
DM841

Constraint Programming

Lecture 6
Global Constraints

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

[Based on slides by Christian Schulte, KTH Royal Institute of Technology]

Resume

▶ Examples

▶ graph labelling with consecutive numbers
▶ Cryptarithmetic (or verbal arithmetic or

cryptarithm): Send + More = Money
▶ Graph (map) coloring
▶ Production planning
▶ Investment planning

▶ Job shop scheduling
▶ Stable marriage problem
▶ Social golfers
▶ Grocery
▶ Magic series

▶ Language elements:
▶ parameters and variables, data types and enumerations
▶ relational operators
▶ arithmetics operators and functions (integer and float)
▶ basic structure
▶ arrays, sets, comprehensions
▶ aggregate functions
▶ set variables

3

Outline

1. More on Minizinc

2. Global Constraints

4

Predicates and Functions in MiniZinc

▶ A predicate is a function with output type var bool

▶ Predicates capture complex constraints in a succinct way.

▶ They can be built-in or user defined

▶ They let the modeller to define his/her own high-level constraints
for re-use and modularization

▶ ultimately they allow the development of application specific libraries defining the standard
constraints and types.

▶ Global constraints in MiniZinc:
https://www.minizinc.org/doc-latest/en/lib-globals.html and the solver specific
globals.mzn

5

https://www.minizinc.org/doc-latest/en/lib-globals.html

Defining Predicates

� �
predicate <pred-name> (<arg-def>, ..., <arg-def>) = <bool-exp>� �
<arg-def> type declaration (in arg-def the index types for arrays can be unbounded, eg
array[int])� �
test <pred-name> (<arg-def>, ..., <arg-def>) = <bool-exp>� �
new constraints that only involve parameters. Useful to write fixed tests for a conditional
expression. Example:
test even(int:x)= x mod 2 = 0;� �
assert (<bool-exp>, <string-exp>, <exp>)� �
checks whether the first argument is false, and if so prints the second argument string.
If the first argument is true it returns the third argument.

6

� �
predicate lookup(array[int] of var int:x, int: i, var int: y) =
assert(i in index_set(x), "index out of range in lookup", y = x[i]);� �� �
predicate no_overlap(var int:s1, int:d1, var int:s2, int:d2) = s1 + d1 <= s2 \/ s2 + d2 <= s1;

constraint %% ensure the tasks occur in sequence
forall(i in JOB) (

forall(j in 1..tasks-1)
(s[i,j] + d[i,j] <= s[i,j+1]) /\ s[i,tasks] + d[i,tasks] <= end

);

constraint %% ensure no overlap of tasks
forall(j in TASK) (

forall(i,k in JOB where i < k) (
no_overlap(s[i,j], d[i,j], s[k,j], d[k,j])
)

);� �
7

Defining Functions

Similar to predicates, but with a more general return type.
Useful for defining and documenting complex expressions that are used multiple times in a model.� �
function <ret-type> : <func-name> (<arg-def>, ..., <arg-def>) = <exp>� �� �
function var int: manhattan(var int: x1, var int: y1,

var int: x2, var int: y2) =
abs(x1 - x2) + abs(y1 - y2);� �

8

Reflection Functions

for generic tests and predicates
return information about array index sets, var set domains and decision variable ranges.
index_set(<1-D array>)
index_set_1of2(<2-D array>)
index_set_2of2(<2-D array>)
...

9

Scopes

MiniZinc has a single namespace, so all variables appearing in declarations are visible in every
expression in the model.
Locally scoped variables can be achieved:

▶ as iterator variables in comprehension expressions

▶ as predicate and function arguments

▶ using let expressions

Any local scoped variable overshadows the outer scoped variables of the same name.

10

let

Let expressions are a facility to introduce new variables. This is useful for creating common sub
expressions, and for defining local variables for predicates.

In FlatZinc they are transformed in the creation of new variables.

11

Option Type

An option type variable can take the additional value <> indicating absent.
An option type variable is declared as:� �
var opt <type> : <var-name>� �
where <type> is one of int, float or bool or a fixed range expression.
Option type variables can be parameters.

Most of the previously seen functions and operators work with option type variables. (See manual
also for weaker typ, eg, ~=)� �
array[1..n] of var int: x;
constraint forall(i in 1..n where x[i] >= 0)(x[i] <= limit);� �

12

Tuple and Records

Handling “objects”:
It is common practice in MiniZinc to have different arrays for different types of data points or
decisions. These arrays will then share a common index mapping to which object each data point
belongs.

