
DM204, 2010
SCHEDULING, TIMETABLING AND ROUTING

Lecture 9
Heuristics

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Construction Heuristics
Local Search

Course Overview

4 Problem Introduction
4 Scheduling classification
4 Scheduling complexity
4 RCPSP

General Methods
4 Integer Programming
4 Constraint Programming

Heuristics
Dynamic Programming and
Branch and Bound

Scheduling
Single Machine
Parallel Machine and Flow
Shop Models
Job Shop
Resource Constrained Project
Scheduling Model

Timetabling
Reservations and Education
University Timetabling
Crew Scheduling
Public Transports

Vechicle Routing
Capacited Models
Time Windows models
Rich Models

Marco Chiarandini .::. 2

Construction Heuristics
Local Search

Outline

1. Construction Heuristics
General Principles
Metaheuristics

CP like
Rollout
Beam Search
Iterated Greedy
GRASP

2. Local Search
Components
Beyond Local Optima
Search Space Properties
Neighborhood Representations
Efficient Local Search
Metaheuristics

Min Conflict Heuristic
Tabu Search
Iterated Local Search

Marco Chiarandini .::. 3

Construction Heuristics
Local Search

Introduction

Heuristic methods make use of two search paradigms:

construction rules (extends partial solutions)

local search (modifies complete solutions)

These components are problem specific and implement informed search.

They can be improved by use of metaheuristics which are general-purpose
guidance criteria for underlying problem specific components.

Final heuristic algorithms are often hybridization of several components.

Marco Chiarandini .::. 4

Construction Heuristics
Local Search

General Principles
Metaheuristics

Outline

1. Construction Heuristics
General Principles
Metaheuristics

CP like
Rollout
Beam Search
Iterated Greedy
GRASP

2. Local Search
Components
Beyond Local Optima
Search Space Properties
Neighborhood Representations
Efficient Local Search
Metaheuristics

Min Conflict Heuristic
Tabu Search
Iterated Local Search

Marco Chiarandini .::. 5

Construction Heuristics
Local Search

General Principles
Metaheuristics

Construction Heuristics

Heuristic: a common-sense rule (or set of rules) intended to increase the
probability of solving some problem

Construction heuristics

(aka, single pass heuristics, dispatching rules)
They are closely related to tree search techniques but correspond to a single
path from root to leaf

search space = partial candidate solutions
search step = extension with one or more solution components

Construction Heuristic (CH):
s := ∅
while s is not a complete solution do

choose a solution component c
add the solution component to s

Marco Chiarandini .::. 7

Construction Heuristics
Local Search

General Principles
Metaheuristics

Greedy best-first search

Marco Chiarandini .::. 8

Construction Heuristics
Local Search

General Principles
Metaheuristics

Sometimes greedy heuristics can be proved to be optimal
(Minimum Spanning Tree, Single Source Shortest Path,
1||∑wjCj , 1||Lmax)

Other times an approximation ratio can be proved

Marco Chiarandini .::. 9

Construction Heuristics
Local Search

General Principles
Metaheuristics

Designing heuristics
Same idea of (variable, value) selection in CP without backtracking

Variable
* INT_VAR_NONE: First unassigned

* INT_VAR_MIN_MIN: With smallest min
* INT_VAR_MIN_MAX: With largest min
* INT_VAR_MAX_MIN: With smallest max
* INT_VAR_MAX_MAX: With largest max

* INT_VAR_SIZE_MIN: With smallest domain size
* INT_VAR_SIZE_MAX: With largest domain size

* INT_VAR_DEGREE_MIN: With smallest degree The degree of a variable is defined as the number of dependant
propagators. In case of ties, choose the variable with smallest domain.

* INT_VAR_DEGREE_MAX: With largest degree The degree of a variable is defined as the number of dependant
propagators. In case of ties, choose the variable with smallest domain.

* INT_VAR_SIZE_DEGREE_MIN: With smallest domain size divided by degree
* INT_VAR_SIZE_DEGREE_MAX: With largest domain size divided by degree

* INT_VAR_REGRET_MIN_MIN: With smallest min-regret The min-regret of a variable is the difference between the
smallest and second-smallest value still in the domain.

* INT_VAR_REGRET_MIN_MAX: With largest min-regret The min-regret of a variable is the difference between the
smallest and second-smallest value still in the domain.

* INT_VAR_REGRET_MAX_MIN: With smallest max-regret The max-regret of a variable is the difference between the
largest and second-largest value still in the domain.

