
Department of Mathematics and Computer Science
University of Southern Denmark, Odense

March 12, 2020
Marco Chiarandini

DM545/DM871 – Linear and integer programming

Sheet 5, Spring 2020 [pdf format]

Solution:
Included.

Exercise 1*
This exercise is taken from the exam of 2012.
The Danish Research Council has to decide which research projects to finance. The total budget for
the projects is 20 million Dkk. The table below shows the evaluation from 0 (worst) to 2 (best) that the
projects received by the external reviewers and the amount of money required.

1 2 3 4 5
Evaluation score 1 1.8 1.4 0.6 1.4
Investment (in million of DKK) 6 12 10 4 8

Projects 2 and 3 have the same coordinator and the Council decided to grant only one of the two.
The Council wants to select the combination of projects that will maximize the total relevance of the
projects, that is, the sum of the evaluation score while remaining within the budget.

Formulate the problem of deciding on which project the Council has to invest as an integer linear
programming problem P .

Solution:
In .lp format:

* Problem: lp3 *\

Maximize

tot: + x(1) + 1.8 x(2) + 1.4 x(3) + 0.6 x(4) + 1.4 x(5)

Subject To

budget: + 6 x(1) + 12 x(2) + 10 x(3) + 4 x(4) + 8 x(5) <= 20

a: + x(2) + x(3) <= 1

Bounds

0 <= x(1) <= 1

0 <= x(2) <= 1

0 <= x(3) <= 1

0 <= x(4) <= 1

0 <= x(5) <= 1

End

We want the IP instance solved using the branch-and-bound algorithm. What is the optimal solution x∗
to the LP relaxation P ′? (Hint: use the tool: http://www.zweigmedia.com/simplex/simplex.php to
solve the LP problems.]

1

http://www.zweigmedia.com/simplex/simplex.php

DM545/DM871 – Spring 2020 Assignment Sheet

Solution:
The following gurobypi model gives solution x = [1, 0.5, 0, 0, 1] and z = 3.3.

from gurobipy import *

m = Model("knapsack")

s=[1,1.8,1.4,0.6,1.4]

c=[6,12,10,4,8]

#x = [m.addVar(name="x") for i in range(5)]

x = {i:m.addVar(lb=0.0, ub=1.0, vtype=GRB.CONTINUOUS, name="x%d" % i)

for i in range(1,6)}

m.update()

m.setObjective(quicksum(s[i-1]*x[i] for i in range(1,6)), GRB.MAXIMIZE)

m.addConstr(quicksum(c[i-1]*x[i] for i in range(1,6))<=20, "c1")

m.addConstr(x[2]+x[3] <= 1, "c2")

m.optimize()

print map(lambda v: v.x, m.getVars())

Optimize a model with 2 rows, 5 columns and 7 nonzeros

Coefficient statistics:

Matrix range [1e+00, 1e+01]

Objective range [6e-01, 2e+00]

Bounds range [1e+00, 1e+00]

RHS range [1e+00, 2e+01]

Presolve time: 0.00s

Presolved: 2 rows, 5 columns, 7 nonzeros

Iteration Objective Primal Inf. Dual Inf. Time

0 6.2000000e+00 2.250000e+00 0.000000e+00 0s

2 3.3000000e+00 0.000000e+00 0.000000e+00 0s

Solved in 2 iterations and 0.00 seconds

Optimal objective 3.300000000e+00

[1.0, 0.166, 0.0, 1.0, 1.0]

The rounding heuristic applied to the solution x∗ gives a feasible solution x ′. Which one? With the
knowledge collected until this stage which of the three following statements is correct:

1. x ′ is certainly optimal

2. x ′ is certainly not optimal

3. x ′ might be optimal

(Remember to justify your answer.)

Solution:
The rounding heuristic updates x∗ setting x2 = 0 or x2 = 1. The latter gives an infeasible solution
while the former gives [1, 0, 0, 1, 1] with value 3. We cannot say at this stage if x ′ is optimal because the
optimality gap 3.3–3 is not closed. Hence (iii) is correct.