Alternatively:� �
<var-par> tuple(<ti-expr>, ...): <var-name>� �� �
tuple(int, bool): t;
t = (1, true);
var tuple(int, bool): y; % same as tuple(var int ,

var bool))
any: x = (1, true, 2.0);
x.1 % 1
x.3 % 2.0� �

� �
<var-par> record(<ti-expr-and-id>, ...): <var-name>� �� �
record(int: i, bool: b): r;
r = (i: 1, b: true);
var record(int: i, bool: b): y % same as record(var

int : i , var bool : b)
any: x = (i: 1, b: true)
x.i % 1
x.b % true� �

13

Synomyms

� �
type <ident> <annotations> = <ti-expr>;� �� �
type Coord = var record(int: x, int: y, int: z);
type Number = int;� �� �
array[1..10] of Coord: placement;
function Number:add(Number: x, Number: y) = x + y;� �

14

Mixing Variables and Parameters

The left approach has troubles importing data from files. Prefer the approach on the right.� �
enum EmpId;
type Employee = record(
string: name,
array[Timespan] of bool: available,
set of Capability: capacities,
array[Timespan] of var Shift: shifts,
var 0..infinity: hours,

);
array[EmpId] of Employee: employee;� �

� �
enum EmpId;
type EmployeeData = record(
string: name,
array[Timespan] of bool: available,
set of Capability: capacities,

);
type EmployeeVar = record(
array[Timespan] of var Shift: shifts,
var 0..infinity: hours,

);
array[EmpId] of EmployeeData: employee_data;
array[EmpId] of EmployeeVar: employee_var;

type Employee = EmployeeData ++ EmployeeVar;
array[EmpId] of Employee: employee = [employee_data[

id] ++ employee_var[id] | id in EmpId];� �
15

Packing rectangles� �
type Dimens ions = r e c o r d (i n t : width , i n t : h e i g h t) ;
t ype Coo r d i n a t e s = r e c o r d (va r 0 . . i n f i n i t y : x , v a r 0 . . i n f i n i t y : y) ;� �� �
type Rec tang l e = Dimens ions ++ Coo rd i n a t e s ;
% No ov e r l a p p r e d i c a t e
p r e d i c a t e no_over lap (Rec tang l e : rectA , Rec tang l e : rec tB) =

rectA . x + rectA . w idth <= rectB . x
\/ rectB . x + rectB . w idth <= rectA . x
\/ rectA . y + rectA . h e i g h t <= rectB . y
\/ rectB . y + rectB . h e i g h t <= rectA . y ;� �� �

% In s t a n c e data
a r r a y [_] o f Dimens ions : rectDim ;
Dimens ions : a r ea ;

% Dec i s i o n v a r i a b l e s
a r r a y [i ndex_set (rectDim)] o f Coo rd i n a t e s : r e c tCoo rd : : no_output ;

a r r a y [_] o f Rectang l e : r e c t a n g l e s : : o u t p u t = [rectDim [i] ++ rec tCoo rd [i] | i i n i ndex_set (rectDim)] ;

% Con s t r a i n t : r e c t a n g l e s must be p l a c ed w i t h i n the a r ea
c o n s t r a i n t f o r a l l (r e c t i n r e c t a n g l e s) (

r e c t . x + r e c t . w idth <= area . w idth
/\ r e c t . y + r e c t . h e i g h t <= area . h e i g h t

) ;
% Con s t r a i n t : no r e c t a n g l e s can o v e r l a p
c o n s t r a i n t f o r a l l (i , j i n i ndex_set (r e c t a n g l e s) where i < j) (

no_over lap (r e c t a n g l e s [i] , r e c t a n g l e s [j])� �
16

Packing rectangles

� �
{

" a rea " : {
" width " : 5 ,
" h e i g h t " : 5

} ,
" rectDim " : [

{
" width " : 3 ,
" h e i g h t " : 3

} ,
{

" width " : 2 ,
" h e i g h t " : 1

} ,
{

" width " : 1 ,
" h e i g h t " : 2

} ,
{

" width " : 2 ,
" h e i g h t " : 2

} ,
{

" width " : 2 ,
" h e i g h t " : 3

}
]

