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Exercise 1*Consider the following problem:

maximize z = x1 − x2subject to x1 + x2 ≤ 22x1 + 2x2 ≥ 2
x1, x2 ≥ 0In the ordinary simplex method this problem does not have an initial feasible basis. Hence, the methodhas to be enhanced by a preliminary phase to attain a feasible basis. Traditionally we talk about a

phase I–phase II simplex method. In phase I an initial feasible solution is sought and in phase II theordinary simplex is started from the initial feasible solution found.There are two ways to carry out phase I.
• Solving an an auxiliary LP problem defined by introducing auxiliary variables and minimizing themin the objective. The solution of the auxiliary LP problem gives an initial feasible basis or a proofof infeasibility.
• Applying the dual simplex on a possibly modified problem to find a feasible solution. If theinitial infeasible tableau of the original problem is not optimal then the objective function canbe temporarily modified for this phase in order to make the initial tableau optimal althoughnot feasible. Opposite to the primal simplex method, the dual simplex method iterates throughinfeasible basis solutions, while maintaining them optimal, and stops when a feasible solution isreached.

Dual Simplex: The strong duality theorem states that we can solve the primal problem by solving itsdual. You can verify that applying the primal simplex method to the dual problem corresponds to thefollowing method, called dual simplex method that works on the primal problem:
1. (Feasibility condition) select the leaving variable by picking the basic variable whose right-handside term is negative, i.e., select i∗ with bi∗ < 0.2. (Optimality condition) pick the entering variable by scanning across the selected row and com-paring ratios of the coefficients in this row to the corresponding coefficients in the objective row,looking for the largest negated. Formally, select j∗ such that j∗ = min{|cj /ai∗j | : ai∗j < 0}3. Update the tableau around the pivot in the same way as with the primal simplex.4. Stop if no right-hand side term is negative.

Duality can help us with the issue of initial feasible basis solutions. In the problem above, if the objectivefunction was w = −x1−x2, then the initial basis solution of the dual problem would be feasible and wecould solve the problem solving the dual problem with the primal simplex. But with objective function
z the simplex has infeasible initial basis in both problems. However we can change temporarily theobjective function z with w and apply the dual simplex method. When it stops we reached a feasiblesolution that is optimal with respect to w . We can then reintroduce the original objective function and
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continue iterating with the primal simplex. The phase I–phase II simplex method that uses the dualsimplex is also called the dual-primal simplex method.Apply this method to the problem above and verify that it leads to the same solution as in point 1.
Solution:

max x1 − x2 = z
x1 + x2 ≤ 22x1 + 2x2 ≥ 2

x1, x2 ≥ 0We put in equational standard form by introducing a slack variable s1 ≥ 0 and a surplus variable s2 ≥ 0:
max x1 − x2 = z

x1 + x2 + s1 = 22x1 + 2x2 − s2 = 2
x1, x2, s1, s2 ≥ 0

This form is not canonical and therefore the first tableau does not have a feasible starting solution.
Auxiliary Problem ApproachWe proceed by
• Phase I solving an auxiliary/augmented problem
• Phase II continuing with ordinary simplex

Phase I We introduce an auxiliary variable a1 ≥ 0 in the constraint that makes the infeasibility toyield a canonical form: max x1 − x2 = z
x1 + x2 + s1 = 22x1 + 2x2 − s2 + a1 = 2

x1, x2, s1, s2, a1 ≥ 0Now we have a canonical form
| x1 | x2 | s1 | s2 | a1 | -z | b |

|----+----+----+----+----+----+---|

| 1 | 1 | 1 | 0 | 0 | 0 | 2 |

| 2 | 2 | 0 | -1 | 1 | 0 | 2 |

| 1 | -1 | 0 | 0 | 0 | 1 | 0 |

|----+----+----+----+----+----+---|

This problem will have the same solution as the original one only when a1 = 0. We can then solve
• an augmented problem by introducing the following objective function maxw = x1 − x2 − Ma1,where M is a large enough constant or
• an auxiliary problem minw = a1 = −max(−a1).Let’s take the auxiliary problem, if w∗ > 0 then we will conclude that the feasibility region of the orginalproblem is empty. Otherwise, if w∗ = 0, then this implies that a1 = 0 and we found a feasible solution.Let’s proceed by setting up the tableau of the auxiliary problem