* INT_VAR_REGRET_MAX_MAX: With largest max-regret The max-regret of a variable is the difference between the
largest and second-largest

value still in the domain.

Static vs Dynamic (è quality, time tradeoff)

Marco Chiarandini .::. 10

Construction Heuristics
Local Search

General Principles
Metaheuristics

Designing heuristics
Same idea of (variable, value) selection in CP without backtracking

Value
* INT_VAL_MIN: Select smallest value
* INT_VAL_MED: Select median value
* INT_VAL_MAX: Select maximal value

* INT_VAL_SPLIT_MIN: Select lower half of domain
* INT_VAL_SPLIT_MAX: Select upper half of domain

Static vs Dynamic (è quality, time tradeoff)
Marco Chiarandini .::. 10

Construction Heuristics
Local Search

General Principles
Metaheuristics

Dispatching Rules in Scheduling

[Appendix C.2 of B1]

RULE DATA OBJECTIVES
Rules Dependent ERD rj Variance in Throughput Times
on Release Dates EDD dj Maximum Lateness
and Due Dates MS dj Maximum Lateness

LPT pj Load Balancing over Parallel Machines
Rules Dependent SPT pj Sum of Completion Times, WIP
on Processing WSPT pj , wj Weighted Sum of Completion Times, WIP
Times CP pj , prec Makespan

LNS pj , prec Makespan
SIRO - Ease of Implementation

Miscellaneous SST sjk Makespan and Throughput
LFJ Mj Makespan and Throughput
SQNO - Machine Idleness

Marco Chiarandini .::. 11

Construction Heuristics
Local Search

General Principles
Metaheuristics

Truncated Search
They can be seen as form of Metaheuristics

Limited Discrepancy Search (LDS)

Credit-based search

Barrier Search

Marco Chiarandini .::. 13

Construction Heuristics
Local Search

General Principles
Metaheuristics

Rollout Method

(aka, pilot method) [Bertsekas, Tsitsiklis, Cynara, JoH, 1997]
Derived from A∗

Each candidate solution is a collection of m components
S = (s1, s2, . . . , sm).
Master process adds components sequentially to a partial solution
Sk = (s1, s2, . . . sk)

At the k-th iteration the master process evaluates seemly feasible
components to add based on a look-ahead strategy based on heuristic
algorithms.
The evaluation function H(Sk+1) is determined by sub-heuristics that
complete the solution starting from Sk

Sub-heuristics are combined in H(Sk+1) by
weighted sum
minimal value

Marco Chiarandini .::. 18

Construction Heuristics
Local Search

General Principles
Metaheuristics

Rollout Method

Speed-ups:

halt whenever cost of current partial solution exceeds current upper
bound
evaluate only a fraction of possible components

Marco Chiarandini .::. 19

Construction Heuristics
Local Search

General Principles
Metaheuristics

Beam Search

[Lowerre, Complex System, 1976]
Derived from A∗ and branch and bound

maintains a set B of bw (beam width) partial candidate solutions

at each iteration extend each solution from B in fw (filter width)
possible ways

rank each bw × fw candidate solutions and take the best bw partial
solutions

complete candidate solutions obtained by B are maintained in Bf

Stop when no partial solution in B is to be extended

Marco Chiarandini .::. 20

Construction Heuristics
Local Search

General Principles
Metaheuristics

Iterated Greedy

Key idea: use greedy construction

alternation of Construction and Deconstruction phases
an acceptance criterion decides whether the search continues from the
new or from the old solution.

Iterated Greedy (IG):
determine initial candidate solution s
while termination criterion is not satisfied do

r := s
greedily destruct part of s
greedily reconstruct the missing part of s
based on acceptance criterion,

keep s or revert to s := r

Marco Chiarandini .::. 21

Construction Heuristics
Local Search

General Principles
Metaheuristics

GRASP
Greedy Randomized Adaptive Search Procedure (GRASP) [Feo and Resende,
1989]

Key Idea: Combine randomized constructive search with subsequent
perturbative search.

Motivation:

Candidate solutions obtained from construction heuristics can often be
substantially improved by perturbative search.

Perturbative search methods typically often require substantially fewer
steps to reach high-quality solutions
when initialized using greedy constructive search rather than
random picking.

By iterating cycles of constructive + perturbative search, further
performance improvements can be achieved.