}� �
17

Outline

1. More on Minizinc

2. Global Constraints

18

Global Constraints Catalog

▶ https://sofdem.github.io/gccat/ by Nicolas Beldiceanu, Mats Carlsson and Sophie
Demassey

▶ Earlier version https://web.imt-atlantique.fr/x-info/sdemasse/gccatold/

19

https://sofdem.github.io/gccat/
https://web.imt-atlantique.fr/x-info/sdemasse/gccatold/

Constraint Satisfaction Model

Constraint Satisfaction Problem (CSP)

A CSP is
▶ a finite set of variables X = {x1, . . . , xn} with domain extension D = D(x1)× · · · × D(xn),

together with
▶ a finite set of constraints C = {C1, . . . ,Cm}, each on a subset of X .

A solution to a CSP is an assignment of a value d ∈ D(x) to each x ∈ X , such that all constraints
are satisfied simultaneously.

20

Global Constraint: Alldifferent

Global constraint:
set of more elementary constraints that exhibit a special structure when considered together.

alldifferent constraint
Let x1, x2, . . . , xn be variables. Then:

alldifferent(x1, ..., xn) = {(d1, ..., dn) | ∀i di ∈ D(xi), ∀i ̸= j , di ̸= dj}.

Constraint arity: number of variables involved in the constraint

Note: different notation and names used in the literature
In Gecode distinct

21

Alldifferent in MiniZinc

The alldifferent constraint takes an array of integer variables and constrains them to take
different values. Form� �
alldifferent(array[int] of var int: x)� �

22

Global Constraint: Sum

Sum constraint
Let x1, x2, . . . , xn be variables. To each variable xi , we associate a scalar ci ∈ Q. Furthermore, let z
be a variable with domain D(z) ⊆ Q. The sum constraint is defined as

sum([x1, . . . , xn], z , c) =

(d1, . . . , dn, d) | ∀i , di ∈ D(xi), d ∈ D(z), d =
∑

i=1,...,n

cidi

 .

In Gecode: linear(home, x, IRT_GR, c)
linear(Home home, const IntArgs &a, const IntVarArgs &x,
IntRelType irt, IntVar y, IntConLevel icl=ICL_DEF)

23

Global Constraint: Sum

� �
predicate sum_pred(var int: i, array [int] of set of int: sets, array [int] of int: cs, var int: s)� �
Requires that the sum of cs[i1]..cs[iN] equals s, where i1..iN are the elements of the ith
set in sets.
Also possible:
s = sum(i in index_set(x)) (coeffs[i]*x[i])
Nb: not called sum as in the constraints catalog because sum is a MiniZinc built-in function.

24

Global Constraint: Knapsack

Knapsack constraint

Rather than constraining the sum to be a specific value, the knapsack constraint states the sum to
be within a lower bound l and an upper bound u, i.e., such that D(z) = [l , u]. The knapsack
constraint is defined as

knapsack([x1, . . . , xn], z , c) =(d1, . . . , dn, d) | di ∈ D(xi)∀i , d ∈ D(z), d ≤
∑

i=1,...,n

cidi

∩

(d1, . . . , dn, d) | di ∈ D(xi)∀i , d ∈ D(z), d ≥
∑

i=1,...,n

cidi

 .

minD(z) ≤
∑

i=1,...,n

cixi ≤ maxD(z)

25

In Gecode: linear(Home home, const IntArgs &a, const IntVarArgs &x,
IntRelType irt, IntVar y, IntConLevel icl=ICL_DEF)
In Minizinc:� �
predicate knapsack(array [int] of int: w,

array [int] of int: p,
array [int] of var int: x,
var int: W,
var int: P)� �

or
s = sum(i in index_set(x)) (coeffs[i]*x[i])

26

Global Constraint: cardinality

cardinality or gcc (global cardinality constraint)

Let x1, . . . , xn be assignment variables whose domains are contained in {v1, . . . , vn′} and let
{cv1 , . . . , cvn′} be count variables whose domains are sets of integers. Then

cardinality([x1, ..., xn],[cv1 , ..., cvn′]) =

{(w1, ...,wn, o1, ..., on′) | wj ∈ D(xj)∀j ,
occ(vi , (w1, ...,wn)) = oi ∈ D(cvi)∀i}.