| x1 | x2 | s1 | s2 | a1 | -z | -w | b |

|----+----+----+----+----+----+----+---|

| 1 | 1 | 1 | 0 | 0 | 0 | 0 | 2 |
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| 2 | 2 | 0 | -1 | 1 | 0 | 0 | 2 |

| 1 | -1 | 0 | 0 | 0 | 1 | 0 | 0 |

| 0 | 0 | 0 | 0 | -1 | 0 | 1 | 0 |

|----+----+----+----+----+----+----+---|

This is not in canonical form but it is easy to bring it to canonical form: just add the second row to thelast one.
| x1 | x2 | s1 | s2 | a1 | -z | -w | b |

|----+----+----+----+----+----+----+---|

| 1 | 1 | 1 | 0 | 0 | 0 | 0 | 2 |

| 2 | 2 | 0 | -1 | 1 | 0 | 0 | 2 |

| 1 | -1 | 0 | 0 | 0 | 1 | 0 | 0 |

| 2 | 2 | 0 | -1 | 0 | 0 | 1 | 2 |

|----+----+----+----+----+----+----+---|

The variables s1, a1 give us a feasible basis now. It is not optimal. We proceed with the pivot operations.In this case it is worth noting that in the ratio rule, we do not consider the third row since that rowcorresponds to the orginal objective function and not to a constraint.We make x1 enter the basis and consequently a1 goes out. The pivot is 2 and the new tableau:
| | x1 | x2 | s1 | s2 | a1 | -z | -w | b |

|------------+----+----+----+------+------+----+----+----|

| R1’=R1-R2’ | 0 | 0 | 1 | 1/2 | -1/2 | 0 | 0 | 1 |

| R2’=R2/2 | 1 | 1 | 0 | -1/2 | 1/2 | 0 | 0 | 1 |

| R3’=R3-R2’ | 0 | -2 | 0 | 1/2 | -1/2 | 1 | 0 | -1 |

| R4’=R4-R2 | 0 | 0 | 0 | 0 | -1 | 0 | 1 | 0 |

|------------+----+----+----+------+------+----+----+----|

The tableau is optimal. One non basic variable has reduced cost null, which indicates that there areinfinite solutions, but this is not relevant now. The relevant thing is that w∗ = 0 hence the minimum ofthe auxiliary problem is 0 and hence there is a feasible solution for a1 = 0. This concludes the PhaseI of the algorithm since a feasible solution for the auxiliary problem is feasible also for the originalproblem.
Phase II We throw away the last row and the second last column from the tableau since we do notneed them anymore.

| x1 | x2 | s1 | s2 | a1 | -z | b |

+----+----+----+------+------+----+----|

| 0 | 0 | 1 | 1/2 | -1/2 | 0 | 1 |

| 1 | 1 | 0 | -1/2 | 1/2 | 0 | 1 |

| 0 | -2 | 0 | 1/2 | -1/2 | 1 | -1 |

+----+----+----+------+------+----+----|

The tableau is not optimal. The basic solution corresponding to this tableau is feasible but not optimal.We bring s2 in the basis and make s1 leave. The new tableau is:
| | x1 | x2 | s1 | s2 | a1 | -z | b |
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|-----------+----+----+----+----+-----+----+----|

| R1’=2*R1 | 0 | 0 | 2 | 1 | -1 | 0 | 2 |

| R2’=R2+R1 | 1 | 1 | 0 | 0 | 1/2 | 0 | 2 |

| R3’=R3-R1 | 0 | -2 | -1 | 0 | 0 | 1 | -2 |

|-----------+----+----+----+----+-----+----+----|

The tableau is now optimal. The optimal solution is x = (2, 0) and z∗ = 2.
Dual-Primal Simplex Method

