPSe, Geocode)

Comet

MiniZinc

```
. %
% Example from the MiniZinc paper:
% (square) job shop scheduling in MiniZinc
% Model
int: size:
                                 % size of problem
                             % task durations
array [1..size.l..size] of int: d:
int: total = sum(i, i in 1..size) (d[i,i]): % total duration
array [1..size,1..size] of var O..total: s; % start times
var O. total: end:
                                  % total end time
predicate no overlap(var int:sl, int:dl, var int:s2, int:d2) =
   s1 + d1 <= s2 \/ s2 + d2 <= s1:
constraint
   forall(i in 1...size) (
      forall(j in 1..size-1) (s[i,j] + d[i,j] \le s[i,j+1]) \land
      s[i.size] + d[i,size] <= end /\
      forall(i,k in 1..size where i < k) (
         no overlap(s[j,i], d[j,i], s[k,i], d[k,i])
   )
solve minimize end:
output
   [ "iobshop nxn\n" ] ++
   [ "s[1.."] ++ [show(size)] ++ [". 1.."] ++ [show(size)] ++ [ "] = \n [ " ] ++
   [show(s[i,i]) ++ if i = size then if i = size then " ] \n" else "\n" endif else " " endif | i,i in ] ... size];
```

CP Languages

Greater expressive power than mathematical programming

- constraints involving disjunction can be represented directly
- constraints can be encapsulated (as predicates) and used in the definition of further constrains

However, CP models can often be translated into MIP model by

- eliminating disjunctions in favor of auxiliary Boolean variables
- unfolding predicates into their definitions

CP Languages

- Fundamental difference to LP
 - language has structure (global constraints)
 - different solvers support different constraints
- In its infancy
- Key questions:
 - what level of abstraction?
 - solving approach independent: LP, CP, ...?
 - how to map to different systems?
 - modelling is very difficult for CP
 - requires lots of knowledge and tinkering

Summary

- Model your problem via Constraint Satisfaction Problem
- Declare Constraints + Program Search
- Constraint Propagation
- Languages

Outline

1. Constraint Languages

2. Refinements on CP

Refinements: Modeling

Refinements: Search

Refinements: Constraints

Symmetry Breaking

Reification

CP in Scheduling

Modelling

- Different views to the problem
- Adding implied constraints
- Auxiliary variables to make it easier to state constraints and improve constraint propagation

A Puzzle Example

SEND +	${\tt GERALD} +\\$
$\mathtt{MORE} =$	$\mathtt{DONALD} =$
MONEY	ROBERT

Two representations

- The first yields initially a weaker constraint propagation. The tree has 23 nodes and the unique solution is found after visiting 19 nodes
- The second representation has a tree with 29 nodes and the unique solution is found after visiting 23 nodes

However for the puzzle <code>GERALD+DONALD=ROBERT</code> the situation is reverse. The first has 16651 nodes and 13795 visits while the second has 869 nodes and 791 visits

→ Finding the best model is an empirical science

Guidelines

Rules of thumbs for modelling (to take with a grain of salt):

- use representations that involve less variables and simpler constraints for which constraint propagators are readily available
- use constraint propagation techniques that require less preprocessing (ie, the introduction of auxiliary variables) since they reduce the search space better.
 - Disjunctive constraints may lead to an inefficient representation since they can generate a large search space.
- use global constraints (see below)

Constraint Languages Refinements on CP Refinements: Modeling Refinements: Search Refinements: Constraints Symmetry Breaking Reification CP in Scheduling

- Backtracking
- Branch and Bound
- Local Search

Randomization in Search Tree

- Dynamical selection of solution components in construction or choice points in backtracking.
- Randomization of construction method or selection of choice points in backtracking while still maintaining the method complete
 randomized systematic search.
- Randomization can also be used in incomplete search

Constraint Languages Refinements on CP Refinements: Modeling Refinements: Search Refinements: Constraints Symmetry Breaking Reification CP in Scheduling

Incomplete Search

Bounded-backtrack search:

bbs(10)