2

DM545/DM871 – Spring 2020 Assignment Sheet

The two subproblems generated by the branch-and-bound algorithm after finding x∗ correspond to
choosing or not choosing a particular project. Which one?

Solution:
The solution is [1, 0.166, 0, 1, 1] and the only fractional variable is x2 hence we branch on it.

Suppose the branch-and-bound algorithm considers first the subproblem corresponding to not choosing
this project. Let’s call this subproblem and its corresponding node in the search tree SP1. What is the
optimal solution to its LP relaxation?

Solution:
Adding the constraint x2<=0 to the GLPK code above we obtain:

x = [1, 0, 0.2, 1, 1]

and z = 3.28.

Next, the branch-and-bound algorithm considers the subproblem corresponding to choosing the project,
i.e., subproblem SP2. Find the optimal solution to its LP relaxation. Which are the active nodes (i.e.,
open subproblems) at this point?

Solution:
Adding the constraint x2>=1 to the Python code above we obtain:

x = [0, 1, 0, 0, 1]

and z = 3.2. This is an integer solution and hence a lower bound.
Node SP2 is not active since an integer solution prunes the subtree. The other node SP1 has however
still potential to find a better solution since its upper bound is 3.28 > 3.2, hence the list of active nodes
contains SP1.

How does the branch and bound end?

Solution:
We need to examine the active nodes. Hence we branch once more with x3 ≤ 0 (subproblem SP3) and
x3 ≥ 1 (subproblem SP4). The LP relaxation of SP3 gives an integer solution [1, 0, 0, 1, 1] of value 3
and SP4 gives [0.33, 0, 1, 0, 1] of value 3.13. Hence the upper bound from subtree SP1 is 3.13 which is
smaller than the lower bound 3.2 of SP2 and we can prune SP4 by bounding. The optimal solution is
the one on node SP2.

Exercise 2 — Branch and bound
Consider the following ILP:

max z = 5x1 + 5x2 + 8x3 − 2x4 − 4x5
s.t. −3x1 + 6x2 − 7x3 + 9x4 + 9x5 ≥ 10

x1 + 2x2 − x4 − 3x5 ≤ 0
x1, x2, x3, x4, x5 ∈ {0, 1}

Solve the problem by branch and bound:

• Use objective-value bounding for pruning subproblems.

3

DM545/DM871 – Spring 2020 Assignment Sheet

• At each node use linear programming to find dual bounds.

• Use the most fractional variable rule for branching.

• Follow a depth first search strategy and expand first the greater-or-equal branch.

Answer guidelines:

• Make sure that you indicate which is the final solution and its objective function value.

• Use this tool to solve the linear relaxations at each node:
http://www.zweigmedia.com/simplex/simplex.php

• In the next pages you are given a template for the search tree. Write the search tree first on
the paper version of the exam that you received and then digitalize your answer in one of the
following ways:

– scan the tree that you have handwritten (make sure you write all the information needed —
see example in the next pages)

– annotate the tree template provided in the next pages, make a screenshot and include it in
your document.

– use the text format explained in the next page.

4

http://www.zweigmedia.com/simplex/simplex.php

D
M

545/D
M

871
–

Spring
2020

Assignment
Sheet

Figure 1: A template for a search tree that you can annotate

A

B

D

H I

E

L M

C

F

N O

G

P Q

5

DM545/DM871 – Spring 2020 Assignment Sheet

Other reporting examples
Drawing: The following is an example of drawing for describing the search tree. The example is not
taken from the problem object of this task.

A

db = 78.66

s = [1, 0.3, 0.5]

B

db = 77.56

s = [1, 0, 0.5]

C

infeas.

infeas.

z ≤ 0

D

db = 77

s = [1, 0, 1]

z ≥ 1

y ≤ 0

E

db = 74

s = [1, 1.5, 0]

y ≥ 1

Text format: The search tree above can be described in text format as shown below.

