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How to solve MIP programs vk

Use a mathematical workbench like MATLAB, MATHEMATICA,
MAPLE, R.

Use a modeling language to convert the theoretical model to a computer
usable representation and employ an out-of-the-box general solver to
find solutions.

Use a framework that already has many general algorithms available and
only implement problem specific parts, e. g., separators or upper
bounding.

Develop everything yourself, maybe making use of libraries that provide
high-performance implementations of specific algorithms.

Thorsten Koch
“Rapid Mathematical Programming”
Technische Universitat, Berlin, Dissertation, 2004
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o Use a mathematical workbench like MATLAB. MATHEMATICA @ Use a modeling language to convert the theoretical model to a computer
MAPLE. R. ' ' usable representation and employ an out-of-the-box general solver to

find solutions.

Advant : if famili ith th kbench . . . . .
vantages: easy I famiiar wi € Workbenc Advantages: flexible on modeling side, easy to use, immediate results, easy

. ) iff | ibl itch iffe -of-the-
Disadvantages: restricted, not state-of-the-art §Z|t:2 different models, possible to switch between different state-of-the-art
Vi

Disadvantages: algoritmical restrictions in the solution process, no upper
bounding possible
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@ Use a framework that already has many general algorithms available and
only implement problem specific parts, e.g., separators or upper
bounding.

@ Develop everything yourself, maybe making use of libraries that provide
high-performance implementations of specific algorithms.

) o ) Advantages: specific implementations and max flexibility
Advantages: allow to implement sophisticated solvers, high performance

bricks are available, flexible Disadvantages: for extremely large problems, bounding procedures are more

. _ . - crucial than branchin
Disadvantages: view imposed by designers, vendor specific hence no trans- &

ferability,
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Modeling Languages Modzs
Name URL Solver  State
ammms  Advanced Integrated Multi-dimensional Modeling Software  wwwaimms.com open  commercial
AMPL A Modeling Language for Mathematical Programming www.ampl.com open  commercial
GAMS General Algebraic Modeling System www.gams.com open  commercial
LINGO Lingo wwwilindo.com fixed  commercial
LPL (Linear|LogicallLiterate) Programming Language www.virtual-optima.com open  commercial
miNopT  Mixed Integer Non-linear Optimizer titan.princeton.edu/MINOPT ~ open  mixed
MOSEL Mosel www.dashoptimization.com  fixed commercial
MPL Mathematical Programming Language www.maximalsoftwarecom — open  commercial
OMNI Oomni wwwvrhaverly.com open  commercial
OPL Optimization Programming Language wwwilog.com fixed  commercial
aNU-MP  GNU Mathematical Programming Language www.gnu.org/software/glpk ~ fixed  free
ZIMPL Zuse Institute Mathematical Programming Language www.zib de/koch/zimpl open free
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MIP-Solvers

Thorsten Koch
“Rapid Mathematical Programming”
Technische Universitit, Berlin, Dissertation, 2004
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CPLEX  http://www.ilog.com/products/cplex
SCIP http://zibopt.zib.de/
GUROBI  http://www.gurobi.com/
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LP-Solvers

CPLEX
XPRESS-MP
SOPLEX
COIN CLP
GLPK
LP_SOLVE
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http://www.ilog.com/products/cplex
http://www.dashoptimization.com
http://www.zib.de/Optimization/Software/Soplex
http://www.coin-or.org
http://www.gnu.org/software/glpk
http://lpsolve.sourceforge.net/

“Software Survey: Linear Programming” by Robert Fourer
http://www.lionhrtpub.com/orms/orms-6-05/frsurvey.html
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ZIBOpt Modeling Cycle

@ Zimpl is a little algebraic Modeling language to translate the
mathematical model of a problem into a linear or (mixed-) integer —  Jnalyze Real o CMopesewtion | ol Runsolver
athematical model of a problem into a linear or (mixed-) intege ord Problem Al
mathematical program expressed in .Ip or .mps file format which can be T
read and (hopefully) solved by a LP or MIP solver. Identify
Modeling Goal Translate Model
. . to Solver Input Analyze Output
@ Scip is an IP-Solver. It solves Integer Programs and Constraint !
Programs: the problem is successively divided into smaller subproblems Buig Mehe e
(branchlng) that are solved recurswely.. Integer Programming uses LP ; ameinte Data Write
relaxations and cutting planes to provide strong dual bounds, while \dentity to Solver Input Result Report
Constraint Programming can handle arbitrary (non-linear) constraints Data Sources
and uses propagation to tighten domains of variables. §
Collect & Construct Interpret
i . . i . Analyze Data N Derived Data IR Result Report
@ SoPlex is an LP-Solver. It implements the revised simplex algorithm. It I

features primal and dual solving routines for linear programs and is
implemented as a C++ class library that can be used with other
programs (like SCIP). It can solve standalone linear programs given in
MPS or LP-Format.

H. Schichl. “Models and the history of modeling”.
In Kallrath, ed., Modeling Languages in Mathematical Optimization, Kluwer, 2004.
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@ Min cost flow

[

Shortest path

o Max flow

Assignment and Bipartite Matching

3. Models

Transportation

Multicommmodies
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Modele Traveling Salesman Problem vk

,014

Set Covering Set Partitioning Set Packing
n . n n
min > ¢x; min > X max >’ ¢Xj
j=1 J?l J?l
n . .
Sagx>1 Vi ZlaUijl vi 2oapg <1 Vi
=1 j= j=
Xj € {0,1} Xj € {0/ 1} Xj € {Oa 1}
Figure 3.1 Locations of the 42 cities.
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Traveling Salesman Problem vk Traveling Salesman Problem vk
Assignment problem - easy, naturally integer.
Indices: 7 = teacher, j = course.
Parameters: ¢, = value it teacher 7 is assigned to course /. We have subtours.
Variables:  x, = 1 it teacher 7 is assigned to course j, else 0.