(occ number of occurrences)

⇝ generalization of alldifferent

In Gecode: count

27

Counting constraints in MiniZinc

restrict how many times certain values occur in an array of variables.� �
count(i in x)(i=c) <= d� �
However, if your model contains multiple counting constraints over the same array:� �
predicate distribute(array [int] of var int: card, array [int] of var int: value, array [int] of var int:

base)� �
Requires that card[i] is the number of occurrences of value[i] in base. The values in value
need not be distinct.� �
predicate global_cardinality(array [int] of var int: x, array [int] of int: cover, array [int] of var int:

counts)� �
Requires that the number of occurrences of parameter cover[i] in x is counts[i].

28

Global Constraint: among and sequence

among

Let x1, . . . , xn be a tuple of variables, S a set variable, and l and u two nonnegative integers

among([x1, ..., xn],S , l , u)

At least l and at most u of variables take values in S .
In Gecode: count

sequence

Let x1, . . . , xn be a tuple of variables, S a set variable, and l and u two nonnegative integers, s a
positive integer.

sequence([x1, ..., xn],S , l , u, s)

At least l and at most u of variables take values from S in s consecutive variables

29

Car Sequencing Problem

Car Sequencing Problem
▶ an assembly line makes 50 cars a day
▶ 4 types of cars
▶ each car type is defined by options: {air conditioning, sun roof}

type air cond. sun roof demand
a no no 20
b yes no 15
c no yes 8
d yes yes 7

▶ at most 3 cars in any sequence of 5 can be given air conditioning
▶ at most 1 in any sequence of 3 can be given a sun roof

Task: sequence the car types so as to meet demands while observing capacity constraints of the
assembly line.

30

Car Sequencing Problem

Sequence constraints

31

Car Sequencing Problem: CP model

Car Sequencing Problem

Let ti be the decision variable that indicates the type of car to assign to each position i in the
sequence.

cardinality([t1, . . . , t50], (a, b, c , d), (20, 15, 8, 7), (20, 15, 8, 7))
among([ti , . . . , ti+4], {b, d}, 0, 3), ∀i = 1..46
among([ti , . . . , ti+2], {c , d}, 0, 1), ∀i = 1..48
ti ∈ {a, b, c , d}, i = 1, . . . , 50.

Note: in Gecode among is count.
However, we can use sequence for the two among constraints above:

sequence([t1, . . . , t50], {b, d}, 0, 3, 5),
sequence([t1, . . . , t50], {c , d}, 0, 1, 3),

32

Global Constraint: nvalues

nvalues

Let x1, . . . , xn be a tuple of variables, and l and u two nonnegative integers

nvalues([x1, ..., xn], l , u)

At least l and at most u different values among the variables

⇝ generalization of alldifferent
In Gecode: nvalues
In MiniZinc predicate nvalue(var int: n, array [$X] of var int: x)

33

Global Constraint: stretch

stretch (In Gecode: via regular and extensional)

Let x1, . . . , xn be a tuple of variables with finite domains,
v an m-tuple of possible values of the variables,
l an m-tuple of lower bounds and u an m-tuple of upper bounds.
A stretch is a maximal sequence of consecutive variables that take the same value, i.e., xj , . . . , xk
for v if xj = . . . = xk = v and xj−1 ̸= v (or j = 1) and xk+1 ̸= v (or k = n).

stretch([x1, ..., xn], v, l, u) stretch-cycle([x1, ..., xn], v, l, u)

for each j ∈ {1, . . . ,m} any stretch of value vj in x have length at least lj and at most uj .

In addition:

stretch([x1, ..., xn], v, l, u,P)

with P set of patterns, i.e., pairs (vj , vj′). It imposes that a stretch of values vj must be followed by
a stretch of value vj′

34

Global Constraint: element

“element” constraint
Let y be an integer variable,
z a variable with finite domain,
and c an array of constants, i.e., c = [c1, c2, . . . , cn].
The element constraint states that z is equal to the y -th variable in c , or z = cy .
More formally:

element(y , z , [c1, . . . , cn]) = {(e, f) | e ∈ D(y), f ∈ D(z), f = ce}.