- name: A

parent: ’null’

constraint_added: ’’

dual_bound: 78.66

solution: [1, 0.3, 0.5]

children:

- name: B

parent: A

constraint_added: y<=0

dual_bound: 77.56

solution: [1,0,0.5]

children:

- name: C

parent: B

constraint_added: z<=0

dual_bound: infeasible

solution: infeasible

children: pruned

- name: D

parent: B

constraint_added: z>=1

dual_bound: 77

solution: [1,0,1]

children: pruned

- name: E

parent: A

constraint_added: y>=1

dual_bound: 74

solution: [1, 1.5, 0]

children: pruned

Solution:
The model in Python is:

#!/usr/bin/python

6

DM545/DM871 – Spring 2020 Assignment Sheet

from gurobipy import *

Model

model = Model("prod")

model.setParam(GRB.param.Method, 0)

model.setParam(GRB.param.Presolve, 0)

Add here the LP model

See Sheet2 from Linear and Integer Programming Part for an example of the syntax

Create decision variables

x1 = model.addVar(lb=0.0, ub=1.0, vtype=GRB.CONTINUOUS, name="x1")

x2 = model.addVar(lb=0.0, ub=1.0, vtype=GRB.CONTINUOUS, name="x2")

x3 = model.addVar(lb=0.0, ub=1.0, vtype=GRB.CONTINUOUS, name="x3")

x4 = model.addVar(lb=0.0, ub=1.0, vtype=GRB.CONTINUOUS, name="x4")

x5 = model.addVar(lb=0.0, ub=1.0, vtype=GRB.CONTINUOUS, name="x5")

model.update()

The objective is to maximize (this is redundant now, but it will overwrite Var

declaration

model.setObjective(5*x1 + 5*x2 + 8*x3 -2*x4-4*x5, GRB.MAXIMIZE)

Add constraints to the model

model.addConstr(-3*x1 + 6*x2 - 7*x3 + 9*x4+9*x5, GRB.GREATER_EQUAL, 10.0, "c1")

model.addConstr(x1 + 2*x2 - x4-3*x5, GRB.LESS_EQUAL, 0.0, "c1")

#model.addConstr(x5 , GRB.LESS_EQUAL, 0.0, "c1")

##model.addConstr(x5 , GRB.GREATER_EQUAL, 1.0, "c1"

#model.addConstr(x2 , GRB.GREATER_EQUAL, 1.0, "c1")

#model.addConstr(x5 , GRB.GREATER_EQUAL, 1.0, "c1")

#model.addConstr(x4 , GRB.GREATER_EQUAL, 1.0, "c1")

#model.addConstr(x4 , GRB.LESS_EQUAL, 0.0, "c1")

Solve

model.optimize()

if model.status == GRB.status.OPTIMAL:

Let us print the solution

for v in model.getVars():

print(v.varName, v.x)

print("dual_bound: %g" % round(model.objVal,3))

print("solution: "+str([round(v.x,3) for v in model.getVars()]))

else:

print("Optimization was stopped with status %d" % model.status)

The final tree is given in Figure 2.
The solution process is pruned at node F by bounding, indeed the upper bound down that sub tree is
smaller than the incumbent solution found because of integrality of solutions in D. Similarly the solution
process is pruned at node B by bounding. In the figure nodes D and E are expanded anyway but they
should not. The search proceeded in this order: A, C, G, F, B. At the root we branched on the variable
x5 because more fractional than x4.
The optimal solution is found in node G. It has value 12 and it is x = [1; 1; 1; 1; 1].
This is confirmed by Gurobi changing the definition of the variables to be from GRB.CONTINUOUS to
be GRB.BINARY.

7

DM545/DM871 – Spring 2020 Assignment Sheet

A

db = 13.44

x =
[1; 1; 1; 0.83; 0.72]

B

db = 2.79

x = [0; 0.5; 0.29; 1; 0]

D

infeasible

x2 ≤ 0

E

infeasible

x2 ≥ 1

x5 ≤ 0

C

db = 12.889

x = [1; 1; 1; 0.556; 1]

F

db = 8.29

x = [1; 1; 0.29; 0; 1]

x4 ≤ 0

G

db = 12

pb = 12

x = [1; 1; 1; 1; 1; 1]

x4 ≥ 1

x5 ≥ 1

Figure 2:

8