Marco Chiarandini .::. 23

Construction Heuristics
Local Search

General Principles
Metaheuristics

Greedy Randomized “Adaptive” Search Procedure (GRASP):
While termination criterion is not satisfied:
|| generate candidate solution s using
|| subsidiary greedy randomized constructive search
||b perform subsidiary perturbative search on s

Note:
Randomization in constructive search ensures that a large number of
good starting points for subsidiary perturbative search is obtained.
Constructive search in GRASP is ‘adaptive’ (or dynamic):
Heuristic value of solution component to be added to
given partial candidate solution r may depend on
solution components present in r .
Variants of GRASP without perturbative search phase
(aka semi-greedy heuristics) typically do not reach
the performance of GRASP with perturbative search.

Marco Chiarandini .::. 24

Construction Heuristics
Local Search

General Principles
Metaheuristics

Restricted candidate lists (RCLs)

Each step of constructive search adds a solution component selected
uniformly at random from a restricted candidate list (RCL).

RCLs are constructed in each step using a heuristic function h.

RCLs based on cardinality restriction comprise the k best-ranked solution
components. (k is a parameter of the algorithm.)

RCLs based on value restriction comprise all solution components l for
which h(l) ≤ hmin + α · (hmax − hmin),
where hmin = minimal value of h and hmax = maximal value
of h for any l . (α is a parameter of the algorithm.)

Marco Chiarandini .::. 25

Construction Heuristics
Local Search

Components
Beyond Local Optima
Search Space Properties
Neighborhood Representations
Efficient Local Search
MetaheuristicsOutline

1. Construction Heuristics
General Principles
Metaheuristics

CP like
Rollout
Beam Search
Iterated Greedy
GRASP

2. Local Search
Components
Beyond Local Optima
Search Space Properties
Neighborhood Representations
Efficient Local Search
Metaheuristics

Min Conflict Heuristic
Tabu Search
Iterated Local Search

Marco Chiarandini .::. 28

Construction Heuristics
Local Search

Components
Beyond Local Optima
Search Space Properties
Neighborhood Representations
Efficient Local Search
MetaheuristicsLocal Search Paradigm

search space = complete candidate solutions
search step = modification of one or more solution components

iteratively generate and evaluate candidate solutions
decision problems: evaluation = test if solution
optimization problems: evaluation = check objective function value

evaluating candidate solutions is typically computationally much cheaper
than finding (optimal) solutions

Iterative Improvement (II):
determine initial candidate solution s
while s has better neighbors do

choose a neighbor s ′ of s such that f (s ′) < f (s)
s := s ′

Marco Chiarandini .::. 30

Construction Heuristics
Local Search

Components
Beyond Local Optima
Search Space Properties
Neighborhood Representations
Efficient Local Search
MetaheuristicsExample: Travelling Salesperson Problem

Start with any complete tour, perform pairwise exchanges

Variants of this approach get within 1% of optimal very quickly with
thousands of cities

Marco Chiarandini .::. 31

Construction Heuristics
Local Search

Components
Beyond Local Optima
Search Space Properties
Neighborhood Representations
Efficient Local Search
MetaheuristicsExample: n-queens

Put n queens on an n × n board with no two queens on the same
row, column, or diagonal
Move a queen to reduce number of conflicts

h = 5 h = 2 h = 0

Almost always solves n-queens problems almost instantaneously
for very large n, e.g., n = 1million

Marco Chiarandini .::. 32

Construction Heuristics
Local Search

Components
Beyond Local Optima
Search Space Properties
Neighborhood Representations
Efficient Local Search
MetaheuristicsExample: n-queens

Current cost 17

8 possible successor

Marco Chiarandini .::. 33

Construction Heuristics
Local Search

Components
Beyond Local Optima
Search Space Properties
Neighborhood Representations
Efficient Local Search
MetaheuristicsHill-climbing contd.

Useful to think of state space landscape

current
state

objective function

state space

global maximum

local maximum

"flat" local maximum

shoulder

Random-restart hill climbing overcomes local maxima—trivially complete
Random sideways moves escape from shoulders loop on flat maxima

Marco Chiarandini .::. 34

Construction Heuristics
Local Search

Components
Beyond Local Optima
Search Space Properties
Neighborhood Representations
Efficient Local Search
MetaheuristicsLocal Search Algorithm (1)

[Hoos and Stützle, 2005]

Given a (combinatorial) optimization problem Π and one of its instances π:

search space S(π)
specified by candidate solution representation:
discrete structures: sequences, permutations, graphs, partitions
(e.g., for Queens: array of column assignment)