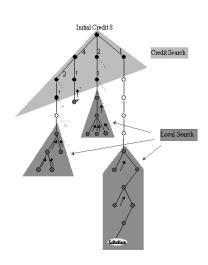
Depth-bounded, then bounded-backtrack search:

http://4c.ucc.ie/~hsimonis/visualization/techniques/partial_search/main.htm

Incomplete Search

Credit-based search

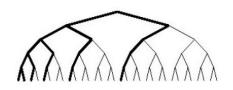
- Key idea: important decisions are at the top of the tree
- Credit = backtracking steps
- Credit distribution: one half at the best child the other divided among the other children.
- When credits run out follow deterministic best-search
- In addition: allow limited backtracking steps (eg, 5) at the bottom
- Control parameters: initial credit, distribution of credit among the children, amount of local



Incomplete Search

Limited Discrepancy Search (LDS)

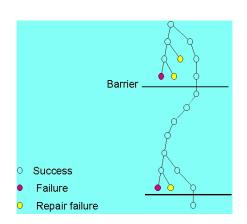
- Key observation that often the heuristic used in the search is nearly always correct with just a few exceptions.
- Explore the tree in increasing number of discrepancies, modifications from the heuristic choice.
- Eg: count one discrepancy if second best is chosen count two discrepancies either if third best is chosen or twice the second best is chosen
- Control parameter: the number of



Incomplete Search

Barrier Search

- Extension of LDS
- Key idea: we may encounter several, independent problems in our heuristic choice. Each of these problems can be overcome locally with a limited amount of backtracking.
- At each barrier start LDS-based backtracking



Handling special constraints Higher order constraints

Definition

Global constraints are complex constraints that are taken care of by means of a special purpose algorithm.

Modelling by means of global constraints is more efficient than relying on the general purpose constraint propagator.

Examples:

- alldiff
 - for m variables and n values cannot be satisfied if m > n,
 - consider first singleton variables
 - propagation based on bipartite matching considerations

- sum(x, z, c): $z = \sum_i c_i x_i$
- knapsack(x, z, c): min $D(z) \le \sum_i c_i x_i \le \max D(z)$
- binpacking(x|w,u,k) pack items in k bins such that they do not exceed capacity u
- all different $(x) = \{(d_1, \ldots, d_n) | \forall_i d_i \in D(x_i), \forall_{i \neq j} d_i \neq d_j \}$
- element(y, z, x): $\{e, f, d_1, \dots, d_n\} | e \in D(y), f \in D(z), \forall_i d_i \in D(x_i), f = d_e\}$ aka: channeling
- change(x|k, rel) k be the number of times two consecutive variables x_i, x_{i+1} satisfy $x_i \operatorname{rel} x_{i+1}$

• $gcc(x_1, ..., x_n, c_{v_1}, ..., c_{v_m})$ = the number of occurrences of v_j in $d \in D(X)$ is in $D(c_{v_j})$

aka:

cardinality(l, x, u) if there are at least l_i variables in array x that are assigned value v_i and at most up_j variables in array x that are assigned value v_i .

cardinality(x|v,l,u) at least l_j and at most u_j of the variables take the value v_j

among(x|v, l, u) at least l and at most v variables take values in the set v.

atmost, atleast among

- circuit(x) imposes Hamiltonian cycle on digraph.
- clique(x|G, k) requires that a given graph contain a clique
- ullet conditional(\mathcal{D},\mathcal{C}) between set of constrains $\mathcal{D}\Rightarrow\mathcal{C}$
- $\mathtt{cutset}(x|G,k)$ requires that for the set of selected vertices V', the set $V \setminus V'$ induces a subgraph of G that contains no cycles.
- cycle(x|y) select edges such that they form exactly y cycles. directed cycles in a graph.
- diffn($(x^1, \Delta x^1), \dots, (x^m, \Delta x^m)$) arranges a given set of multidimensional boxes in *n*-space such that they do not overlap

• ...

cumulative for RCPSP

[Aggoun and Beldiceanu, 1993]

- S_j starting times of jobs
- P_i duration of job
- R_i resource consumption
- R limit not to be exceeded at any point in time

$$\texttt{cumulative}([S_j], [P_j], [R_j], R) := \\ \{([s_j], [p_j], [r_j]R) \mid \forall t \sum_{\substack{i \mid s_i < t < s_i + p_i \\ i \mid s_i < t < s_i + p_i}} r_i \leq R\}$$

The special purpose algorithm employes the edge-finding technique (enforce precedences)

atmost Resource Constraint

- check the sum of minimum values of single domains delete maximum values if not consistent with minimum values of others.
- for large integer values not possible to represent the domain as a set of integers but rather as bounds.

