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Exercise 1*

Consider the following problem:

maximize z=x3 —x2

subject to x1 +x <2
2x1 4+ 2x0 > 2
X1, X2 Z 0

In the ordinary simplex method this problem does not have an initial feasible basis. Hence, the method
has to be enhanced by a preliminary phase to attain a feasible basis. Traditionally we talk about a
phase I-phase Il simplex method. In phase | an initial feasible solution is sought and in phase Il the
ordinary simplex is started from the initial feasible solution found.

There are two ways to carry out phase I.

e Solving an an auxiliary LP problem defined by introducing auxiliary variables and minimizing them
in the objective. The solution of the auxiliary LP problem gives an initial feasible basis or a proof
of infeasibility.

e Applying the dual simplex on a possibly modified problem to find a feasible solution. If the
initial infeasible tableau of the original problem is not optimal then the objective function can
be temporarily modified for this phase in order to make the initial tableau optimal although
not feasible. Opposite to the primal simplex method, the dual simplex method iterates through
infeasible basis solutions, while maintaining them optimal, and stops when a feasible solution is
reached.

Dual Simplex: The strong duality theorem states that we can solve the primal problem by solving its
dual. You can verify that applying the primal simplex method to the dual problem corresponds to the
following method, called dual simplex method that works on the primal problem:

1. (Feasibility condition) select the leaving variable by picking the basic variable whose right-hand
side term is negative, i.e., select i* with by < 0.

2. (Optimality condition) pick the entering variable by scanning across the selected row and com-
paring ratios of the coefficients in this row to the corresponding coefficients in the objective row,
looking for the largest negated. Formally, select j* such that j* = min{|c;/a;j| : a;; < 0}

3. Update the tableau around the pivot in the same way as with the primal simplex.

4. Stop if no right-hand side term is negative.

Duality can help us with the issue of initial feasible basis solutions. In the problem above, if the objective
function was w = —xy — x», then the initial basis solution of the dual problem would be feasible and we
could solve the problem solving the dual problem with the primal simplex. But with objective function
z the simplex has infeasible initial basis in both problems. However we can change temporarily the
objective function z with w and apply the dual simplex method. When it stops we reached a feasible
solution that is optimal with respect to w. We can then reintroduce the original objective function and
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continue iterating with the primal simplex. The phase |-phase Il simplex method that uses the dual
simplex is also called the dual-primal simplex method.
Apply this method to the problem above and verify that it leads to the same solution as in point 1.

Solution:
max x3 — X = Z
X1 + x < 2
2x1 + 2x > 2
x1,x2 > 0

We put in equational standard form by introducing a slack variable s; > 0 and a surplus variable s; > 0O:

max x4 — Xxp = Z
X1 + x2 + 5 =2
2x1 + 2x — s =2

X1,X2,51,52 > 0

This form is not canonical and therefore the first tableau does not have a feasible starting solution.

Auxiliary Problem Approach
We proceed by
e Phase | solving an auxiliary/augmented problem

e Phase Il continuing with ordinary simplex

Phase | We introduce an auxiliary variable a1 > 0 in the constraint that makes the infeasibility to
yield a canonical form:

max x3 — X2 = Z
X1 + X2 + S =2
2x1 + 2x — Sy + ay = 2

X1,X2,51,52, a1 > 0

Now we have a canonical form

| x1 | x2 | s1 | s2 | alt | -z | b |
|-t ———+———|
| 121 11 11 ol O O] 2]
21 21 ol -1 11 ol 2]
[ 11 -1 ol ol Ol 110
| ===t |

This problem will have the same solution as the original one only when a1 = 0. We can then solve

e an augmented problem by introducing the following objective function maxw = x; — x, — May,
where M is a large enough constant or

e an auxiliary problem minw = a1 = — max(—a1).