Note: solution set S ′(π) ⊆ S(π)
(e.g., for Queens: not all assignments satisfy all constraints)

evaluation function f (π) : S(π) 7→ R
(e.g., for Queens: number of offending Queens)

neighborhood function, N (π) : S 7→ 2S(π)

(e.g., for Queens: neighboring variable assignments differ
in the value of exactly one queen)

Marco Chiarandini .::. 35

Construction Heuristics
Local Search

Components
Beyond Local Optima
Search Space Properties
Neighborhood Representations
Efficient Local Search
MetaheuristicsLocal Search Algorithm (2)

set of memory states M(π)
(may consist of a single state, for LS algorithms that
do not use memory)

initialization function init : ∅ 7→ P(S(π)×M(π))
(specifies probability distribution over initial search positions and
memory states)

step function step : S(π)×M(π) 7→ P(S(π)×M(π))
(maps each search position and memory state onto
probability distribution over subsequent, neighboring
search positions and memory states)

termination predicate terminate : S(π)×M(π) 7→ P({>,⊥})
(determines the termination probability for each
search position and memory state)

Marco Chiarandini .::. 36

Construction Heuristics
Local Search

Components
Beyond Local Optima
Search Space Properties
Neighborhood Representations
Efficient Local Search
MetaheuristicsLocal Search Algorithm

For given problem instance π:

search space (solution representation) S(π)

neighborhood relation N (π) ⊆ S(π)× S(π)

evaluation function f (π) : S 7→ R

set of memory states M(π)

initialization function init : ∅ 7→ P(S(π)×M(π))

step function step : S(π)×M(π) 7→ P(S(π)×M(π))

termination predicate terminate : S(π)×M(π) 7→ P({>,⊥})

Marco Chiarandini .::. 37

Construction Heuristics
Local Search

Components
Beyond Local Optima
Search Space Properties
Neighborhood Representations
Efficient Local Search
MetaheuristicsLS Algorithm Components

Search Space

Defined by the solution representation:

permutations
linear (scheduling)
circular (TSP)

arrays (assignment problems: Timetabling)

sets or lists (partition problems: SCP, VRP)

Marco Chiarandini .::. 38

Construction Heuristics
Local Search

Components
Beyond Local Optima
Search Space Properties
Neighborhood Representations
Efficient Local Search
MetaheuristicsLS Algorithm Components

Neighborhood function N (π) : S(π) 7→ 2S(π)

Also defined as: N : S × S → {T ,F} or N ⊆ S × S

neighborhood (set) of candidate solution s: N(s) := {s ′ ∈ S | N (s, s ′)}
neighborhood size is |N(s)|
neighborhood is symmetric if: s ′ ∈ N(s)⇒ s ∈ N(s ′)

neighborhood graph of (S ,N, π) is a directed vertex-weighted graph:
GN (π) := (V ,A) with V = S(π) and (uv) ∈ A⇔ v ∈ N(u)
(if symmetric neighborhood ⇒ undirected graph)

Note on notation: N when set, N when collection of sets or function

Marco Chiarandini .::. 39

Construction Heuristics
Local Search

Components
Beyond Local Optima
Search Space Properties
Neighborhood Representations
Efficient Local Search
Metaheuristics

A neighborhood function is also defined by means of an operator.

An operator ∆ is a collection of operator functions δ : S → S such that

s ′ ∈ N(s) ⇐⇒ ∃ δ ∈ ∆, δ(s) = s ′

Definition

k-exchange neighborhood: candidate solutions s, s ′ are neighbors iff s differs
from s ′ in at most k solution components

Examples:

1-exchange (flip) neighborhood for Queens
(solution components = single variable assignments)

2-exchange neighborhood for TSP
(solution components = edges in given graph)

Marco Chiarandini .::. 40

Construction Heuristics
Local Search

Components
Beyond Local Optima
Search Space Properties
Neighborhood Representations
Efficient Local Search
MetaheuristicsLS Algorithm Components

Search step (or move):
pair of search positions s, s ′ for which
s ′ can be reached from s in one step, i.e., N (s, s ′) and
step({s,m}, {s ′,m′}) > 0 for some memory states m,m′ ∈ M.

Search strategy: specified by init and step function;
to some extent independent of problem instance and
other components of LS algorithm.

