
Department of Mathematics and Computer ScienceUniversity of Southern Denmark, Odense March 28, 2019Marco Chiarandini

DM545/DM871 – Linear and integer programming
Computer Lab, Spring 2019 [pdf format]

Introduction
The assignment aims at introducing the students to mathematical modeling languages. They allow towrite in an easy and compact way problems in Linear Programming (LP), Integer Programming (IP) andMixed Integer Linear Programming (MILP) and to feed them in opportune forms to MILP solvers.Well known mathematical programming languages are: AMPL, GAMS, ZIMPL and GNU MathProg. Thelast two are open source.These languages are declarative type of languages, as opposed to procedural type. That is, we definethe problem without saying how it must be solved. Moreover, they allow to separate the model fromthe data. In fact that is essentially all what they do, they instantiate the model on the given data. Theoutput that is used by the solver can also be used for debugging purposes, that is, to check that theexplicit model is as expected. There are two formats in which an instantiated MILP can be exported toa file: .mps format, which is an almost universal format among solver systems, but that is not easy toread, and .lp format, which is more readable (introduced by CPLEX).The primary solvers for MILP are:
• IBM CPLEX (version 12.7),
• FICO XPRESS (Version 8)
• Gurobi (Version 7.5)These are commericial solvers. Commercial solvers remain maybe 6-7 time faster than the mainfree/open-source solvers:
• SCIP
• MIP-CL
• Coin-CBC, part of the open-source initiative Coin-OR (coin-or.org)
• GLPKThe NEOS server (https://neos-server.org/neos/) provides an infrastructure to upload an instanti-ated model and solve it remotedly.In this course, we will use Python with the module PySCIPOpt, a Python interface to the SCIP optimiza-tion software. The module PySCIPOpt is a library that tries to bring us very close to a mathematicalprogramming language while not loosing all the nice facilities of Python.You can work on your own laptop, in which case it is enough to install the software there. If you workon the machines of the terminal room then install the software in your IMADA home directory.This is a list of things to do before the class:1. install the latest version of Python (eg, 3.7).2. choose and prepare your favourite Python Integrated Development Environment (IDE): for example,Jupyter, JupyterLab, Spyder3, Atom (with the package hydrogen), Emacs, Eclipse, Visual Code, etc.3. install the SCIP optimization suite (you must be within SDU Net). In the computer lab, you haveto install locally in your home directory, for example, under ~/opt/.4. install the PySCIPOpt module. In the computer lab, to install locally in your home directory youhave first to make available the libraries from the SCIP software by typing in the build directory:

1

http://www.ampl.com/
http://www.gams.com/
http://zimpl.zib.de/
http://www.gnu.org/software/glpk/
coin-or.org
https://neos-server.org/neos/
https://scipbook.readthedocs.io/en/latest/
https://blog.jupyter.org/jupyterlab-is-ready-for-users-5a6f039b8906
https://scip.zib.de/index.php
https://github.com/SCIP-Interfaces/PySCIPOpt/blob/master/INSTALL.rst

DM545/DM871 – Spring 2019 Assignment Sheet
> DESTDIR=../install make install

and then installing PySCIPOpt:
> export SCIPOPTDIR=/home/marco/opt/scipoptsuite/scipoptsuite-6.0.1/install/usr/local

> pip3 install --user pyscipopt

5. take a tour through the documentation for PySCIPOpt with reference manual and examples avail-able at: https://imada.sdu.dk/~marco/DM871/PySCIPOpt/index.html
In the session you will work in pairs. Although the exercise is about implementing the models at thecomputer, remember that the best practice is to first write the mathematical models on paper! Do thatfor the subtasks that asks you to derive a mathematical model.
Exercise 1 The Basics: Production Allocation
The following model is for a specific instance of the production allocation problem seen in the firstlectures. We give here the primal and its dual model with the instantiated numerical parameters.

max 5x1 + 6x2 + 8x3 = z6x1 + 5x2 + 10x3 ≤ 608x1 + 4x2 + 4x3 ≤ 404x1 + 5x2 + 6x3 ≤ 50
x1, x2, x3 ≥ 0

min 60y1 + 40y2 + 50y3 = u6y1 + 8y2 + 4y3 ≤ 55y1 + 4y2 + 5y3 ≤ 610y1 + 4y2 + 6y3 ≤ 8
y1, y2, y3 ≥ 0