Phase I Let’s write the dual of the problem above:
max x1 − x2 = z

x1 + x2 ≤ 22x1 + 2x2 ≥ 2
x1, x2 ≥ 0

min 2y′1 + 2y′2 = w
y′1 + 2y′2 ≥ 1
y′1 + 2y′2 ≥ −1

y′1 ≥ 0
y′2 ≤ 0

y′1=y1
y′2=−y2−−−−→

min 2y1 − 2y2 = w
y1 − 2y2 ≥ 1
y1 − 2y2 ≥ −1

y1, y2 ≥ 0If we put this LP problem in standard form:max −2y1 + 2y2 = w
−y1 + 2y2 ≤ −1
−y1 + 2y2 ≤ 1

y1, y2 ≥ 0and looking at the tableau:
| y1 | y2 | s1 | s2 | -z | b |

|----+----+----+----+----+----|

| -1 | 2 | 1 | 0 | 0 | -1 |

| -1 | 2 | 0 | 1 | 0 | 1 |

| -2 | 2 | 0 | 0 | 1 | 0 |

|----+----+----+----+----+----|

we see that the initial tableau like for the primal problem is infeasible.However, the dual problem has an advantage, if we change temporarily the objective function of theprimal problem to η = −x1 − x2, the dual problm becomes:max−x1− x2=η
x1+ x2≤22x1+2x2≥2
x1, x2≥0

min2y1−2y2= γ
y1−2y2≥ 1
y1−2y2≥−1
y1, y2≥ 0

max−2y1+2y2=γ
−y1+2y2≤1
−y1+2y2≤1

y1, y2≥0and the corresponding tableau has an easy basic feasible solution:
| y1 | y2 | s1 | s2 | -z | b |

|----+----+----+----+----+---|

| -1 | 2 | 1 | 0 | 0 | 1 |

| -1 | 2 | 0 | 1 | 0 | 1 |

| -2 | 2 | 0 | 0 | 1 | 0 |

|----+----+----+----+----+---|

4



DM545/DM871 – Spring 2020 Assignment Sheet
We can then solve to optimality with the primal simplex: the variable y2 enters the basis and thevariable s2 exits. The new tableau becomes:

| | y1 | y2 | s1 | s2 | -z | b |

|-----------+------+----+----+-----+----+------|

| R1 | -1 | 2 | 1 | 0 | 0 | 1 |

| R2’=R2/2 | -1/2 | 1 | 0 | 1/2 | 0 | 1/2 |

| R3’=R3-R2 | -1 | 0 | 0 | -1 | 1 | -1/2 |

|-----------+------+----+----+-----+----+------|

and it is optimal. At this stage we can go back to the primal problem where we now have a feasiblesolution, change the objective function back to the original one and continue with the primal simplex.
We can do the same iteration on the primal but with the dual simplex. Let’s write the tableau of theprimal with the objective function temporarily changed and keeping the old objective as well:

| x1 | x2 | s1 | s2 | -z | -e | b |

|----+----+----+----+----+----+----|

| 1 | 1 | 1 | 0 | 0 | 0 | 2 |

| -2 | -2 | 0 | 1 | 0 | 0 | -2 |

| 1 | -1 | 0 | 0 | 1 | 0 | 0 |

| -1 | -1 | 0 | 0 | 0 | 1 | 0 |

|----+----+----+----+----+----+----|

As we see we have the conditions of the dual simplex satisfied, the tableau is optimal but not feasible.Let’s make an iteration of the dual simplex. We choose the row with negative b term and the columnwith negative pivot that minimizes the ratio test: |c/a|. We choose the second row and the secondcolumn (again watch out that we do not consider the row of the addd old objective to decide the row).In other terms we try to make the solution feasible while minimizing the loss in quality. The opertationsto update the tableau remain the same as for the primal simplex. We obtan:
| | x1 | x2 | s1 | s2 | -z | -e | b |

|------------+----+----+----+------+----+----+---|

| R1’=R1-R2’ | 0 | 0 | 1 | 1/2 | 0 | 0 | 1 |

| R2’=-1/2R2 | 1 | 1 | 0 | -1/2 | 0 | 0 | 1 |

| R3’=R3+R2’ | 2 | 0 | 0 | -1/2 | 1 | 0 | 1 |

| R4’=R4+R2’ | 0 | 0 | 0 | -1/2 | 0 | 1 | 1 |

|------------+----+----+----+------+----+----+---|

This tableau is optimal for the dual simplex, this means that a feasible solution for the primal problemhas been found: (0, 1, 1, 0). We can now proceed with the primal simplex.Note that the considerations on the dual problem made above were just for explanation purposes, whensolving our LP problem we do not need to write down the dual form of it or its tableaux. Instead, wejust need to switch from dual simplex to primal simplex always working on the original (the primal)formulation of the problem. The dual simplex method simply a new way of picking the entering andleaving variables in a sequence of primal tableaux.
Phase II We can now remove the temporary objective function and the corresponding column andproceed with the primal simplex.
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| x1 | x2 | s1 | s2 | -z | b |