Search trajectory: finite sequence of search positions < s0, s1, . . . , sk >
such that (si−1, si) is a search step for any i ∈ {1, . . . , k}

random
based on evaluation function
based on memory

Marco Chiarandini .::. 42

Construction Heuristics
Local Search

Components
Beyond Local Optima
Search Space Properties
Neighborhood Representations
Efficient Local Search
MetaheuristicsLS Algorithm Components

Evaluation (or cost) function:

function f (π) : S(π) 7→ R that maps candidate solutions of
a given problem instance π onto real numbers,
such that global optima correspond to solutions of π;

used for ranking or assessing neighbors of current
search position to provide guidance to search process.

Evaluation vs objective functions:

Evaluation function: part of LS algorithm.
Objective function: integral part of optimization problem.
Some LS methods use evaluation functions different from given objective
function (e.g., dynamic local search).

Marco Chiarandini .::. 44

Construction Heuristics
Local Search

Components
Beyond Local Optima
Search Space Properties
Neighborhood Representations
Efficient Local Search
Metaheuristics

Iterative Improvement

does not use memory
init: uniform random choice from S
step: uniform random choice from improving neighbors,
i.e., step({s}, {s ′}) := 1/|I (s)| if s ′ ∈ I (s), and 0 otherwise,
where I (s) := {s ′ ∈ S | N (s, s ′) and f (s ′) < f (s)}
terminates when no improving neighbor available
(to be revisited later)

different variants through modifications of step function
(to be revisited later)

Note: II is also known as iterative descent or hill-climbing.

Marco Chiarandini .::. 45

Construction Heuristics
Local Search

Components
Beyond Local Optima
Search Space Properties
Neighborhood Representations
Efficient Local Search
Metaheuristics

Definition:

Local minimum: search position without improving neighbors w.r.t.
given evaluation function f and neighborhood N ,
i.e., position s ∈ S such that f (s) ≤ f (s ′) for all s ′ ∈ N(s).

Strict local minimum: search position s ∈ S such that
f (s) < f (s ′) for all s ′ ∈ N(s).

Local maxima and strict local maxima: defined analogously.

Marco Chiarandini .::. 47

Construction Heuristics
Local Search

Components
Beyond Local Optima
Search Space Properties
Neighborhood Representations
Efficient Local Search
Metaheuristics

There might be more than one neighbor that have better cost.

Pivoting rule decides which to choose:

Best Improvement (aka gradient descent, steepest descent, greedy
hill-climbing): Choose maximally improving neighbor,
i.e., randomly select from I ∗(s) := {s ′ ∈ N(s)|f (s ′) = f ∗},
where f ∗ := min{f (s ′)|s ′ ∈ N(s)}.
Note: Requires evaluation of all neighbors in each step.

First Improvement: Evaluate neighbors in fixed order,
choose first improving step encountered.

Note: Can be much more efficient than Best Improvement; order of
evaluation can have significant impact on performance.

Marco Chiarandini .::. 48

Construction Heuristics
Local Search

Components
Beyond Local Optima
Search Space Properties
Neighborhood Representations
Efficient Local Search
MetaheuristicsA note on terminology

Method 6= Algorithm

Heuristic Methods ≡ Metaheuristics ≡ Local Search Methods ≡ Stochastic
Local Search Methods ≡ Hybrid Metaheuristics

Stochastic Local Search (SLS) algorithms allude to:
Local Search: informed search based on local or incomplete knowledge
as opposed to systematic search
Stochastic: use randomized choices in generating and modifying
candidate solutions. They are introduced whenever it is unknown which
deterministic rules are profitable for all the instances of interest.

Marco Chiarandini .::. 49

Construction Heuristics
Local Search

Components
Beyond Local Optima
Search Space Properties
Neighborhood Representations
Efficient Local Search
MetaheuristicsEscaping from Local Optima

Enlarge the neighborhood

Restart: re-initialize search whenever a local optimum
is encountered.
(Often rather ineffective due to cost of initialization.)

Non-improving steps: in local optima, allow selection of
candidate solutions with equal or worse evaluation function value, e.g.,
using minimally worsening steps.
(Can lead to long walks in plateaus, i.e., regions of
search positions with identical evaluation function.)

Note: None of these mechanisms is guaranteed to always
escape effectively from local optima.

Marco Chiarandini .::. 51

Construction Heuristics
Local Search

Components
Beyond Local Optima
Search Space Properties
Neighborhood Representations
Efficient Local Search
Metaheuristics

Diversification vs Intensification

Goal-directed and randomized components of LS strategy need to be
balanced carefully.

Intensification: greedily increase solution quality or probability, e.g., by
exploiting the evaluation function.

