DM204, 2010
SCHEDULING, TIMETABLING AND ROUTING

Lecture 5
Mixed Integer Programming
Models and Exercises

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark



An Overview of Software for MIP
ZIBOpt

Outline Models

1. An Overview of Software for MIP

2. ZIBOpt

3. Models

Marco Chiarandini .::.



An Overview of Software for MIP
ZIBOpt

Outline Models

1. An Overview of Software for MIP




An Overview of Software for MIP

How to solve MIP programs

@ Use a mathematical workbench like MATLAB, MATHEMATICA,
MAPLE, R.

o Use a modeling language to convert the theoretical model to a computer
usable representation and employ an out-of-the-box general solver to
find solutions.

@ Use a framework that already has many general algorithms available and
only implement problem specific parts, e. g., separators or upper
bounding.

@ Develop everything yourself, maybe making use of libraries that provide
high-performance implementations of specific algorithms.

Thorsten Koch
“Rapid Mathematical Programming”
Technische Universitat, Berlin, Dissertation, 2004
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How to solve MIP programs  wed:

@ Use a mathematical workbench like MATLAB, MATHEMATICA,
MAPLE, R.

Advantages: easy if familiar with the workbench

Disadvantages: restricted, not state-of-the-art
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An Overview of Software for MIP

How to solve MIP programs

@ Use a modeling language to convert the theoretical model to a computer
usable representation and employ an out-of-the-box general solver to
find solutions.

Advantages: flexible on modeling side, easy to use, immediate results, easy
to test different models, possible to switch between different state-of-the-art
solvers

Disadvantages: algoritmical restrictions in the solution process, no upper
bounding possible
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An Overview of Software for MIP

How to solve MIP programs

@ Use a framework that already has many general algorithms available and

only implement problem specific parts, e.g., separators or upper
bounding.

Advantages: allow to implement sophisticated solvers, high performance
bricks are available, flexible

Disadvantages: view imposed by designers, vendor specific hence no trans-
ferability,

Marco Chiarandini .::.



An Overview of Software for MIP

How to solve MIP programs

@ Develop everything yourself, maybe making use of libraries that provide
high-performance implementations of specific algorithms.

Advantages: specific implementations and max flexibility

Disadvantages: for extremely large problems, bounding procedures are more
crucial than branching
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Modeling Languages Models
Name URL Solver State
amMs  Advanced Integrated Multi-dimensional Modeling Software  www.aimms.com open  commercial
AMPL A Modeling Language for Mathematical Programming www.ampl.com open  commercial
GAMS General Algebraic Modeling System WWW.gams.com open  commercial
LINGO Lingo www.lindo.com fixed  commercial
LPL (Linear|Logical|Literate) Programming Language www.virtual-optima.com open  commercial
MmiNopT  Mixed Integer Non-linear Optimizer titanprinceton.edu/MINOPT ~ Open  mixed
MOSEL Mosel www.dashoptimization.com  fixed commercial
MPL Mathematical Programming Language www.maximalsoftwarecom  open  commercial
OMN1 Omni www.haverly.com open  commercial
oOPL Optimization Programming Language www.ilog.com fixed  commercial
aNU-MP  GNU Mathematical Programming Language www.gnu.org/software/glpk  fixed  free
ZIMPL Zuse Institute Mathematical Programming Language www.zib.de/koch/zimpl open free
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Thorsten Koch

“Rapid Mathematical Programming”
Technische Universitit, Berlin, Dissertation, 2004




An Overview of Software for MIP
ZIBOpt

LP-Solvers Models

CPLEX http://www.ilog.com/products/cplex

XPRESS-MP  http://www.dashoptimization.com

SOPLEX http://www.zib.de/Optimization/Software/Soplex
COIN CLP http://www.coin-or.org

GLPK http://www.gnu.org/software/glpk

LP _SOLVE  http://lpsolve.sourceforge.net/

“Software Survey: Linear Programming” by Robert Fourer
http://www.lionhrtpub.com/orms/orms-6-05/frsurvey.html
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MIP-Solvers Models

CPLEX  http://www.ilog.com/products/cplex
SCIP http://zibopt.zib.de/
GUROBI  http://www.gurobi.com/
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2. ZIBOpt

Marco Chiarandini .::.