|----+----+----+------+----+---|

| 0 | 0 | 1 | 1/2 | 0 | 1 |

| 1 | 1 | 0 | -1/2 | 0 | 1 |

| 2 | 0 | 0 | -1/2 | 1 | 1 |

|----+----+----+------+----+---|

x1 enters the basis and x2 exits. The tableau is updated consequently:
| | x1 | x2 | s1 | s2 | -z | b |

|-------------+----+----+----+------+----+----|

| R1’=R1 | 0 | 0 | 1 | 1/2 | 0 | 1 |

| R2’=R2 | 1 | 1 | 0 | -1/2 | 0 | 1 |

| R3’=R3-2*R2 | 0 | -2 | 0 | 1/2 | 1 | -1 |

|-------------+----+----+----+------+----+----|

A reduced cost is still positive, hence we make s2 enters in the basis and s1 leave. This leads to
| | x1 | x2 | s1 | s2 | -z | b |

|-----------+----+----+----+----+----+----|

| R1’=2*R1 | 0 | 0 | 2 | 1 | 0 | 2 |

| R2’=R2+R1 | 1 | 1 | 1 | 0 | 0 | 2 |

| R3’=R3-R1 | 0 | -2 | -1 | 0 | 1 | -2 |

|-----------+----+----+----+----+----+----|

The tableau is now optimal and the corresponding basic feasible solution is x = (2, 0) and has value
z∗ = 2.We can visualize the problem using the LP Grapher tool linked from the course webpage:

Exercise 2* Sensitivity Analysis and Revised SimplexA furniture-manufacturing company can produce four types of product using three resources.
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• A bookcase requires three hours of work, one unit of metal, and four units of wood and it bringsin a net profit of 19 Euro.
• A desk requires two hours of work, one unit of metal and three units of wood, and it brings in anet profit of 13 Euro.
• A chair requires one hour of work, one unit of metal and three units of wood and it brings in a netprofit of 12 Euro.
• A bedframe requires two hours of work, one unit of metal, and four units of wood and it brings ina net profit of 17 Euro.
• Only 225 hours of labor, 117 units of metal and 420 units of wood are available per day.

In order to decide how much to make of each product so as to maximize the total profit, the managerssolve the following LP problem
max 19x1 + 13x2 + 12x3 + 17x43x1 + 2x2 + x3 + 2x4 ≤ 225

x1 + x2 + x3 + x4 ≤ 1174x1 + 3x2 + 3x3 + 4x4 ≤ 420
x1, x2, x3, x4 ≥ 0The final tableau has x1, x3 and x4 in basis. With the help of a computational environment such asPython for carrying out linear algebra operations, address the following points:

a) Write AB , AN , A−1
B AN , the final simplex tableau and verify that the solution is indeed optimal.

Solution:The initial tableau is:
|-----+-----+-----+-----+-----+-----+-----+----+-----|

| x_1 | x_2 | x_3 | x_4 | x_5 | x_6 | x_7 | -z | b |

|-----+-----+-----+-----+-----+-----+-----+----+-----|

| 3 | 2 | 1 | 2 | 1 | 0 | 0 | 0 | 225 |

| 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 117 |

| 4 | 3 | 3 | 4 | 0 | 0 | 1 | 0 | 420 |

| 19 | 13 | 12 | 17 | 0 | 0 | 0 | 1 | 0 |

|-----+-----+-----+-----+-----+-----+-----+----+-----|

We know that there will be 3 variables in basis. The text of the problem tells us which these 3variables are: 1, 3, 4. Hence,
AB = 3 1 21 1 14 3 4

 AN = 2 1 0 01 0 1 03 0 0 1


We can calculate A−1
B AN in Python or in R:

> B=matrix(c(3,1,2,1,1,1,4,3,4),byrow=TRUE,ncol=3)

> B1=solve(B)

> B%*%B1 # check to make sure it is correct!