Let's take the auxiliary problem, if w* > 0 then we will conclude that the feasibility region of the orginal
problem is empty. Otherwise, if w* = 0, then this implies that a1 = 0 and we found a feasible solution.
Let's proceed by setting up the tableau of the auxiliary problem
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Il 21 21 ol -1 11 ol O1l2]
| 11 -11 ol ol ol 1] OO
|l ol ol ol ol-1] ol 1101
R et B B et matatll

This is not in canonical form but it is easy to bring it to canonical form: just add the second row to the
last one.

| x1 | x2 | st |1 s2 |l at | -z 1| -wl bl
|————+————t |
[ 11 1] 1| ol ol ol Ol 2]
l 21 21 ol -1 1] ol o1l 2]
| 11 -1t]1 ol ol ol 11 O01lO]l
Il 21 21 ol -1 ol ol 11]2]
|——— |

The variables s, a1 give us a feasible basis now. It is not optimal. We proceed with the pivot operations.
In this case it is worth noting that in the ratio rule, we do not consider the third row since that row
corresponds to the orginal objective function and not to a constraint.

We make xq1 enter the basis and consequently aq goes out. The pivot is 2 and the new tableau:

| | x1 | x2 | s1 | s2 | a1 | =z | -w | b |
|- ot +————— ot —————|
| R©’=R1-R2° | O | O 1| 1/2 | -1/21 ol o 1]
| R2°=R2/2 | 1| 1] ol -1/211/2 | ol o1l 1]
| R3°=R3-R2> | 0| -2 | ol 1/2 | -1/2 | 1| 01 -1 |
| R4°=R4-R2 | O | O | O 1] O -t | ol 11 0]
| -——————————- R mat e e R et ot —————|

The tableau is optimal. One non basic variable has reduced cost null, which indicates that there are
infinite solutions, but this is not relevant now. The relevant thing is that w* = 0 hence the minimum of
the auxiliary problem is 0 and hence there is a feasible solution for a1 = 0. This concludes the Phase
| of the algorithm since a feasible solution for the auxiliary problem is feasible also for the original
problem.

Phase Il We throw away the last row and the second last column from the tableau since we do not
need them anymore.

| x1 | x2 | s1 | s2 | a1 | -z | b |
B e et e +————— +——— =t
| ol ol 11 1/2 | -1/2 ] o1l 1|
|l 1| 1] ol -1/2111/2 | O 1|
|l ol -21 ol /2 | -1/2 | 1| -1|
ot ——— +o———— +————t———]

The tableau is not optimal. The basic solution corresponding to this tableau is feasible but not optimal.
We bring s; in the basis and make s; leave. The new tableau is:

| x1 | x2 | s1 1 s2 1] al | -z | b |
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e s T B ot |
| R1’=2«R1 | o | O 2| 1| -11] 01 2]
| R2’=R2+R1 | 1| 1] Ol 01 1/21 01 2|
| R3’=R3-R1 | O | -2 1 -1 01 o1l 1] -2]
e e G et et
The tableau is now optimal. The optimal solution is x = (2,0) and z* = 2.
Dual-Primal Simplex Method
Phase | Let’s write the dual of the problem above:
. min 2y, + 2y, = w
max x; — Xx» = Z g+ 24, > 1 =y
X1+ x <2 Ly o > 1 yh=—y>
2 4+ 20 > 2 91 92 = ’
x1,x2 > 0 yy = 0
1, X2 Z y/2 < 0
min 2y; — 2y = w
yi — 2y2 > 1
yr — 2y2 > —1
yi.y2 = 0
If we put this LP problem in standard form:
max —2y1 + 2y = w
—y1 + 2y < -1
-y + 2y < 1
yr,y2 =2 0
and looking at the tableau:
lyi1ly21st]s2] -z bl
e s St |
-1 21 11 0ol 0] -1
-t 1 21 ol 11 ol 1]
-2 1 21 0| | 11 0]
e et S St |

we see that the initial tableau like for the primal problem is infeasible.
However, the dual problem has an advantage, if we change temporarily the objective function of the
primal problem to n = —x7 — x, the dual problm becomes:

max—xi— X2=n min2y—2y;= vy max—2y1+2y,=y

X1+ x2<2 y1—2y> 1 —y1+2y2<1
2x14+2x,>2 y1—2y>—1 —y1+2y><1
x1,%>0 yi,y2> 0 y1,4y2>0

and the corresponding tableau has an easy basic feasible solution:

' y1 1l y2 1 st ] s2]-z1]b]
| ————4—— |
-1 211 1] ol 01 1]
-1 1 21 ol 11 o1l 1]
-2 1 21 ol ol 110
| ————4 |
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We can then solve to optimality with the primal simplex: the variable y, enters the basis and the
variable s; exits. The new tableau becomes:

| | yily21lst] s21-z15b |
[ N e e ————— |
| R1 | -1 | [ 1] ol o1 |
| R2’=R2/2 | -1/2 | 1| o | 1/2 1 0| 1/2 |
l R3’=R3-R2 | -1 | | 0 | -1 | 1 | ‘1/2 I
[ Fm————— B e ST B |

and it is optimal. At this stage we can go back to the primal problem where we now have a feasible
solution, change the objective function back to the original one and continue with the primal simplex.

We can do the same iteration on the primal but with the dual simplex. Let’s write the tableau of the
primal with the objective function temporarily changed and keeping the old objective as well:

| x1 | x2 | s1 | 82| -z | -e| b |
||
[ 21 1+ 21 ol ol Ol 2]
[ -2 -2 o 11 Ol Ol -2
[ 11 -t ol ol 11 Ol O]
[ -t 1 -1t ol ol Ol 11 O
| —— |

As we see we have the conditions of the dual simplex satisfied, the tableau is optimal but not feasible.
Let's make an iteration of the dual simplex. We choose the row with negative b term and the column
with negative pivot that minimizes the ratio test: |c/al. We choose the second row and the second
column (again watch out that we do not consider the row of the addd old objective to decide the row).
In other terms we try to make the solution feasible while minimizing the loss in quality. The opertations
to update the tableau remain the same as for the primal simplex. We obtan:

| | x1 | x2 | s1 182 | -z | -e |l b |
|-——————————- R e m e e |
| R1°=R1-R2° | O | O 11 1/2 | ol O] 1|
| R2’=-1/2R2 | 1| 1| o1l -1/2 1 o1l O 1|
| R3’=R3+R2° | 2| O O -1/2 | 1| O 1|
| R4°=R4+R2° | O | O | O -1/2 1 O 11| 1|
|- ot ———— to— |

This tableau is optimal for the dual simplex, this means that a feasible solution for the primal problem
has been found: (0,1,1,0). We can now proceed with the primal simplex.

Note that the considerations on the dual problem made above were just for explanation purposes, when
solving our LP problem we do not need to write down the dual form of it or its tableaux. Instead, we
just need to switch from dual simplex to primal simplex always working on the original (the primal)
formulation of the problem. The dual simplex method simply a new way of picking the entering and
leaving variables in a sequence of primal tableaux.

Phase Il We can now remove the temporary objective function and the corresponding column and
proceed with the primal simplex.
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| x1 | x2 |
| ===+
| o1 0O
[ 1] 1]
| 21 0
I ——

+—— — 4 —

s2 | -z | b |
—————— +————t——
/2 | o 1|
-1/2 1 0| 1|
-1/2 1 1| 1]
—————— et

| | x1
|——— +-——=
| R1°=R1 | 0
| R2’=R2 | 1
| R3’=R3-2*%R2 | O
|- +-——=

| | x1
| ————————- +———-
| R1°=2%R1 | 0
| R2°=R2+R1 | 1
| R3’=R3-R1 | ©
|- B

+ — — — + —

| x2 | s1 |
do———p————+
[ ol 1]
[ 11 0
| -2 1 0|
fo———p————+

+ — — — + —

+ - — — + —

The tableau is now optimal and the corresponding basic feasible solution is x = (2,0) and has value

z¥ =2

We can visualize the problem using the LP Grapher tool linked from the course webpage:

Enter the linear programming problem here:

Minimize

= xy subject to the constraints:

Show only the region defined by the following contraints:

X + y <= 12
2x + 2y >= 2

LP Examples Graphing Examples Solve
Rounding: 4 decimal places  Fraction Mode
Erase Everything
The solution will appear below.
Vertex Lines through vertex Value of objective
x+y =12
*0.2 [i.p 2
®(2,0) ;: 5 =2 2 Maximum
x+2y=2 1
® 0,1 x=0 N
x+2y=2 1
®(1,0) y=0

Xmin: 0 Xmax: 3
Ymin: 0 Ymax: 3
Gridlines X: 0.25 Y: 025

Graph | Show vertex coordinates

Exercise 2* Sensitivity Analysis and Revised Simplex

A furniture-manufacturing company can produce four types of product using three resources.
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in a net profit of 19 Euro.

net profit of 13 Euro.

profit of 12 Euro.

A bookcase requires three hours of work, one unit of metal, and four units of wood and it brings

A desk requires two hours of work, one unit of metal and three units of wood, and it brings in a

A chair requires one hour of work, one unit of metal and three units of wood and it brings in a net

e A bedframe requires two hours of work, one unit of metal, and four units of wood and it brings in

a net profit of 17 Euro.

e Only 225 hours of labor, 117 units of metal and 420 units of wood are available per day.

In order to decide how much to make of each product so as to maximize the total profit, the managers

solve the following LP problem

max  19x; +13x0 + 12x3 + 17x4
3x1 4+ 2x0 + x3+ 2x4 < 225

X1 +x2+x3+ x4 <117

4x1 4+ 3x2 + 3x3 + 4x4 < 420
X1,X2,x3, x4 >0

The final tableau has x1,x3 and x4 in basis. With the help of a computational environment such as

Python for carrying out linear algebra operations, address the following points:

a) Write Ag, An, Az'An, the final simplex tableau and verify that the solution is indeed optimal.

Solution:

The initial tableau is:

| ————- +———— +———— +————- +———— +———— +———— o ——— |
l x1 1 x2 | x3 | x41x51=x61|x7I|-z1 bl
| —=—=——= o= +o———= +———— o= o= +o———= to———p————— |
| 3 | 2 | 1| 2 | 1] 0 | o1l o0 225 |
| 1] 1| 1| 1] 0 | 1| ol o 117 |
/| 41 3| 31 41 ol 0] 11 01 420 |
| 19| 131 12| 17| ol ol ol 1| O
| ——=——= +———— +———— - +———— +————— +———— to—— |

We know that there will be 3 variables in basis. The text of the problem tells us which these 3

variables are: 1, 3, 4. Hence,

312
AB:111 A/\/Z
434

w =N
o o -
o - O
- O O

We can calculate Ag'Ay in Python or in R:

> B=matrix(c(3,1,2,1,1,1,4,3,4) ,byrow=TRUE,ncol=3)
> Bl=solve(B)
> B%*%B1 # check to make sure it is correct!
[,11 [,2] [,3]
[1,] 1 0 0
[2,] 0 1 0
[3,] 0 0 1

> N=matrix(c( 2, 1, 0, 0, 1, 0, 1, 0, 3, 0, 0, 1),ncol=4,byrow=TRUE)

> B1%*%N

[,11 [,2]1 [,3] [,4]
[1,] 1 1 2 -1
[2,] 1 0 4 -1
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3,] -1 -1 -5 2
> cN=c(13,0,0,0)
> cB=c(19,12,17)
> cN-cBY%*%B1%*%N

[,11 [,2]1 [,3] [,4]
1,] -1 -2 -1 -3
> cBY%*%B1%x*%c(225,117,420)
> 1827

This code gives us:

1 1 2 - X1 39
A=Az'Av=|1 0 4 —1 xp=|x3|=Ag"b= |48
-1 -1 -5 2 X4 30

in=[t & & &|=[-1 -2 =1 =3]

and we can write the final tableau as:

| ————- +-———- +———— +-———- +-———- +-———- +———— o —— |
| x.1 | x2 | x3 | x4 | x5 1| =x61|=x7]I|-zI b |
| ————- +———— +———— +————- +———— +———— +———— oo |
| 1] 1| 0 | 0 | 1] 21 -11 0| 39 |
[ 0| 1] it ol ol 41 -1 o] 48 |
| ol -1 0 | 11 -1 -5 21 0| 30 |
| ol -1 0 | ol -2 -1 -3 1] -1827 |
| ————= B +-——— +————— o= +-——— +-——— o ———— |

Since all reduced costs are negative then the tableau and the corresponding solution are optimal.

What is the increase in price (reduced cost) that would make product x, worth to be produced?

Solution:

The increase in price of a quantity strictly larger than 1 would make the product 2 worth being
produced. Indeed, let ¢} = ¢, + 0 be the new price. We know that the coefficient in the objective
function goes in the reduced cost calculation multiplied by 1. Hence, to have a positive reduced cost
we have:

—14+0>0 - 0>1

. - 3

We could also recalcuate the reduced cost from scratch using the multipliers 7 ¢+ ;_, mapn. The
value of m; are read from the final tableau and they correspond to the reduced costs of the slack
variables, ie, (—2, —1, —3).

What is the marginal value (shadow price) of an extra hour of work or amount of metal and wood?

Solution:

The marginal values are the values of the dual variable y1, y, y3. From the strong duality theorem,
we know that y; = —m; = —Cp4y, i = 1..m. Hence, y = (2,1, 3).

An extra hour of work has marginal value of 2, that is, having one unit more of work would improve
the revenue by 2. For the other two resources the marginal values are 1 and 3, respectively.

We can cross check these conclusions: by the complementary slackness theorem, the fact that
all three dual variables are strictly positive indicates that all three constraints in the primal are
active=tight= binding. Hence, it makes sense to have that an increase in the capacity of those
constraints implies an increase in the profit. The conclusion that all three constraints are tight can
be also reached by the fact that the slack variables are 0 in the final tableau. If some constraint was
not tight, then the marginal value of the corresponding resource would be zero since an increase in
its capacity does not imply an immediate improvement in total profit.
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d)

Are all resources totally utilized, i.e. are all constraints “binding”, or is there slack capacity in some
of them? Answer this question in the light of the complementary slackness theorem.
Solution:

Since all dual variables are strictly larger than zero, then all constraints are binding. Indeed for the
complementary slackness theorem, we have that:

n
* * P
bi—g ajx; y; =0, i=1,....,m
j=1

From the economical interpretation of the dual why product x; is not worth producing? What is its
imputed cost?
Solution:

It is not worth producing 2 because Y, y;ai» > ¢y, that is, we are better off selling the raw materials
to produce the product. Indeed y; is the price of one unit of resource i and a;; is the amount of i
necessary to produce 2.

ZU(C/iZZZ*(2)+1*(1)+3*(3):14>‘]3
i

Solve the following variations:

1. The net profit brought in by each desk increases from 13 Euro to 15 Euro.

Solution:

We saw earlier that if the price of product 2 increases by more than 1 then the reduced cost
becomes positive and it enters the basis. We can iterate the revised simplex as follows:

Step 1 and 2 to determine the entering varible are already done in the point a) above.