Diversification: prevent search stagnation by avoiding search process
from getting trapped in confined regions.

Examples:

Iterative Improvement (II): intensification strategy.
Uninformed Random Walk/Picking (URW/P): diversification strategy.

Balanced combination of intensification and diversification mechanisms forms
the basis for advanced LS methods.

Marco Chiarandini .::. 52

Construction Heuristics
Local Search

Components
Beyond Local Optima
Search Space Properties
Neighborhood Representations
Efficient Local Search
MetaheuristicsDefinitions

Search space S

Neighborhood function N : S ⊆ 2S

Evaluation function f (π) : S 7→ R

Problem instance π

Definition:
The search landscape L is the vertex-labeled neighborhood graph given by
the triplet L = (S(π),N(π), f (π)).

Marco Chiarandini .::. 55

Construction Heuristics
Local Search

Components
Beyond Local Optima
Search Space Properties
Neighborhood Representations
Efficient Local Search
MetaheuristicsSearch Space Properties

The behavior and performance of an LS algorithm on a given problem
instance crucially depends on properties of the respective search space.

Simple properties of search space S :

search space size |S |
reachability: solution j is reachable from solution i if neighborhood
graph has a path from i to j .

strongly connected neighborhood graph

weakly optimally connected neighborhood graph

Marco Chiarandini .::. 56

Construction Heuristics
Local Search

Components
Beyond Local Optima
Search Space Properties
Neighborhood Representations
Efficient Local Search
MetaheuristicsSolution Representations

Three different types of solution representations:
Permutation

linear permutation: Single Machine Total Weighted Tardiness Problem
circular permutation: Traveling Salesman Problem

Assignment: CSP, Timetabling
Set, Partition: Crew Scheduling, Vehicle Routing

A neighborhood function N : S → S × S is also defined through an operator.
An operator ∆ is a collection of operator functions δ : S → S such that

s ′ ∈ N(s) ⇐⇒ ∃δ ∈ ∆ | δ(s) = s ′

Marco Chiarandini .::. 58

Construction Heuristics
Local Search

Components
Beyond Local Optima
Search Space Properties
Neighborhood Representations
Efficient Local Search
MetaheuristicsPermutations

Π(n) indicates the set all permutations of the numbers {1, 2, . . . , n}

(1, 2 . . . , n) is the identity permutation ι.

If π ∈ Π(n) and 1 ≤ i ≤ n then:
πi is the element at position i
posπ(i) is the position of element i

∆N ⊂ Π

Marco Chiarandini .::. 59

Construction Heuristics
Local Search

Components
Beyond Local Optima
Search Space Properties
Neighborhood Representations
Efficient Local Search
MetaheuristicsOperators for Linear Permutations

Swap operator
∆S = {δi

S |1 ≤ i ≤ n}

δi
S(π1 . . . πiπi+1 . . . πn) = (π1 . . . πi+1πi . . . πn)

Interchange operator
∆X = {δij

X |1 ≤ i < j ≤ n}

δij
X (π) = (π1 . . . πi−1πjπi+1 . . . πj−1πiπj+1 . . . πn)

(≡ set of all transpositions)

Insert operator
∆I = {δij

I |1 ≤ i ≤ n, 1 ≤ j ≤ n, j 6= i}

δij
I (π) =


(π1 . . . πi−1πi+1 . . . πjπiπj+1 . . . πn) i < j
(π1 . . . πjπiπj+1 . . . πi−1πi+1 . . . πn) i > j

Marco Chiarandini .::. 60

Construction Heuristics
Local Search

Components
Beyond Local Optima
Search Space Properties
Neighborhood Representations
Efficient Local Search
MetaheuristicsOperators for Circular Permutations

Reversal (2-edge-exchange)

∆R = {δijR |1 ≤ i < j ≤ n}

δijR(π) = (π1 . . . πi−1πj . . . πiπj+1 . . . πn)

Block moves (3-edge-exchange)

∆B = {δijkB |1 ≤ i < j < k ≤ n}

δijB(π) = (π1 . . . πi−1πj . . . πkπi . . . πj−1πk+1 . . . πn)

Short block move (Or-edge-exchange)

∆SB = {δijSB |1 ≤ i < j ≤ n}

δijSB(π) = (π1 . . . πi−1πjπj+1πj+2πi . . . πj−1πj+3 . . . πn)