Model AP: 1) Max Ezzj Gy subject to
2) E-Xy.: 1, t_or all 4,
3) %= 1, toF all /,
4) xg.,E {0,1}, for all 7.

Explanation: 1) Maximise value of assignments.
2) Assign each teacher 7 to one course.
3) Assign each coutse j to one teacher.

Almost the TSP. Is AP a possible formulation for the TSP?

Indices: 7, j = city.

Oops. How do we get 11d of these?

Parameter: ¢; = cost to go trom city 7 to city /.

Variables: Xy = 1 if we drive from city 7 to city /, else 0.
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Traveling Salesman Problem  wed: Traveling Salesman Problem  med:

Ways to break subtours: 2” subtour constraints.
The Dantzig, Fulkerson & Johnson (DFJ) model.
Indices, parameters, & decision variables as before.

Minimise total cost: min 21‘2} €5

Enter each city once: ijy =1torall s

Leave each city once: ,;%;= 1torall i

Subtour breaking constraints: EUES x;= | S| =1, for every subset S.
Binary integrality: x; € {0,1} torall 4 4

For the subtour shown, add: x5, + x, , + x, ; = 2. What are the others?
Atter solving again with the new constraints, more subtours appear.

For a large TSP, we may need many subtour breaking constraints.
In the worst case, we may need 2” subtour breaking constraints.

Next week, we will see a way to generate these constraints. o .
, T Figure 3.2 Solution of the initial LP relaxation.

The solution becomes fractional, so we also need to do B&B.
However, every solution gives a lower bound on the optimum.
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Figure 3.3 LP solution after three subtour constraints. Figure 3.4 LP solution satisfying all subtour constraints.
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Traveling Salesman Problem

Figure 3.7 What is wrong with this vector?

Marco Chiarandini .::. 22

An Overview of Software for MIP
ZIBOpt
Models

Traveling Salesman Problem

Figure 3.9 An optimal tour through 42 cities.
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Figure 3.8 A violated comb.
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minimize ¢ x subject to
0 < x. <1 for all edges e,

do(xe

> (xe : e hasoneendin S and one end not in S) > 2
for all nonempty proper subsets S of cities,

v is an end of e) = 2 for all cities v,

e has one end in S; and one end not in S;) > 10,
for any comb
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Traveling Salesman Problem  wed:

Ways to break subtours: MTZ model
Indices & parameters as before. u\

Variables: Xy = 1if we drive from city ¢ to city j, else 0.
#, = number of cities visited at city 4.

Minimise totlal cost: min EE] GXy>
Enter each C{ty once: Elxy- =1 t_or all /.
Leave each city once: ijy =1 forall &
Subtour breaking: w,+ 1< # +u(1 - xy), fori=2,..,mizj ;=2

.

AR

x; € {0,1} toralli, s, #, =20 torall &

Fewer constraints, but harder to solve! The LP relaxation is not as tight.
Okay tor small problems, but is bad tor large ones.
Related variations are a bit tighter.

Ref: C. E. Miller, A. W. Tucker, and R. A. Zemlin, “Integer programming formulations
and traveling salesman problems,” J. ACM, 7 (1960), pp. 326-329.
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Traveling Salesman Problem  wed:

How does the row 2 summation work?

Model: 1. Min 7, 37 ¢,
2. Z;:-l/’lx;j 2V, = 2, forall )
3. Y e Xy, < | §|-1, for every subset S,
4, XZ-J-E{O,l} for all zand 7 j>.

The variables /nfo city 5 are:  x15, x25, x35, 45, %65, x75, %85, x95.
The variables ou/ of city 5 are: x51, x52, x53, x54, x50, x57, x58, x59.

Since costs ate symmetric, ¢, = ¢, let's drop half the variables.
For i requite 7 < ;. Allow only the variables going out.
We need only variables x15, x25, x35, x45, x56, x57, x58, x59.
The meaning is not “Go in” or “come out”, but “use this arc”.

The summation makes sure that we cover only the variables we need.
%15+ x25 + %35 + =45 + x56 + x57 + x58 + x59 = 2.
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The symmetric TSP

Symmetric TSP: G =6y

Indices: i, j = city.

Pargmetet: 6= cgs‘E to go.fror_n city afto cityj.

Variables:  x, = 1 if we duve from city 7 to city 4, else 0,
defined only tor /</. Half as many variables as the asymmetric!

Minimise total cost: min EIEPI- LD

Enter each city once: Ej<z‘x:;t + ZP,X; =2 torall i

Subtour breaking: jjes Xy = | §| — 1, for each subset
S.
Binary integrality: x € {0,1} torall 4,4

The homewotk is a symmetric TSP.

The asymmetric TSP, 6 # ¢ is more realistic. Why?

78
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24,978 Cities

solved by LK-heuristic
and prooved optimal
by branch and cut

10 months of
computation on a
cluster of 96 dual
processor Intel Xeon
2.8 GHz workstations

http://www.tsp.
gatech.edu
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