In MiniZinc� �
array[1..6] of int: c = {5,1,4,9,16,25};
var int: y;
var int: z;
z=c[y];� �

35

Assignment problems

The assignment problem is to find a minimum cost assignment of m tasks to n workers (m ≤ n).
Each task is assigned to a different worker, and no two workers are assigned the same task.
If assigning worker i to task j incurs cost cij , the problem is simply stated:

min
∑

i=1,...,n

cixi

alldiff([x1, . . . , xn]),

xi ∈ Di ,∀i = 1, . . . , n.

Note: cost depends on position. Recall: with n = m min weighted bipartite matching (Hungarian
method)
with supplies/demands transshipment problem

36

Global Constraint: channel

“channel” constraint
Let y be array of integer variables, and x be an array of integer variables:

channel([y1, . . . , yn], [x1, . . . , xn]) =

{([e1, . . . , en], [d1, . . . , dn]) | ei ∈ D(yi),∀i , dj ∈ D(xj),∀j , ei = j ∧ dj = i}.

� �
predicate inverse(array [int] of var int: f, array [int] of var int: invf)� �
Constrains two arrays of int variables, f and invf, to represent inverse functions. All the values in
each array must be within the index set of the other array

37

Employee Scheduling problem

Four nurses are to be assigned to eight-hour shifts.
Shift 1 is the daytime shift, while shifts 2 and 3 occur at night.
The schedule repeats itself every week. In addition,

1. Every shift is assigned exactly one nurse.
2. Each nurse works at most one shift a day.
3. Each nurse works at least five days a week.
4. To ensure a certain amount of continuity, no shift can be staffed by more than two different

nurses in a week.
5. To avoid excessive disruption of sleep patterns, a nurse cannot work different shifts on two

consecutive days.
6. Also, a nurse who works shift 2 or 3 must do so at least two days in a row.

38

Employee Scheduling problem

Feasible Solutions
Solution viewed as assigning workers to shifts.

Sun Mon Tue Wed Thu Fri Sat
Shift1 A B A A A A A
Shift2 C C C B B B B
Shift3 D D D D C C D

Solution viewed as assigning shifts to workers.

Sun Mon Tue Wed Thu Fri Sat
Worker A 1 0 1 1 1 1 1
Worker B 0 1 0 2 2 2 2
Worker C 2 2 2 0 3 3 0
Worker D 3 3 3 3 0 0 3

39

Employee Scheduling problem

Feasible Solutions
Let wsd be the nurse assigned to shift s on day d , where the domain of wsd is the set of nurses
{A,B,C ,D}.
Let tid be the shift assigned to nurse i on day d , and where shift 0 denotes a day off.

1. alldiff(w1d ,w2d ,w3d), d = 1, . . . , 7
2. cardinality(W , (A,B,C ,D), (5, 5, 5, 5), (6, 6, 6, 6))
3. nvalues({ws1, . . . ,ws7}, 1, 2), s = 1, 2, 3
4. alldiff(tAd , tBd , tCd , tDd), d = 1, ..., 7
5. cardinality({ti1, . . . , ti7}, 0, 1, 2), i = A,B,C ,D

6. stretch-cycle((ti1, . . . , ti7), (2, 3), (2, 2), (6, 6),P), i = A,B,C ,D

7. wtidd = i ,∀i , d , twsd s = s,∀s, d

40

Circuit problems

Given a directed weighted graph G = (N,A), find a circuit of min cost:

min
∑

i=1,...,n

cxixi+1

alldiff([x1, . . . , xn]),

xi ∈ Di ,∀i = 1, . . . , n.

Note: cost depends on sequence.

An alternative formulation is

min
∑

i=1,...,n

ciyi

circuit([y1, . . . , yn]),

yi ∈ Di = {j | (i , j) ∈ A},∀i = 1, . . . , n.
41

Circuit representation

42

Global Constraint: circuit

“circuit” constraint

Let X = {x1, x2, . . . , xn} be a set of variables with respective domains D(xi) ⊆ {1, 2, ..., n} for
i = 1, 2, ..., n. Then

circuit(x1, . . . , xn) ={(d1, ..., dn) | ∀i , di ∈ D(xi), d1, ..., dn is cyclic }.