Analysis of the final tableauSolving one of the two problems provides the solution also to the other problem. The final tableau ofthe primal problem looks like this:
|------+----+----+------+----+----+----+-----|

| x1 | x2 | x3 | s1 | s2 | s3 | -z | b |

|------+----+----+------+----+----+----+-----|

| ? | 1 | 0 | ? | 0 | ? | 0 | 7 |

| ? | 0 | 1 | ? | 0 | ? | 0 | 5/2 |

| ? | 0 | 0 | ? | 1 | ? | 0 | 2 |

|------+----+----+------+----+----+----+-----|

| -0.2 | 0 | 0 | -0.2 | 0 | -1 | 1 | -62 |

|------+----+----+------+----+----+----+-----|

The question marks are for the values that are not relevant for the goals of this exercise.We deduce that the primal solution is x∗1 = 0, x∗2 = 7, x∗3 = 2.5 and the dual solution is y∗1 = 0.2, y∗2 =0, y∗3 = 1. The objective value is z∗ = u∗ = 62.The three numbers in the last row for the columns of the non basic variables are called reduced costs.They indicate how much we should make each product more expensive in order to be worth manufacturingit. The next three values are known as shadow prices. After a change of sign they give us the valuesof the dual variables, which are interpreted as the marginal value of increasing (or decreasing) thecapacities of the resources (that is, the value by which the objective function would improve if theconstraint were relaxed by one unit, which corresponds to buying one unit more of resource). In ourexample, which seeks maximization, the marginal value 1 for the third slack variable corresponding tothe third resource means that the objective function would increase by 1 if we could have one more unitof that resource.It can be verified that in the primal problem at the optimum the first and third resources are fullyexhausted, that is, their constraint is satisfied at the equality, while there is slack for the secondresource, that is, the constraint holds with strict inequality. Looking at the marginal values, we see thatthe second resource has been given a zero valuation. This seems plausible, since we are not using all
2

https://imada.sdu.dk/~marco/DM871/PySCIPOpt/index.html

DM545/DM871 – Spring 2019 Assignment Sheet
the capacity that we have, we are not willing to place much value on it (buying one more unit of thatresource would not translate in an improvement of the objective function).These results are captured by the Complementary Slackness theorem of linear programming. If aconstraint is not “binding” in the optimal primal solution, the corresponding dual variable is zero in theoptimal solution to the dual model. Similarly, if a constraint in the dual model is not “binding” in theoptimal solution to the dual model, then the corresponding variable is zero in the optimal solution tothe primal model.
Solving the model with PySCIPOptLet’s write the primal model in Python and solve it with SCIP. Here is the script:

#!/usr/bin/python3

import pyscipopt as pso

from pyscipopt import Model

Model

model = Model("prod")

Create decision variables

x1 = model.addVar(name="x1", vtype="C", lb=0.0, ub=None, obj=5.0, pricedVar = False)

x2 = model.addVar("x1", "C", 0, None, 6) # arguments by position

x3 = model.addVar(name="x3") # arguments by deafult: lb=0.0, ub=None, obj=0.

The objective is to maximize (the default)

Unecessary if we had written the obj coefficient for all vars above

model.setObjective(5.0*x1 + 6.0*x2 + 8.0*x3, "maximize")

Add constraints to the model

model.addCons(6.0*x1 + 5.0*x2 + 10.0*x3 <= 60.0, "c1")

model.addCons(8.0*x1 + 4.0*x2 + 4.0*x3 <= 40.0, "c2")

model.addCons(4.0*x1 + 5.0*x2 + 6.0*x3 <= 50.0, "c3")

Solve

model.optimize()

Let’s print the solution

if model.getStatus() == "optimal":

print("Optimal value:", model.getObjVal())

for v in model.getVars():

print(v.name, " = ", model.getVal(v))

else:

print("Problem could not be solved to optimality")