Marco Chiarandini .::. 61

Construction Heuristics
Local Search

Components
Beyond Local Optima
Search Space Properties
Neighborhood Representations
Efficient Local Search
MetaheuristicsOperators for Assignments

An assignment can be represented as a mapping
σ : {X1 . . .Xn} → {v : v ∈ D, |D| = k}:

σ = {Xi = vi ,Xj = vj , . . .}
One-exchange operator

∆1E = {δil
1E |1 ≤ i ≤ n, 1 ≤ l ≤ k}

δil
1E

`
σ) =

˘
σ : σ′(Xi) = vl and σ′(Xj) = σ(Xj) ∀j 6= i

¯

Two-exchange operator

∆2E = {δij
2E |1 ≤ i < j ≤ n}

δij
2E

˘
σ : σ′(Xi) = σ(Xj), σ

′(Xj) = σ(Xi) and σ′(Xl) = σ(Xl) ∀l 6= i , j
¯

Marco Chiarandini .::. 62

Construction Heuristics
Local Search

Components
Beyond Local Optima
Search Space Properties
Neighborhood Representations
Efficient Local Search
MetaheuristicsOperators for Partitions or Sets

An assignment can be represented as a partition of objects selected and not
selected s : {X} → {C ,C}
(it can also be represented by a bit string)

One-addition operator
∆1E = {δv

1E |v ∈ C}

δv
1E

`
s) =

˘
s : C ′ = C ∪ v and C

′
= C \ v}

One-deletion operator
∆1E = {δv

1E |v ∈ C}

δv
1E

`
s) =

˘
s : C ′ = C \ v and C

′
= C ∪ v}

Swap operator
∆1E = {δv

1E |v ∈ C , u ∈ C}

δv
1E

`
s) =

˘
s : C ′ = C ∪ u \ v and C

′
= C ∪ v \ u}

Marco Chiarandini .::. 63

Construction Heuristics
Local Search

Components
Beyond Local Optima
Search Space Properties
Neighborhood Representations
Efficient Local Search
MetaheuristicsEfficiency vs Effectiveness

The performance of local search is determined by:

1. quality of local optima (effectiveness)

2. time to reach local optima (efficiency):

A. time to move from one solution to the next

B. number of solutions to reach local optima

Marco Chiarandini .::. 65

Construction Heuristics
Local Search

Components
Beyond Local Optima
Search Space Properties
Neighborhood Representations
Efficient Local Search
Metaheuristics

Note:
Local minima depend on f and neighborhood function N .
Larger neighborhoods N induce

neighborhood graphs with smaller diameter;
fewer local minima.

Ideal case: exact neighborhood, i.e., neighborhood function
for which any local optimum is also guaranteed to be
a global optimum.

Typically, exact neighborhoods are too large to be searched effectively
(exponential in size of problem instance).
But: exceptions exist, e.g., polynomially searchable neighborhood in
Simplex Algorithm for linear programming.

Marco Chiarandini .::. 66

Construction Heuristics
Local Search

Components
Beyond Local Optima
Search Space Properties
Neighborhood Representations
Efficient Local Search
Metaheuristics

Trade-off (to be assessed experimentally):

Using larger neighborhoods
can improve performance of II (and other LS methods).
But: time required for determining improving search steps
increases with neighborhood size.

Speedups Techniques for Efficient Neighborhood Search

1) Incremental updates

2) Neighborhood pruning

Marco Chiarandini .::. 67

Construction Heuristics
Local Search

Components
Beyond Local Optima
Search Space Properties
Neighborhood Representations
Efficient Local Search
MetaheuristicsSpeedups in Neighborhood Examination

1) Incremental updates (aka delta evaluations)

Key idea: calculate effects of differences between
current search position s and neighbors s ′ on
evaluation function value.

Evaluation function values often consist of
independent contributions of solution components;
hence, f (s) can be efficiently calculated from f (s ′) by differences
between s and s ′ in terms of solution components.

Typically crucial for the efficient implementation of
II algorithms (and other LS techniques).

Marco Chiarandini .::. 68

Construction Heuristics
Local Search

Components
Beyond Local Optima
Search Space Properties
Neighborhood Representations
Efficient Local Search
Metaheuristics

Example: Incremental updates for TSP

solution components = edges of given graph G
standard 2-exchange neighborhood, i.e., neighboring
round trips p, p′ differ in two edges

w(p′) := w(p) − edges in p but not in p′

+ edges in p′ but not in p

Note: Constant time (4 arithmetic operations), compared to
linear time (n arithmetic operations for graph with n vertices)
for computing w(p′) from scratch.