43

Circuit problems - Linking viewpoints
A model with redundant constraints is as follows:

min z (1)

z ≥
∑

i=1,...,n

cxixi+1 (2)

z ≥
∑

i=1,...,n

ciyi (3)

alldiff([x1, . . . , xn]), (4)
circuit([y1, . . . , yn]), (5)
x1 = yxn = 1, xi+1 = yxi , i = 1, . . . , n − 1 (6)
xi ∈ {1, . . . , n},∀i = 1, . . . , n, (7)
yi ∈ Di = {j | (i , j) ∈ A},∀i = 1, . . . , n. (8)

Line (6) implements the linking between the two formulations.
In Gecode it can be implemented with the element:� �
element(y, x[i], x[i+1])� �44

CP Modeling Guidelines [Hooker, 2011]

1. A specially-structured subset of constraints should be replaced by a single global constraint
that captures the structure, when a suitable one exists. This produces a more succinct
model and can allow more effective filtering and propagation.

2. A global constraint should be replaced by a more specific one when possible, to exploit more
effectively the special structure of the constraints.

3. The addition of redundant constraints (i..e, constraints that are implied by the other
constraints) can improve propagation.

4. When two alternate formulations of a problem are available, including both (or parts of both)
in the model may improve propagation.
Different variables are linked through the use of channeling constraints.

45

Extensional Constraints: Table

enforces that a tuple (array) of variables takes a value from a set of tuples� �
table(array[int] of var bool: x, array[int, int] of bool: t)
table(array[int] of var int: x, array[int, int] of int: t)� �
enforces x ∈ t where we consider x and each row in t to be a tuple, and t to be a set of tuples.

46

� �
array[FOOD,FEATURE] of int: dd; % food database
array[FEATURE] of var int: main;
array[FEATURE] of var int: side;
array[FEATURE] of var int: dessert;

enum FOOD;
FOOD = { icecream, banana, chocolatecake, lasagna, steak, rice, chips, brocolli, beans} ;
enum FEATURE = { name, energy, protein, salt, fat, cost};

dd = [| icecream, 1200, 50, 10, 120, 400
| banana, 800, 120, 5, 20, 120
| chocolatecake, 2500, 400, 20, 100, 600
| lasagna, 3000, 200, 100, 250, 450
| steak, 1800, 800, 50, 100, 1200
| rice, 1200, 50, 5, 20, 100
| chips, 2000, 50, 200, 200, 250
| brocolli, 700, 100, 10, 10, 125
| beans, 1900, 250, 60, 90, 150 |];

constraint table(main, dd);
constraint table(side, dd);
constraint table(dessert, dd);

constraint main[salt] + side[salt] + dessert[salt] <= max_salt;
constraint main[fat] + side[fat] + dessert[fat] <= max_fat;
constraint budget = main[cost] + side[cost] + dessert[cost];� �

47

Extensional Constraints: Regular

“regular” constraint

Let M = (Q,Σ, δ, q0,F) be a Deterministic Finite Automaton (DFA) and let X = {x1, x2, . . . , xn}
be a set of variables with D(xi) ⊆ Σ for 1 ≤ i ≤ n. Then

regular(X ,M) = {(d1, ..., dn) | ∀i , di ∈ D(xi), [d1, d2, . . . , dn] ∈ L(M)}.

48

Global Constraint: regular

Example

Given the problem

x1 ∈ {a, b, c}, x2 ∈ {a, b, c}, x3 ∈ {a, b, c}, x4 ∈ {a, b, c},

regular([x1, x2, x3, x4],M).

One solution to this CSP is x1 = a, x2 = b, x3 = a, x4 = a.
49

Global Constraint: regular

� �
regular(array[int] of var int: x, int: Q, int: S, array[int,int] of int: d, int: q0, set of int: F)� �

constrains that:
▶ the sequence of values in array x (which must all be in the range 1..S)
▶ is accepted by the DFA of Q states with input 1..S and
▶ transition function d (which maps <1..Q, 1..S> to 0..Q) and
▶ initial state q0 (which must be in 1..Q)
▶ final states F (which all must be in 1..Q). State 0 is reserved to be an always failing state.