[,1] [,2] [,3]

[1,] 1 0 0

[2,] 0 1 0

[3,] 0 0 1

> N=matrix(c( 2, 1, 0, 0, 1, 0, 1, 0, 3, 0, 0, 1),ncol=4,byrow=TRUE)

> B1%*%N

[,1] [,2] [,3] [,4]

[1,] 1 1 2 -1

[2,] 1 0 4 -1
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[3,] -1 -1 -5 2

> cN=c(13,0,0,0)

> cB=c(19,12,17)

> cN-cB%*%B1%*%N

[,1] [,2] [,3] [,4]

[1,] -1 -2 -1 -3

> cB%*%B1%*%c(225,117,420)

> 1827

This code gives us:
Ā = A−1

B AN =  1 1 2 −11 0 4 −1
−1 −1 −5 2

 x∗B = x1x3
x4
 = A−1

B b = 394830


c̄N = [c̄2 c̄5 c̄6 c̄7] = [−1 −2 −1 −3]
and we can write the final tableau as:
|-----+-----+-----+-----+-----+-----+-----+----+-------|

| x_1 | x_2 | x_3 | x_4 | x_5 | x_6 | x_7 | -z | b |

|-----+-----+-----+-----+-----+-----+-----+----+-------|

| 1 | 1 | 0 | 0 | 1 | 2 | -1 | 0 | 39 |

| 0 | 1 | 1 | 0 | 0 | 4 | -1 | 0 | 48 |

| 0 | -1 | 0 | 1 | -1 | -5 | 2 | 0 | 30 |

| 0 | -1 | 0 | 0 | -2 | -1 | -3 | 1 | -1827 |

|-----+-----+-----+-----+-----+-----+-----+----+-------|

Since all reduced costs are negative then the tableau and the corresponding solution are optimal.b) What is the increase in price (reduced cost) that would make product x2 worth to be produced?
Solution:The increase in price of a quantity strictly larger than 1 would make the product 2 worth beingproduced. Indeed, let c′2 = c2 + δ be the new price. We know that the coefficient in the objectivefunction goes in the reduced cost calculation multiplied by 1. Hence, to have a positive reduced costwe have:

−1 + δ > 0 =⇒ δ > 1We could also recalcuate the reduced cost from scratch using the multipliers π: c′2 +∑3
i=1 πiai2. Thevalue of πi are read from the final tableau and they correspond to the reduced costs of the slackvariables, ie, (−2, −1, −3).c) What is the marginal value (shadow price) of an extra hour of work or amount of metal and wood?

Solution:The marginal values are the values of the dual variable y1, y2, y3. From the strong duality theorem,we know that yi = −πi = −c̄n+i, i = 1..m. Hence, y = (2, 1, 3).An extra hour of work has marginal value of 2, that is, having one unit more of work would improvethe revenue by 2. For the other two resources the marginal values are 1 and 3, respectively.We can cross check these conclusions: by the complementary slackness theorem, the fact thatall three dual variables are strictly positive indicates that all three constraints in the primal areactive≡tight≡ binding. Hence, it makes sense to have that an increase in the capacity of thoseconstraints implies an increase in the profit. The conclusion that all three constraints are tight canbe also reached by the fact that the slack variables are 0 in the final tableau. If some constraint wasnot tight, then the marginal value of the corresponding resource would be zero since an increase inits capacity does not imply an immediate improvement in total profit.
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d) Are all resources totally utilized, i.e. are all constraints “binding”, or is there slack capacity in someof them? Answer this question in the light of the complementary slackness theorem.

Solution:Since all dual variables are strictly larger than zero, then all constraints are binding. Indeed for thecomplementary slackness theorem, we have that:bi − n∑
j=1 aijx

∗
j

y∗i = 0, i = 1, . . . , m
e) From the economical interpretation of the dual why product x2 is not worth producing? What is itsimputed cost?