We need to do Step 3 to determine the leaving variable: we need to find the constraint that limit
the increase of xy, theta. We solve first Agd = a in d. Here, a is the column of the matrix
A (augmented with the slack variables) from the initial tableau corresponding to the entering
variable xo. We use the inverse of A calculated earlier in a) above in R:

> B1Yx*%c(2,1,3)

[,1]
(1,1 1
(2,] 1
(3,1 -1
that is
2 1
d=Ag'la=A5"|1|=| 1
3 —1
Then the new solutioon xz is derived from the old one by means of d and the increase 6:
X 39 1
XB= | X3| = 48 | — 1 0 > 0
X4 30 —1

The increase 6 must be such that the value of the variables still remains feasible, ie, x; > 0. Hence
6 < 39 and the leaving variable is xq, since it is the one that goes to zero. The new solutions is

X2 39 1 39 -39 0
xp=|x3|==|48| -1 16=148-39[=1]9
X4 30 -1 30 + 39 69

and the objective value:
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> ¢=c(19,15,12,17)

> c%*%c(0,39,9,69)
[,1]

[1,] 1866

2. The availability of metal increases from 117 to 125 units per day

Solution:

This is a change in the RHS term of constraint 2. The optimality of the current solution does not
change, since all reduced costs stay negative, but we need to check if we are still feasible. We
need to look at the final tablea and recompute the b of all constraints. We can do this with A§1b:

> b=c(225,125,420)
> B1%x%b

[,1]
[1,] 55
[2,] 80
[3,1] -10

The last cosntraint becomes negative, hence we need to iterate with the dual simplex.
3. The company may also produce coffee tables, each of which requires three hours of work, one unit
of metal, two units of wood and bring in a net profit of 14 Euro.
Solution:
We need to check if the reduced cost of the new variable would become positive by computing

co + Zi T

> 14-3%2-1%1-2%3
(11 1

which is positive, hence we need to iterate as done in point 1).

4. The number of chairs produced must be at most five times the numbers of desks

Solution:

This corresponds to introduce a new constraint: x3 < 5x;. In the new standard form we have a new
slack variable xg. Adding the constraint in the tableau and bringing back the tableau in canonical
standard form we observe that a RHS term becomes negative. Hence, we need to iterate with the
dual simplex. After on iteration with the dual simplex, the final tableau becomes:

00 4/3  -5/6 1/6 0 31
00 2/3 —-1/6 -1/6 0 8
01 -1 -13/3 11/6 —-1/6 0 38
10
00

O ==

0 10/3 —-5/6 1/6 0 40
-2 —-1/3 -19/6 —1/6 1 —1819

OO OO -
[N Nei o]

If after the introduction of the constraint the current solution had stayed feasible then we would
have needed to check whether its was also optimal. We can either repeat the steps done at part
1 above to compute the new reduced costs or we can include the new row in the final tableau and
proceed to put the tableau in canonical form. Then we look at the value of the reduced costs.

Exercise 3
Solve the systems y' E1E,E3E4 =[1 2 3] and E1E,E3E4d = [1 2 3] with

10
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13 0 200 101 -0500
Ey=10050 E,=(110 E5=1{013 E;z=] 3 10
0 4 1 401 001 1 01

Solution:

This exercise is to show that the two systems can be solved quite easily. Let's take first y’ E1E2E3E, =
[1 2 3], we use the backward transformation and solve the sequence of linear systems:

u'Ey = [123], vViEs=u’, wE =V, UTE1 =w'

5

0500
u’ [ 3 10[=[1,23]
1 01

Since the eta matrices have always one 1 in two columns then the solution can be read up easily. From
the third column we find us = 3. From the second column, we find u; = 2. Substituting in the first
column, we find —0.5uq + 3 %2+ 1 %3 =1, which yields uy = 18. The next syestem is:

From the first column we get vy = 18, from the second column v, = 2 from the last column v3 = 3/24.
The next:

200
w=[110]|=[1823/24]
40 1

Exercise 4*

Write the dual of the following problem

(P) max Z Z IjXij

jel il

Y xij < b Viel
jel

ZX,‘]‘ S dj Vj E]
iel

ZPiXij = [Jj ZX[]' Vj S j
iel iel

XijZO ViEI,jEI

Solution:

There are three different sets of constraints. We introduce the dual variables o; > 0, for i € /, for the
first set; the dual variables 8; > 0, for j € J, for the second set; and the dual variables y; € R, for j € J
for the third set.