The documentation for the functions Model.addVar(), Model.setObjective() Model.addCons(), aswell as for all other functions in PySCIPOpt is available from the Reference Manual and more specificallyfrom the Model API page.For the variable x3 the lower bound, upper bound, objective coefficient and type are set to their defaultvalues that are, respectively: vtype=’C’, lb=0.0, ub=None, obj=0.0 Once the model has been built,the typical next step is to optimize it (using model.optimize()). You can then query each variablevalue in the optimal solution via model.getValue() and the variable name with the attribute name.If the code is in a file called prod1_scip.py then we can solve the model by calling:
> python3 prod1_scip.py

Parameter setting It is possible to specify the parameters of the solver (for example to set a time limit)by specifying them before solving the model. For example, we can avoid preprocessing to occur and setthe primal simplex as the solution method:
Let’s deactivate presolving and heuristic solutions

3

https://imada.sdu.dk/~marco/DM871/PySCIPOpt/
https://imada.sdu.dk/~marco/DM871/PySCIPOpt/classpyscipopt_1_1scip_1_1Model.html

DM545/DM871 – Spring 2019 Assignment Sheet
model.setPresolve(pso.SCIP_PARAMSETTING.OFF)

model.setHeuristics(pso.SCIP_PARAMSETTING.OFF)

model.disablePropagation()

let’s use the primal simplex

model.setCharParam("lp/initalgorithm","p")

The list of parameters can be found at: https://scip.zib.de/doc/html/PARAMETERS.php.
Exporting Model Data to a File It is a good practice to check that everything is as we want it tobe. In order to assess this, we can let PySCIPOpt write for us the set of parameters and the modelinstantiated with our data. This check can be very useful above all with implicit models as we will seelater. Inspect the files created by these lines:

Write the set of SCIP parameters and their settings.

model.writeParams("param.set")

Write the instantiated model to a file

model.writeProblem("prod1_scip.lp") # lp format

model.writeProblem("prod1_scip.cip") # cip format

wrote parameter settings to file param.set
wrote problem to file b’prod1_scip.lp’
wrote problem to file b’prod1_scip.cip’

The file param.set contains a list of SCIP parameters that can be set as we did with lp/initalgorithmabove. Inspecting this file can provide an insight on the parameters available as an alterntive to consultthe web page: https://scip.zib.de/doc/html/PARAMETERS.php.The files prod1_scip.lp and prod1_scip.cip contain the problem in two different formats. Validsuffixes for writing the model itself are .mps, .rew, .lp, or .rlp.
Your Task Try all these formats on the production allocation example above and check their contents.The MPS file is not very user friendly. This is because the format is an old format when computertechnology had much more limitations than nowadays. The CPLEX-LP format is a more explicit versionof the problem that may be useful to check whether the model we implemented in Python is actuallythe one we intended.If everything runs fine you should get the following output:
presolving:
presolving (0 rounds: 0 fast, 0 medium, 0 exhaustive):
0 deleted vars, 0 deleted constraints, 0 added constraints, 0 tightened bounds, 0 added holes, 0 changed sides, 0 changed coefficients
0 implications, 0 cliques

presolved problem has 3 variables (0 bin, 0 int, 0 impl, 3 cont) and 3 constraints
3 constraints of type <linear>

Presolving Time: 0.00

time | node | left |LP iter|LP it/n| mem |mdpt |frac |vars |cons |cols |rows |cuts |confs|strbr| dualbound | primalbound | gap
* 0.0s| 1 | 0 | 2 | - | 549k| 0 | - | 3 | 3 | 3 | 3 | 0 | 0 | 0 | 6.200000e+01 | 6.200000e+01 | 0.00%

0.0s| 1 | 0 | 2 | - | 549k| 0 | - | 3 | 3 | 3 | 3 | 0 | 0 | 0 | 6.200000e+01 | 6.200000e+01 | 0.00%

SCIP Status : problem is solved [optimal solution found]
Solving Time (sec) : 0.01
Solving Nodes : 1
Primal Bound : +6.20000000000000e+01 (1 solutions)
Dual Bound : +6.20000000000000e+01
Gap : 0.00 %
Optimal value: 62.0
x1 = 0.0
x1 = 7.0
x3 = 2.5