Solution:It is not worth producing 2 because ∑i yiai2 > c2, that is, we are better off selling the raw materialsto produce the product. Indeed yi is the price of one unit of resource i and ai2 is the amount of inecessary to produce 2. ∑
i
yiai2 = 2 ∗ (2) + 1 ∗ (1) + 3 ∗ (3) = 14 > 13

Solve the following variations:1. The net profit brought in by each desk increases from 13 Euro to 15 Euro.
Solution:We saw earlier that if the price of product 2 increases by more than 1 then the reduced costbecomes positive and it enters the basis. We can iterate the revised simplex as follows:Step 1 and 2 to determine the entering varible are already done in the point a) above.We need to do Step 3 to determine the leaving variable: we need to find the constraint that limitthe increase of x2, theta. We solve first ABd = a in d. Here, a is the column of the matrix
A (augmented with the slack variables) from the initial tableau corresponding to the enteringvariable x2. We use the inverse of AB calculated earlier in a) above in R:
> B1%*%c(2,1,3)

[,1]

[1,] 1

[2,] 1

[3,] -1

that is
d = A−1

B a = A−1
B

213
 =  11

−1


Then the new solutioon xB is derived from the old one by means of d and the increase θ:
xB = x1x3

x4
 = 394830

−  11
−1
θ ≥ 0

The increase θ must be such that the value of the variables still remains feasible, ie, xi ≥ 0. Hence
θ ≤ 39 and the leaving variable is x1, since it is the one that goes to zero. The new solutions is

xB = x2x3
x4
 == 394830

−  11
−1
θ = 39− 3948− 3930 + 39

 =  0969


and the objective value:
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> c=c(19,15,12,17)

> c%*%c(0,39,9,69)

[,1]

[1,] 1866

2. The availability of metal increases from 117 to 125 units per day
Solution:This is a change in the RHS term of constraint 2. The optimality of the current solution does notchange, since all reduced costs stay negative, but we need to check if we are still feasible. Weneed to look at the final tablea and recompute the b of all constraints. We can do this with A−1

B b:
> b=c(225,125,420)

> B1%*%b

[,1]

[1,] 55

[2,] 80

[3,] -10

The last cosntraint becomes negative, hence we need to iterate with the dual simplex.3. The company may also produce coffee tables, each of which requires three hours of work, one unitof metal, two units of wood and bring in a net profit of 14 Euro.
Solution:We need to check if the reduced cost of the new variable would become positive by computing
c0 +∑i πiaij :
> 14-3*2-1*1-2*3

[1] 1

which is positive, hence we need to iterate as done in point 1).4. The number of chairs produced must be at most five times the numbers of desks
Solution:This corresponds to introduce a new constraint: x3 ≤ 5x2. In the new standard form we have a newslack variable x8. Adding the constraint in the tableau and bringing back the tableau in canonicalstandard form we observe that a RHS term becomes negative. Hence, we need to iterate with thedual simplex. After on iteration with the dual simplex, the final tableau becomes:

1 0 0 0 1 4/3 −5/6 1/6 0 310 1 0 0 0 2/3 −1/6 −1/6 0 80 0 0 1 −1 −13/3 11/6 −1/6 0 380 0 1 0 0 10/3 −5/6 1/6 0 400 0 0 0 −2 −1/3 −19/6 −1/6 1 −1819


If after the introduction of the constraint the current solution had stayed feasible then we wouldhave needed to check whether its was also optimal. We can either repeat the steps done at part1 above to compute the new reduced costs or we can include the new row in the final tableau andproceed to put the tableau in canonical form. Then we look at the value of the reduced costs.

Exercise 3Solve the systems yTE1E2E3E4 = [1 2 3] and E1E2E3E4d = [1 2 3]T with
10
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E1 = 1 3 00 0.5 00 4 1
 E2 = 2 0 01 1 04 0 1

 E3 = 1 0 10 1 30 0 1
 E4 = −0.5 0 03 1 01 0 1


Solution:This exercise is to show that the two systems can be solved quite easily. Let’s take first yTE1E2E3E4 =[1 2 3], we use the backward transformation and solve the sequence of linear systems:

uTE4 = [1 2 3], vTE3 = uT , wTE2 = vT , yTE1 = wT

uT
−0.5 0 03 1 01 0 1

 = [1, 2, 3]
Since the eta matrices have always one 1 in two columns then the solution can be read up easily. Fromthe third column we find u3 = 3. From the second column, we find u2 = 2. Substituting in the firstcolumn, we find −0.5u1 + 3 ∗ 2 + 1 ∗ 3 = 1, which yields u1 = 18. The next syestem is:

vT
1 0 10 1 30 0 1

 = [18, 2, 3]
From the first column we get v1 = 18, from the second column v2 = 2 from the last column v3 = 3/24.The next:

w = 2 0 01 1 04 0 1
 = [18, 2, 3/24]