Then bounds propagation: Eg,

```
\begin{aligned} & \texttt{Flight271} \in [0, 165] \ \text{and} \ \texttt{Flight272} \in [0, 385] \\ & \texttt{Flight271} + \texttt{Flight272} \in [420, 420] \\ & \texttt{Flight271} \in [35, 165] \ \text{and} \ \texttt{Flight272} \in [255, 385] \end{aligned}
```

Constraint Languages Refinements on CP

Global Constraints Catalogue

Refinements: Modeling Refinements: Search Refinements: Constraints

Refinements: Constraints Symmetry Breaking Reification CP in Scheduling

http://www.emn.fr/x-info/sdemasse/gccat/

Reification

CP in Scheduling

Kinds of symmetries

• Variable symmetry: permuting variables keeps solutions invariant (eg, N-queens) $\{x_i \to v_i\} \in sol(P) \Leftrightarrow \{x_{\pi(i)} \to v_i\} \in sol(P)$

• Value symmetry: permuting values keeps solutions invariant (eg, GCP) $\{x_i \to v_i\} \in sol(P) \Leftrightarrow \{x_i \to \pi(v_i)\} \in sol(P)$

• Variable/value symmetry: permute both variables and values (eg, sudoku?) $\{x_i \to v_i\} \in sol(P) \Leftrightarrow \{x_{\pi(i)} \to \pi(v_i)\} \in sol(P)$

Refinements: Modeling Refinements: Search Refinements: Constraints Symmetry Breaking

Reification CP in Scheduling

Symmetry

- inherent in the problem (sudoku, queens)
- artefact of the model (order of groups)

How can we avoid it?

- ... by model reformulation (eg, use set variables)
- ... by adding constraints to the model (ruling out symmetric solutions)
- ... during search
- ... by dominance detection

Reified constraints

- Constraints are in a big conjunction
- How about disjunctive constraints?

$$A + B = C \quad \lor \quad C = 0$$

or soft constraints?

Solution: reify the constraints:

$$\begin{array}{cccc} (A+B=C & \Leftrightarrow & b_0) & \wedge \\ (C=0 & \Leftrightarrow & b_1) & \wedge \\ (b_0 & \vee & b_1 & \Leftrightarrow & \textit{true}) \end{array}$$

- These kind of constraints are dealt with in efficient way by the systems
- Then if optimization problem (soft constraints) $\Rightarrow \min \sum_i b_i$

Scheduling Models

- Variable for start-time of task a start(a)
- Precedence constraint: $start(a) + dur(a) \le start(b)$ (a before b)
- Disjunctive constraint: $start(a) + dur(a) \le start(b)$ (a before b) or $start(b) + dur(b) \le start(a)$ (b before a) Solved by reification
- Cumulative Constraints (renewable resources)
 For tasks a and b on resource R
 use(a) + use(b) ≤ cap(R)
 or start(a) + dur(a) ≤ start(b)
 or start(b) + dur(b) < start(a)

Propagators for Scheduling

Serialization: ordering of tasks on one machine

- Consider all tasks on one resource
- Deduce their order as much as possible
- Propagators:
 - Timetabling: look at free/used time slots
 - Edge-finding: which task first/last?
 - Not-first / not-last

Job Shop Problem

- Hard problem!
- 6x6 instance solvable using Gecode
 - disjunction by reification
 - normal branching
- Classic 10x10 instance not solvable using Gecode!
 - specialized propagators (edge-finding) and branchings needed