The screen output of SCIP is described in Figure 1. If a letter appears in front of a display row, itindicates, which heuristic found the new primal bound, a star representing an integral LP-relaxation. Inaddition, the output indicates the amount of presolving that is conducted. Finally, the simplex methodis applied and after 2 iterations of the primal simplex method (we set to use this method via model.

setCharParam("lp/initalgorithm","p")) the optimal solution is found with value 62.
Most of the information associated with a PySCIPOpt model is stored in a set of attributes. Someattributes are associated with the variables of the model, some with the constraints of the model, and

4

https://scip.zib.de/doc/html/PARAMETERS.php
https://scip.zib.de/doc/html/PARAMETERS.php

DM545/DM871 – Spring 2019 Assignment Sheet
SCIP> display display

display column header position width priority status description

-------------- ------ -------- ----- -------- ------ -----------

solfound 0 1 80000 auto letter that indicates the heuristic which found the solution

concsolfound 0 1 80000 auto indicator that a new solution was found in concurrent solve

time time 50 5 4000 auto total solution time

nnodes node 100 7 100000 auto number of processed nodes

nodesleft left 200 7 90000 auto number of unprocessed nodes

lpiterations LP iter 1000 7 30000 auto number of simplex iterations

lpavgiterations LP it/n 1400 7 25000 auto average number of LP iterations since the last output line

concmemused mem 1500 5 20000 auto total number of bytes used in block memory

maxdepth mdpt 2100 5 5000 auto maximal depth of all processed nodes

nfrac frac 2500 5 700 auto number of fractional variables in the current solution

vars vars 3000 5 3000 auto number of variables in the problem

conss cons 3100 5 3100 auto number of globally valid constraints in the problem

curconss ccons 3200 5 600 auto number of enabled constraints in current node

curcols cols 3300 5 800 auto number of LP columns in current node

currows rows 3400 5 900 auto number of LP rows in current node

cuts cuts 3500 5 2100 auto total number of cuts applied to the LPs

conflicts confs 4000 5 2000 auto total number of conflicts found in conflict analysis

strongbranchs strbr 5000 5 1000 auto total number of strong branching calls

dualbound dualbound 9000 14 70000 auto current global dual bound

primalbound primalbound 10000 14 80000 auto current primal bound

concprimalbound primalbound 10000 14 80000 auto current primal bound in concurrent solve

gap gap 20000 8 60000 auto current (relative) gap using |primal-dual|/MIN(|dual|,|primal|)

Figure 1: The columns in the output display
some with the model itself. To access these attributes you have to use the methods available underModel.
The Value of the Dual and Slack variables The value of the dual and slack variables can be accessedby the methods model.getDualsolLinear() and model.getSlack() on the constraints. In Python:

Let’s print the dual variables

for c in model.getConss():

print(c.name, model.getSlack(c), model.getDualsolLinear(c))

to obtain
c1 0.0 0.19999999999999973

c2 2.0 0.0

c3 0.0 1.0000000000000004These are the marginal values or shadow prices (here 0.2, 0.0 and 1) which correspond to the marginalvalue of the resources. The c1 and c3 constraints’ value is different from zero. This indicates thatthere’s a variable on the upper bound for those constraints, or in other terms that these constraints are
“binding”. The second constraint is not “binding”. Indeed its slack is 2.
Your Task Try relaxing the value of each binding constraint one at a time, solve the modified problem,and see what happens to the optimal value of the objective function. Also check that, as expected,changing the value of non-binding constraints won’t make any difference to the solution.
Your Task We can also access several quantities associated with the variables. A particularly relevantone is the reduced cost. Print the reduced costs of the variables for our example and make sure thatthey correspond to the expected values from the tableau above. [Hint: look for the method model.

getVarRedcost.] What can we say about the solution found on the basis of the reduced costs?
Let’s now focus on the values output during the execution of the simplex. Let’s first solve another smallnumerical example:

#!/usr/bin/python

from pyscipopt import *

m = Model("infeas")

x = m.addVar(name="x") # ie, >= 0

y = m.addVar(name="y") # ie, >= 0

m.setObjective(x - y, "maximize")