...
Exercise 4*Write the dual of the following problem

(P) max∑
j∈J

∑
i∈I
rjxij∑

j∈J
xij ≤ bi ∀i ∈ I∑

i∈I
xij ≤ dj ∀j ∈ J∑

i∈I
pixij = pj

∑
i∈I
xij ∀j ∈ J

xij ≥ 0 ∀i ∈ I, j ∈ J

Solution:There are three different sets of constraints. We introduce the dual variables αi ≥ 0, for i ∈ I , for thefirst set; the dual variables βj ≥ 0, for j ∈ J , for the second set; and the dual variables γj ∈ R, for j ∈ Jfor the third set.We then write the A matrix for the example in the picture, augmented with the b vector:and finally the dual from the columns of the A matrix in general terms:
(D) min∑

i∈I
αibi +∑

j∈J
βjdj

αi + βj + (pi − pj )γj ≥ rj ∀i ∈ I, j ∈ J
αi ≥ 0 ∀i ∈ I
βj ≥ 0 ∀j ∈ J
γj ∈ R ∀j ∈ J
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Exercise 5 Factory Planning and Machine MaintenanceA firm makes seven products 1, . . . , 7 on the following machines: 4 grinders, 2 vertical drills, 3 horizontaldrills, 1 borer, and 1 planer.Each product yields a certain contribution to the profit (defined as selling price minus cost of rawmaterials expressed in Euro/unit). These quantities (in Euro/unit) together with the production times(hours/unit) required on each process are given below.
product 1 2 3 4 5 6 7

profit 10 6 8 4 11 9 3

grinding 0.5 0.7 0 0 0.3 0.2 0.5

vdrill 0.1 0.2 0 0.3 0 0.6 0

hdrill 0.2 0 0.8 0 0 0 0.6

boring 0.05 0.03 0 0.07 0.1 0 0.08

planning 0 0 0.01 0 0.05 0 0.05

In the first month (January) and the five subsequent months certain machines will be down for mainte-nance. These machines will be:
January 1 grinder

February 2 hdrill

March 1 borer

April 1 vdrill

May 1 grinder

May 1 vdrill

June 1 planer

June 1 hdrill

There are marketing limitations on each product in each month. That is, in each month the amount soldfor each product cannot exceed these values:
product 1 2 3 4 5 6 7

January 500 1000 300 300 800 200 100

February 600 500 200 0 400 300 150

March 300 600 0 0 500 400 100

April 200 300 400 500 200 0 100

May 0 100 500 100 1000 300 0

June 500 500 100 300 1100 500 60
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It is possible to store products in a warehouse. The capacity of the storage is 100 units per producttype per month. The cost is 0.5 Euro per unit of product per months. There are no stocks in the firstmonth but it is desired to have a stock of 50 of each product type at the end of June.The factory works 6 days a week with two shifts of 8 hours each day. (It can be assumed that eachmonth consists of 24 working days.)The factory wants to determine a production plan, that is, the quantity to produce, sell and store ineach month for each product, that maximizes the total profit.
Task 1 Model the factory planning problem for the month of January as an LP problem.
Solution:The problem is taken from the book [Wi].The problem is also one of Gurobi Examples:
http://www.gurobi.com/resources/examples/factory-planning-IThere is also a video: https://youtu.be/vnLc_3VnVcw?t=32m51sYou find the solutions also in this document.
Solution:The objective is to find the optimum “product mix” subject to the production capacity and the marketinglimitations. If storage of single products is not allowed, the model for January can be formulated asfollows. Let the real variables xi represent the quantities of product i to be made. Let GR, VD, HD, BRand PL stand for, respectively, grinding, vertical drilling, horizontal drilling, boring and planing. Let thetotal working hours for each machine be 8 ∗ 2 ∗ 24 = 384.