We then write the A matrix for the example in the picture, augmented with the b vector:

and finally the dual from the columns of the A matrix in general terms:

(D) m'ana,'b[ + Zb’jdj

iel jel

a; + B+ (pi — pjlv; = rj Viel,jel
a >0 Viel
Bi>0 Vjel
y; ER Vje

(N
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Xa1 XG2 XG3 XG4 XT1 XT2 XT3 XT4
1 0 0 0 0 by
0 0 0 0 1 1 b
1 dq
1 d>
1 1 ds
1 1 dy
pc — pl pr—p1
pc — p2 pr — p2
pG —p3 pr—p3
pc — p4 pr — ph
r 5 3 Iy r 5 r Iy
Exercise 5 Factory Planning and Machine Maintenance
A firm makes seven products 1,...,7 on the following machines: 4 grinders, 2 vertical drills, 3 horizontal

drills, 1 borer, and 1 planer.
Each product yields a certain contribution to the profit (defined as selling price minus cost of raw
materials expressed in Euro/unit). These quantities (in Euro/unit) together with the production times
(hours/unit) required on each process are given below.

product 1
profit 10
grinding 0.
vdrill 0.
hdrill 0.
0.
0

oON -, O,

boring 5

planning

O OO OO oOoN

o

O O O O O W w
0]

.01

O O O O O x>

w

o
]

O OO OO m

.05

O OO O O WwWwom

DN

O O O O O w-N

.6
.08
.05

In the first month (January) and the five subsequent months certain machines will be down for mainte-
nance. These machines will be:

January 1 grinder
February 2 hdrill
March 1 borer
April 1 vdrill
May 1 grinder
May 1 vdrill
June 1 planer
June 1 hdrill

There are marketing limitations on each product in each month. That is, in each month the amount sold
for each product cannot exceed these values:

product 1
January 500
February 600

March 300
April 200
May 0

June 500

2
1000
500
600
300
100
500

3

300
200
0

400
500
100

4
300
0
0
500
100
300

5
800
400
500
200
1000
1100

200
300
400

300
500

12

100
150
100
100

60
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It is possible to store products in a warehouse. The capacity of the storage is 100 units per product
type per month. The cost is 0.5 Euro per unit of product per months. There are no stocks in the first
month but it is desired to have a stock of 50 of each product type at the end of June.

The factory works 6 days a week with two shifts of 8 hours each day. (It can be assumed that each
month consists of 24 working days.)

The factory wants to determine a production plan, that is, the quantity to produce, sell and store in
each month for each product, that maximizes the total profit.

Task 1 Model the factory planning problem for the month of January as an LP problem.

Solution:

The problem is taken from the book [Wil.

The problem is also one of Gurobi Examples:
http://www.gurobi.com/resources/examples/factory-planning-1I
There is also a video: https://youtu.be/vnLc_3VnVcw?t=32mb51s
You find the solutions also in this document.

Solution:

The objective is to find the optimum “product mix” subject to the production capacity and the marketing
limitations. If storage of single products is not allowed, the model for January can be formulated as
follows. Let the real variables x; represent the quantities of product i to be made. Let GR, VD, HD, BR
and PL stand for, respectively, grinding, vertical drilling, horizontal drilling, boring and planing. Let the
total working hours for each machine be 8 x 2 % 24 = 384.

max 10x; 4+ 6x + 8xx + 4xs + 1xs + 9% + 3x7

GR: 05x; + 07x + + + 03xs + 02x¢ + 0.5x; <1152
VD: 01x; + 0.2x + 0.3x4 + 0.6xp <768
HD : 0.2x4 + 0.8x3 + 0.6x; <1152
BR: 0.05x; + 0.03x, + 0.07x4 + 0.1xs + 0.08x; < 384
PL: 0.01x3 + 0.05x5 + 0.05x; < 384

x1 <500, x; <1000, x3 < 300, x4 <300, x5 < 800, x¢ <200, x; <100

The single-period problems for the other months would be similar apart from different market bounds,
and different capacity figures for the different types of machine.