5

DM545/DM871 – Spring 2019 Assignment Sheet
m.addCons(x + y <= 2, "c1")

m.addCons(2*x + 2*y >= 5, "c2")

m.optimize()

if m.getStatus() in ["infeasible", "unbounded"]:

print(m.getStatus())

elif m.getStatus() == "optimal":

print(’Optimal objective: %g’ % m.getObjVal())

print(m.getVal(x))

print(m.getVal(y))

exit(0)

elif m.getStatus() != "infeasible":

print(’Optimization was stopped with status %d’ % m.getStatus())

exit(0)

Solving it we obtain:
presolving:

presolving (1 rounds: 1 fast, 0 medium, 0 exhaustive):

1 deleted vars, 1 deleted constraints, 0 added constraints, 2 tightened bounds, 0 added holes, 0 changed sides, 0 changed coefficients

0 implications, 0 cliques

presolving detected infeasibility

Presolving Time: 0.00

SCIP Status : problem is solved [infeasible]

Solving Time (sec) : 0.00

Solving Nodes : 0

Primal Bound : +1.00000000000000e+20 (0 solutions)

Dual Bound : +1.00000000000000e+20

Gap : 0.00 %

infeasibleThis means that the presolve process has removed one column and identified the model as infeasibleLet’s remove presolving and enforce to use the primal method:
presolving:

presolving (0 rounds: 0 fast, 0 medium, 0 exhaustive):

0 deleted vars, 0 deleted constraints, 0 added constraints, 0 tightened bounds, 0 added holes, 0 changed sides, 0 changed coefficients

0 implications, 0 cliques

presolved problem has 2 variables (0 bin, 0 int, 0 impl, 2 cont) and 2 constraints

2 constraints of type <linear>

Presolving Time: 0.00

time | node | left |LP iter|LP it/n| mem |mdpt |frac |vars |cons |cols |rows |cuts |confs|strbr| dualbound | primalbound | gap

0.0s| 1 | 0 | 1 | - | 545k| 0 | - | 2 | 2 | 2 | 2 | 0 | 0 | 0 | cutoff | -- | 0.00%

0.0s| 1 | 0 | 1 | - | 545k| 0 | - | 2 | 2 | 2 | 2 | 0 | 0 | 0 | cutoff | -- | 0.00%

SCIP Status : problem is solved [infeasible]

Solving Time (sec) : 0.00

Solving Nodes : 1

Primal Bound : +1.00000000000000e+20 (0 solutions)

Dual Bound : +1.00000000000000e+20

Gap : 0.00 %

A feasible solution cannot be found and the problem is therefore infeasible. Try to change 5 to 2 in theright-hand-side of the second constraint of the model above. What happens? Explain the behaviour.
Your task If you have any of them installed, try solving the problem with other solvers, eg, cplex, glpk

6

DM545/DM871 – Spring 2019 Assignment Sheet
and gurobi. For this you have to use the MPS (Mathematical Programming System) format and runthe following: 1
cplex -c read prod.mps optimize

glpsol --mps prod.mps

scip -f prod.mps

Gurobi has also a command-line tool to solve model files:
gurobi_cl model.mpsYou may also use the online solver at NEOS, the Network Enabled Optimization Server supported bythe US federal government and located at Argonne National Lab. To submit an MPS model to NEOSvisit http://www.neos-server.org/neos/, click on the icon “NEOS Solvers”, scroll down to the LinearProgramming or Mixed Integer Linear Programming list, click on one of those, scroll down to “ModelFile”, click on “Choose File”, select a file from your computer that contains an MPS model, scroll downto “e-mail address:”, type in your email address, and click Submit to NEOS.
Exercise 2 The Diet Example
So far we have written models with embedded data. However, when building an optimization model,it is typical to separate the optimization model itself from the data used to create an instance of themodel. These two model ingredients are often stored in completely different files.There are alternate approaches to providing data to the optimization model: they can be embedded inthe source file, read from an SQL database (using the Python sqlite3 package), or read them from anExcel spreadsheet (using the Python xlrd package) and more.
Diet Problem Bob wants to plan a nutritious diet, but he is on a limited budget, so he wants to spendas little money as possible. His nutritional requirements are as follows:2000 Kcal55 g protein800 mg calciumBob is considering the following foods with corresponding nutritional valuesServing Size Price per serving Energy (Kcal) Protein (g) Calcium (mg)Oatmeal 28 g 0.3 110 4 2Chicken 100 g 2.4 205 32 12Eggs 2 large 1.3 160 13 54Milk 237 cc 0.9 160 8 285Apple Pie 170 g 2 420 4 22Pork 260 g 1.9 260 14 80With the help of Python/SCIP, find the amount of servings of each type of food in the diet.In a file dietmodel.py we specify the model independently from the specific data. The file is reported inListing 1. The quicksum function on the second line is an enhanced version of the sum function availablein Python, used in Python/SCIP to do the computation of linear expressions more efficiently.We set the data in another file, for example, diet1.py, reported in Listing 2. The dictionaries and listsare created at once by using the multidict function available in Python/SCIP. Here is an example ofwhat it does:

keys, dict1, dict2 = multidict({

’key1’: [1, 2],

’key2’: [1, 3],

’key3’: [1, 4] })

print keys, dict1, dict2

1Standard MPS files do not indicate whether to minimize or maximize the objective. Thus your MPS files will come out thesame whether the objective is minimize or maximize.As you are seeing, most solvers minimize the objective by default. A solver may have a switch to tell it to maximize instead,but that is different for each solver.If you change the signs of all the objective coefficients, while leaving the constraints unchanged, then minimizing the resultingMPS file will be equivalent to maximizing the original problem. This can be done easily by putting the entire objective expressionin parentheses and placing a minus sign in front of it.
7

http://www.gurobi.com/documentation/current/refman/gurobi_command_line_tool
http://www.neos-server.org/neos/

DM545/DM871 – Spring 2019 Assignment Sheet

Listing 1: dietmodel.py
#!/usr/bin/python

from pyscipopt import *

def solve(categories, minNutrition, maxNutrition, foods, cost, nutritionValues):

Model

m = Model("diet")

Create decision variables for the nutrition information,

which we limit via bounds

nutrition = {}

for c in categories:

nutrition[c] = m.addVar(lb=minNutrition[c], ub=maxNutrition[c], name=c)

Create decision variables for the foods to buy

buy = {}

for f in foods:

buy[f] = m.addVar(obj=cost[f], name=f)

The objective is to minimize the costs

m.setMinimize()

Nutrition constraints

for c in categories:

m.addCons(

quicksum(nutritionValues[f,c] * buy[f] for f in foods) == nutrition[c],

c)

def printSolution():

if m.getStatus() == "optimal":

print(’\nCost: %g’ % m.getObjVal())

print(’\nBuy:’)

for f in foods:

if m.getVal(buy[f]) > 0.0001:

print(’%s %g’ % (f, m.getVal(buy[f])))

print(’\nNutrition:’)

for c in categories:

print(’%s %g’ % (c, m.getVal(nutrition[c])))

else:

print(’No solution’)

Solve

m.optimize()

printSolution()

8

DM545/DM871 – Spring 2019 Assignment Sheet
Listing 2: diet1.py

#!/usr/bin/python

from pyscipopt import *

categories, minNutrition, maxNutrition = multidict({

’Calories’: [1800, 2200],

’Protein’: [91, None],

’Calcium’: [0, 1779] })

foods, cost = multidict({

’Oatmeal’: 0.30,

’Chicken’: 2.40,

’Eggs’: 1.30,

’Milk’: 0.90,

’Apple Pie’: 2.00,

’Pork’: 1.90});

Nutrition values for the foods

nutritionValues = {

(’Oatmeal’, ’Calories’): 110,

(’Oatmeal’, ’Protein’): 4,

(’Oatmeal’, ’Calcium’): 2,

(’Chicken’, ’Calories’): 205,

(’Chicken’, ’Protein’): 32,

(’Chicken’, ’Calcium’): 12,

(’Eggs’, ’Calories’): 160,

(’Eggs’, ’Protein’): 13,

(’Eggs’, ’Calcium’): 54,

(’Milk’, ’Calories’): 160,

(’Milk’, ’Protein’): 8,

(’Milk’, ’Calcium’): 285,

(’Apple Pie’, ’Calories’): 420,

(’Apple Pie’, ’Protein’): 4,

(’Apple Pie’, ’Calcium’): 22,

(’Pork’, ’Calories’): 260,

(’Pork’, ’Protein’): 14,

(’Pork’, ’Calcium’): 80 };