max 10x1 + 6x2 + 8x2 + 4x4 + 11x5 + 9x6 + 3x7
GR : 0.5x1 + 0.7x2 + + + 0.3x5 + 0.2x6 + 0.5x7 ≤ 1152
VD : 0.1x1 + 0.2x2 + 0.3x4 + 0.6x6 ≤ 768
HD : 0.2x1 + 0.8x3 + 0.6x7 ≤ 1152
BR : 0.05x1 + 0.03x2 + 0.07x4 + 0.1x5 + 0.08x7 ≤ 384
PL : 0.01x3 + 0.05x5 + 0.05x7 ≤ 384

x1 ≤ 500, x2 ≤ 1000, x3 ≤ 300, x4 ≤ 300, x5 ≤ 800, x6 ≤ 200, x7 ≤ 100The single-period problems for the other months would be similar apart from different market bounds,and different capacity figures for the different types of machine.The matrix has no special structure, the coefficients are not just {−1, 1, 0} as in a TUM matrix and nonzeros can appear everywhere. The matrix is not necessarily sparse.
Task 2 Model the multi-period (from January to June) factory planning problem as an LP problem. Usemathematical notation and indicate in general terms how many variables and how many constraintsyour model has.
Solution:It is necessary to distinguish for each month the quantities of each product manufactured from thequantities sold and held over in storage. These quantities must be represented by different variables.Let the quantities of product i manufactured, sold, and held over in successive months t be representedby variables xit , sit , hit , t = 1, . . . , 6.A convenient way to represent the link between these variables is shown in Figure 1. Hence, the massbalance constraints to be imposed are:

hi,t−1 + xit = sit + hitInitially (month 0), there is nothing held in stock but finally (month 6) there are (at least) 50 of eachproduct held. This relation involving product 1 gives rise to the following constraints:
x11 − s11 −h11 = 0

h11 +x12 − s12 −h12 = 0
h12 +x13 − s13 −h13 = 0
h13 +x14 − s14 −h14 = 0
h14 +x15 − s15 −h15 = 0
h15 +x16 − s16 = 50
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Figure 1: Mass balance constraint at each time period.
Similar constraints must be specified for the other six products. It may be more convenient to definealso variables h16, h26, etc, and fix them at the value 50.The general model is:

max 7∑
i=1

6∑
t=1 pisit −

7∑
i=1

6∑
t=1 fhit (1)∑

i
aijxit ≤ 384(cj −mj,t) j ∈ {GR, VD,HD,BR,PL}, t = 1 . . . , 6 (2)

hi,t−1 + xit − sit − hit = 0 i = 1, . . . , 7; t = 1, . . . , 6 (3)
sit ≤ uit i = 1, . . . , 7; t = 1, . . . , 6 (4)
hit ≤ 100 i = 1, . . . , 7; t = 1, . . . , 6 (5)
sit , xit , hit ≥ 0 i = 1, . . . , 7; t = 1, . . . , 6 (6)
hi0 = 0, hi6 = 50 i = 1, . . . , 7 (7)

In the objective function (1) the “selling” variables are given the appropriate “unit profit” pi and the“holding” variables the coefficients of f = 0.5. Constraints (2) are the resource constraints where cm isthe capacity for each resource m. Constraints (3) are the mass balance constraints described above andconstraints (4) are the marketing limitations where uit are product upper bounds.The resulting model has the following dimensions:
6× 7 = 42 manufacturing variables6× 7 = 42 selling variables6× 7 = 42 holding variablesTotal 126 variables6× 5 = 30 capacity constraints6× 7 = 42 monthly linking constraints6× 7 = 42 marketing limitations6× 7 = 42 holding quantity constraintsTotal 156 constraints

We typically do not count positivity constraints, as those are standard.
If we present the problem in a diagrammatic form we obtain the illustration on the left of Figure 2.The matrix is not apparently TUM. It has however a block angular structure. A block angular structureis made by common rows and blocks in diagonal representing submodels. In our case the commonrows are the linking equality constraints of mass balance while the submodels are the per periodproduction planning as the one seen in Task 1. Clearly, a matrix with block angular structure withoutcommon constraints could be decomposed and each submodel solved separately. Nevertheless advancedtechniques exist to handle efficiently problems with block angular structure. A typical problem with thisstructure often used in examples is the multi-commodity flow problem (we will see this in one of thenext classes).Another type of structure which may arise in multi-period models is the staircase structure which isillustrated in Figure 2, right. In fact a staircase structure such as this could be converted into a block
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Figure 2: On the left a block angular structure and on the right a staircase structure
angular structure. If alternate “steps” such as (A0, B1), (A2, B3) were treated as subproblem constraintsand the intermidiate “steps” as common rows we would have a block angular structure.
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