An Overview of Software for MIP
ZI1BOpt
Models

12



ZI BOpt ZIBOpt

@ Zimpl is a little algebraic Modeling language to translate the
mathematical model of a problem into a linear or (mixed-) integer
mathematical program expressed in .Ip or .mps file format which can be
read and (hopefully) solved by a LP or MIP solver.

@ Scip is an IP-Solver. It solves Integer Programs and Constraint
Programs: the problem is successively divided into smaller subproblems
(branching) that are solved recursively. Integer Programming uses LP
relaxations and cutting planes to provide strong dual bounds, while
Constraint Programming can handle arbitrary (non-linear) constraints
and uses propagation to tighten domains of variables.

@ SoPlex is an LP-Solver. It implements the revised simplex algorithm. It
features primal and dual solving routines for linear programs and is
implemented as a C++ class library that can be used with other
programs (like SCIP). It can solve standalone linear programs given in
MPS or LP-Format.
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Modeling Cycle
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Choose Solution

Analyze Real- Run Sol
world Problem Algorithm un Solver
: l l
Identify
Modeling Goal Translate Model
Analyze Output
{ to Solver Input
Build Mathe-
matical Model
¢ Translate Data Write
Identify to Solver Input Result Report
Data Sources
§
Collect & Construct Interpret

Analyze Data

Derived Data

Result Report

H. Schichl. “Models and the history of modeling”.
In Kallrath, ed., Modeling Languages in Mathematical Optimization, Kluwer, 2004.
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3. Models
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Modeling

@ Min cost flow

Shortest path

(4]

o Max flow

(]

Assignment and Bipartite Matching

Transportation

@ Multicommmodies
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Modeling

Set Covering
n
min > ¢x;
=1

n
2.3 > 1
j=1

x; €{0,1}
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Set Partitioning
n
min > ¢x;
=1

n

Z a,-jxj =1 Vi
j=1

x; € {0, 1}

Set Packing

n
max 3" G
Jj=1
n
Yoajxp <1 Vi

j=1
x; € {0,1}
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Traveling Salesman Problem ek

.14
o 15

Figure 3.1 Locations of the 42 cities.
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Traveling Salesman Problem ek

Assignment problem - easy, naturally integer.
Indices: # = teacher, j = course.
Parameters: ¢; = value it teacher 7 1s assigned to course /.
Variables:  x, = 1 if teacher 7 is assigned to coutse j, else 0.
Model AP: 1) Max Y, Ej oy subject to
2) Efxy: 1, tor all ,
3) = 1, fo_r all 4,
4) xyE {0,1}, tor all 4.

Explanation: 1) Maximise value of assignments.
2) Assign each teacher / to one course.
3) Assign each course j to one teacher.

Almost the TSP. Is AP a possible formulation tor the TSP?

Indices: 4, j = city.
Pargmetet: 6= CO,SF to go.tror_n city fto.cityj. .
Variables: ;= 1 if we durve from city 7 to city 4, else 0.
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Traveling Salesman Problem ek

We have subtours.

Oops. How do we get 1id of these?
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Traveling Salesman Problem ek

Ways to break subtours: 2” subtour constraints.
The Dantzig, Fulkerson & Johnson (DEJ) model.
Indices, parameters, & decision variables as before.

Minimise total cost: min 212; G5y

Enter each city once: Elxg- =1torally

Leave each city once: zjxg» =1toralli

Subtour breaking constraints: Ez,jGS xS | S| =1, for every subset S.
Binary integrality: x; € {0, 1} toralld, /.

For the subtour shown, add: x5, + x,, + x,; = 2. What ate the others?
After solving again with the new constraints, mote subtours appear.