[’key3’, ’key2’, ’key1’]

{’key3’: 1, ’key2’: 1, ’key1’: 1}

{’key3’: 4, ’key2’: 3, ’key1’: 2}The key construct that enables the separation of the model from the data is the Python module. Amodule is simply a set of functions and variables, stored in a file. One imports a module into a programusing the import statement. One then executes the solve function of the dietmodel module by addingthe following pair of statements at the end of the file diet1.py:
import dietmodel

dietmodel.solve(categories,minNutrition,maxNutrition,foods,cost,nutritionValues)

To solve the model we execute diet1.py.
Your Task A pill salesman offers Bob Calories, Protein, and Calcium pills to fulfill his nutritional needs.He needs to estimate the prices of units of serving, that is, the cost of 1 kcal, the cost of 1 g of protein,the cost of 1 mg of calcium. He wants to make as much money as possible, given Bob’s constraints.He knows that Bob wants 2200 kcal, 55 g protein, and 1779 mg calcium. How can we help him inguaranteeing that he does not make a bad deal?

9

DM545/DM871 – Spring 2019 Assignment Sheet
Solution:The dual seeks to maximize the profit of the salesman. Let yi ≥ 0, i ∈ N be the prices of the pills.

min ∑
j∈F

cjxj∑
j∈F

aijxj ≥ Nmin,i, ∀i ∈ N

xj ≥ 0, ∀j ∈ F

max ∑
i∈F

Nmin,iyi∑
i∈N

ajiyi ≤ cj , ∀j ∈ F

yi ≥ 0, ∀i ∈ N

However the values of the dual variables can be determined by the last tableau of the solution to theprimal problem by printing the Pi attribute of the constraints.
Exercise 3 Particular Cases
The two following LP problems lead to two particular cases when solved by the simplex algorithm.Identify these cases and characterize them, that is, give indication of which conditions generate themin general. Then, implement the models in Python/SCIP and observe the behaviour.

maximize 2x1 + x2subject to x2 ≤ 5
−x1 + x2 ≤ 1

x1, x2 ≥ 0maximize x1 + x2subject to 5x1 + 10x2 ≤ 604x1 + 4x2 ≤ 40
x1, x2 ≥ 0

Exercise 4 Pathological Cases
This exercise asks you to check the behavior of the solvers on the two pathological cases:

maximize 4x2subject to 2x2 ≥ 0
−3x1 + 4x2 ≥ 1

x1, x2 ≥ 0maximize 10x1 − 57x2 − 9x3 − 24x4subject to − 0.5x1 + 5.5x2 + 2.5x3 − 9x4 ≤ 0
−0.5x1 + 1.5x2 + 0.5x3 − x4 ≤ 0

x1 ≤ 1
x1, x2, x3, x4 ≥ 0What happens with the solver? Can you detect which pathological cases are from the output of thesolver? How?

Exercise 5 Shortest Path
Model the shortest path problem as an LP problem. Write the model in Python using the skeleton sp.pyavailable from the directory http://www.imada.sdu.dk/~marco/DM559/Files/SP/20points.txt thatreads data from 20points.tex. In these data the source is node 1 and the target is node 20.Model the problem in LP and solve it with Python/SCIP. Check the correctness of your solution withthe help of the visualization in the template sp.py.It may be worth looking at the example on the transportation problem.

10

https://www.imada.sdu.dk/~marco/DM559/Files/SP/sp.py
https://www.imada.sdu.dk/~marco/DM559/Files/SP/20points.txt
http://www.imada.sdu.dk/~marco/DM559/Files/SP/20points.txt
https://imada.sdu.dk/~marco/DM871/PySCIPOpt/transp__nofn_8py_source.html

	The Basics: Production Allocation
	The Diet Example
	Particular Cases
	Pathological Cases
	Shortest Path