Marco Chiarandini .::. 69

Construction Heuristics
Local Search

Components
Beyond Local Optima
Search Space Properties
Neighborhood Representations
Efficient Local Search
Metaheuristics

2) Neighborhood Pruning

Idea: Reduce size of neighborhoods by excluding neighbors that are
likely (or guaranteed) not to yield improvements in f .
Note: Crucial for large neighborhoods, but can be also very useful for
small neighborhoods (e.g., linear in instance size).

Example: Heuristic candidate lists for the TSP

Intuition: High-quality solutions likely include short edges.
Candidate list of vertex v : list of v ’s nearest neighbors (limited number),
sorted according to increasing edge weights.
Search steps (e.g., 2-exchange moves) always involve edges to elements
of candidate lists.
Significant impact on performance of LS algorithms
for the TSP.

Marco Chiarandini .::. 70

Construction Heuristics
Local Search

Components
Beyond Local Optima
Search Space Properties
Neighborhood Representations
Efficient Local Search
MetaheuristicsMin Conflict Heuristic

A variable x is selected uniformly at random from the conflict set K (a)

A value v is chosen from the domain of x , such that assigning v to x ,
the number of conflicts is minimized. Break ties at random.

Marco Chiarandini .::. 72

Construction Heuristics
Local Search

Components
Beyond Local Optima
Search Space Properties
Neighborhood Representations
Efficient Local Search
MetaheuristicsMin Conflict Heuristic

Marco Chiarandini .::. 73

Construction Heuristics
Local Search

Components
Beyond Local Optima
Search Space Properties
Neighborhood Representations
Efficient Local Search
MetaheuristicsTabu Search

Key idea: Use aspects of search history (memory) to escape from local
minima.

Associate tabu attributes with candidate solutions or
solution components.

Forbid steps to search positions recently visited by
underlying iterative best improvement procedure based on
tabu attributes.

Tabu Search (TS):
determine initial candidate solution s
While termination criterion is not satisfied:
|| determine set N ′ of non-tabu neighbors of s
|| choose a best improving candidate solution s ′ in N ′
|||| update tabu attributes based on s ′
b s := s ′

Marco Chiarandini .::. 74

Construction Heuristics
Local Search

Components
Beyond Local Optima
Search Space Properties
Neighborhood Representations
Efficient Local Search
Metaheuristics

Non-tabu search positions in N(s) are called
admissible neighbors of s.

After a search step, the current search position
or the solution components just added/removed from it
are declared tabu for a fixed number of subsequent
search steps (tabu tenure).

Often, an additional aspiration criterion is used: this specifies
conditions under which tabu status may be overridden (e.g., if
considered step leads to improvement in incumbent solution).

Marco Chiarandini .::. 75

Construction Heuristics
Local Search

Components
Beyond Local Optima
Search Space Properties
Neighborhood Representations
Efficient Local Search
Metaheuristics

Crucial for efficient implementation:

keep time complexity of search steps minimal
by using special data structures, incremental updating
and caching mechanism for evaluation function values;

efficient determination of tabu status:
store for each variable x the number of the search step
when its value was last changed itx ; x is tabu if
it − itx < tt, where it = current search step number.

Marco Chiarandini .::. 76

Construction Heuristics
Local Search

Components
Beyond Local Optima
Search Space Properties
Neighborhood Representations
Efficient Local Search
Metaheuristics

Note: Performance of Tabu Search depends crucially on
setting of tabu tenure tt:

tt too low ⇒ search stagnates due to inability to escape
from local minima;
tt too high ⇒ search becomes ineffective due to overly restricted search
path (admissible neighborhoods too small)

Marco Chiarandini .::. 77

Construction Heuristics
Local Search

Components
Beyond Local Optima
Search Space Properties
Neighborhood Representations
Efficient Local Search
MetaheuristicsIterated Local Search

Key Idea: Use two types of LS steps:
subsidiary local search steps for reaching
local optima as efficiently as possible (intensification)

perturbation steps for effectively
escaping from local optima (diversification).

Also: Use acceptance criterion to control diversification vs intensification
behavior.

Iterated Local Search (ILS):
determine initial candidate solution s
perform subsidiary local search on s
While termination criterion is not satisfied:
|| r := s
|| perform perturbation on s
|| perform subsidiary local search on s
|||| based on acceptance criterion,
b keep s or revert to s := r

Marco Chiarandini .::. 78