For a large TSP, we may need many subtour breaking constraints.
In the worst case, we may need 2” subtour breaking constraints.

Next week, we will see a way to generate these constraints.

The solution becomes fractional, so we also need to do B&B.
However, every solution gives a lower bound on the optimum.
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Traveling Salesman Problem ek

Figure 3.2 Solution of the initial LP relaxation.
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Traveling Salesman Problem ek

Figure 3.3 LP solution after three subtour constraints.
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Traveling Salesman Problem ek

Figure 3.4 LP solution satisfying all subtour constraints.
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Traveling Salesman Problem ek

Figure 3.7 What is wrong with this vector?”
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Traveling Salesman Problem ek

Figure 3.8 A violated comb.
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Traveling Salesman Problem ek

Figure 3.9 An optimal tour through 42 cities.
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Models

minimize ¢’ x subject to
0 < xe < 1 for all edges e,
> (xe : vis an end of ) = 2 for all cities v,

> (xe : e has one end in S and one end not in S) > 2
for all nonempty proper subsets S of cities,

Z:ig(Z(xe . e has one end in S; and one end not in S;) > 10,
for any comb
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Traveling Salesman Problem ek

Ways to break subtours: MTZ model
Indices & parameters as before. \

Variables: x; =1 if we drive tfrom city 7 to city /, else 0.
#, = number of cities visited at city 7

Minimise totl.ell cost: min Eigj@xy, .
Enter each c1Aty once: E;Xg =1 t‘O[ all /.
Leave each city once: E/xy =1 toralli
Subtour breaking: w+1ls #, + (1 - xy), tori=2, .., nmiwjj=2,
n

sl

x; € {0,1} torall4 4 ;=0 forall &

Fewer constraints, but harder to solvel The LP relaxation is not as tight.
Okay tfor small problems, but is bad for large ones.
Related variations ate a bit tighter.

Ret: C. E. Miller, A. W. Tucker, and R. A, Zemlin, “Integer programming formulations
and traveling salesman problems,” J. ACM, 7 (1960), pp. 326-329.
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Traveling Salesman Problem ek

The symmetric TSP

Symmettic T'SP: G = G

Indices: 7, j = city.

Parameter: ¢, = cost to go trom city Z to city /.

Variables: X, = 1 it we drive from city / to city /, else 0,
detined only for 7/<j. Halt as many variables as the asymmetric!

Minimise total cost: min Ef2j>z %

Enter each city once: quxﬁ + Epl / =2foralli

Subtour breaking: EUES x; = | 8] =1, tor each subset
S

Binary integrality: x; € {0, 1} forall 4

The homework is a symmetric TSP.

The asymmetric TSP, ¢ = 0 is more realistic. Why?
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How does the row 2 summation work?

Model: 1. Mm 37 371 ¢,
2% /1t X+ Z”Z:/ X = 2, for all ;.
3. Zz,/eyxzj' < | §|—-1, for every subset S,
4. XZ’/E{O,l} for all i,andj:j>i.

The variables znfo city 5 are:  x15, x25, x35, x45, %65, x75, %85, x95.
The variables ont of city 5 are: 51, x52, %53, x54, %56, x57, 58, x59.

Since costs are symmetric, ¢, = G let's drop half the variables.

¢
g
For x, requite 7 < /. Allow only the variables going out.

We need only variables x15, x25, %35, x45, x56, x57, x58, %59.

The meaning is not “Go in” or “come out”, but “use this arc”.

The summation makes sute that we cover only the variables we need.
x15 + x25 + x35 + x45 + x56 + x57 + x58 + x59 = 2,
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sw24978 Branching Tree - Run 5

24,978 Cities

solved by LK-heuristic
and prooved optimal
by branch and cut

10 months of
computation on a
cluster of 96 dual
processor Intel Xeon
2.8 GHz workstations

http://wuw.tsp.
gatech.edu
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