The matrix has no special structure, the coefficients are not just {—1,1,0} as in a TUM matrix and non
zeros can appear everywhere. The matrix is not necessarily sparse.

Task 2 Model the multi-period (from January to June) factory planning problem as an LP problem. Use
mathematical notation and indicate in general terms how many variables and how many constraints
your model has.

Solution:

It is necessary to distinguish for each month the quantities of each product manufactured from the
quantities sold and held over in storage. These quantities must be represented by different variables.
Let the quantities of product i manufactured, sold, and held over in successive months t be represented
by variables x;, sit, hir, t=1,...,6.

A convenient way to represent the link between these variables is shown in Figure 1. Hence, the mass
balance constraints to be imposed are:

hit—1 + Xit = sit + hit

Initially (month 0), there is nothing held in stock but finally (month 6) there are (at least) 50 of each
product held. This relation involving product 1 gives rise to the following constraints:

x11—s11 —hy1 =0
hi1 4+x12—s12 —hyz =0
hi2 +x13—s13 —hi3 =0
hi3 +x14 —s14 —h1s =0
his +xi5 —s15 —his =
his +x16 — S16 =50
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Figure 1: Mass balance constraint at each time period.

Similar constraints must be specified for the other six products. It may be more convenient to define
also variables hig, hys, etc, and fix them at the value 50.
The general model is:

7 6 7 6
'“aXZZ/JiSit_ZZfI7ft (1)

i=1 t=1 i=1 t=1

Z aiixit < 384(c; — mj;) j€{GR,VD,HD,BR,PL}, t=1...,6 (2)
i

hit—1+xi¢—sie—hiy=0 i=1,....7,t=1,...,6 (3)
sit < U i=1,...,7;t=1,...,6 (4)
hi <100 i=1,....,7,t=1,...,6 (5)
Sit) Xit, hit >0 i=1,....,7;,t=1,...,6 (6)
/71‘0:0:/71‘6:50 i= ,...,7 (7)

In the objective function (1) the “selling” variables are given the appropriate “unit profit” p; and the
“holding” variables the coefficients of f = 0.5. Constraints (2) are the resource constraints where ¢, is
the capacity for each resource m. Constraints (3) are the mass balance constraints described above and
constraints (4) are the marketing limitations where u;; are product upper bounds.

The resulting model has the following dimensions:

6 x 7 =42 manufacturing variables

6 x 7 =42 selling variables

6 x 7 =42 holding variables
Total 126  variables

6 x5 =30 capacity constraints

6 x 7 =42 monthly linking constraints

6 x 7 =42 marketing limitations

6 x 7 =42 holding quantity constraints
Total 156  constraints

We typically do not count positivity constraints, as those are standard.

If we present the problem in a diagrammatic form we obtain the illustration on the left of Figure 2.
The matrix is not apparently TUM. It has however a block angular structure. A block angular structure
is made by common rows and blocks in diagonal representing submodels. In our case the common
rows are the linking equality constraints of mass balance while the submodels are the per period
production planning as the one seen in Task 1. Clearly, a matrix with block angular structure without
common constraints could be decomposed and each submodel solved separately. Nevertheless advanced
techniques exist to handle efficiently problems with block angular structure. A typical problem with this
structure often used in examples is the multi-commodity flow problem (we will see this in one of the
next classes).

Another type of structure which may arise in multi-period models is the staircase structure which is
illustrated in Figure 2, right. In fact a staircase structure such as this could be converted into a block

14
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Figure 2: On the left a block angular structure and on the right a staircase structure

angular structure. If alternate “steps” such as (Ao, B1), (A2, B3) were treated as subproblem constraints
and the intermidiate “steps” as common rows we would have a block angular structure.
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