50

Global Constraint: regular

a b c
1 2 0 5
2 2 3 0
3 4 3 0
4 4 0 0
5 0 0 5

� �
include "globals.mzn";

enum LETTERS = {a,b,c};
array[1..5] of var LETTERS: x;
int: Q = 5;
int: S = card(LETTERS);
int: q0 = 1;
set of int: STATE = 1..5;
set of int: final = {4,5};� �

� �
array[STATE,LETTERS] of int: t =
[| 2, 0, 5 % state 1
| 2, 3, 0 % state 2
| 4, 3, 0 % state 3
| 4, 0, 0 % state 4
| 0, 0, 5|]; % state 5

constraint regular(x, Q, S, t, q0, final);

solve satisfy;� �
51

� �
regular_nfa(array[int] of var int: x, int: Q, int: S, array[int,int] of set of int: d,

int: q0, set of int: F)� �
constraints that:
▶ the array x (which must all be in the range 1..S)
▶ is accepted by the NFA of Q states with input 1..S and
▶ transition function d (which maps <1..Q, 1..S> to subsets of 1..Q) and
▶ initial state q0 (which must be in 1..Q) and
▶ accepting states F (which all must be in 1..Q).

There is no need for a failing state 0, since the transition function can map to an empty set of
states.
DFA� �
array[STATE,LETTERS] of int: t =
[| 2, 0, 5 % state 1
| 2, 3, 0 % state 2
| 4, 3, 0 % state 3
| 4, 0, 0 % state 4
| 0, 0, 5|]; % state 5� �

NFA� �
array[STATE,LETTERS] of set of int: t =
[| {2,3}, {}, {5} % state 1
| {2,3}, {3}, {} % state 2
| {4}, {3}, {} % state 3
| {4}, {}, {} % state 4
| {}, {}, {5}|]; % state 5� �

52

Scheduling Constraints

One job at a time on a machine (disjunctive machines):

“disjunctive” scheduling

Let (x1, . . . , xn) be a tuple of (integer/real)-valued variables indicating the starting time of a job j .
Let (p1, . . . , pn) be the processing times of each job.

disjunctive([x1, . . . , xn], [p1, . . . , pn]) =

{[s1, . . . , sn] | ∀i , j , i ̸= j , (si + pi ≤ sj) ∨ (sj + pj ≤ si)}

In MiniZinc:� �
predicate disjunctive(array [int] of var int: s,

array [int] of var int: d);� �
In Gecode:� �
IntArgs p(4, 2,7,4,11);
unary(home, s, p);� �

53

Scheduling Constraints

In Resource Constrained Project Scheduling each resource can be used at most up to its capacity:

cumulative constraints [Aggoun and Beldiceanu, 1993]

▶ rj release time of job j

▶ pj processing time
▶ dj deadline
▶ cj resource consumption
▶ C limit not to be exceeded at any point in time

Let x be an n-tuple of (integer/real) value variables denoting the starting time of each job

cumulative([xj], [pj], [cj],C) := {([sj], [pj], [cj],C) | ∀t
∑

i | si≤t≤si+pi

ci ≤ C}

With cj = 1 forall j and C = 1 ⇝ disjunctive

54

Scheduling Constraints: Cumulative

The cumulative constraint is used in scheduling problems for describing cumulative resource usage.� �
cumulative(array[int] of var int: s,

array[int] of var int: d,
array[int] of var int: r,
var int: b)� �

A set of tasks with start times s, durations d , and resource requirements r ,
must never require more than a global resource bound b at any one time.

Start times can be optional variables, so that absent tasks do not need to be scheduled.

55

� �
include "cumulative.mzn";

enum OBJECTS;
array[OBJECTS] of int: duration; % duration to move
array[OBJECTS] of int: handlers; % number of handlers required
array[OBJECTS] of int: trolleys; % number of tro l leys required
int: available_handlers;
int: available_trolleys;
int: available_time;
array[OBJECTS] of var 0..available_time: start;

var 0..available_time: end;

constraint cumulative(start, duration, handlers,
available_handlers);

constraint cumulative(start, duration, trolleys,
available_trolleys);

constraint forall(o in OBJECTS)(start[o] +duration[o] <= end);

solve minimize end;

output ["start = \(start)\nend = \(end)\n"];� �
56

Scheduling Constraints

cumulatives generalizes cumulative by: [Beldiceanu and Carlsson, 2002]

1. allowing to have several cumulative resurces and that each task has to be assigned to one of
them

2. the resource consumption by any task is a variable that can take positive or negative values

3. it is possible to enforce the cumulated consumption to be less than or equal, or greater or
equal to a given level.

4. the previous point on the cumulated resource consumption is enforced only for those
time-points that are overalpped by at least 1 task.
permitting multiple cumulative resources as well as negative resource consumptions by the
tasks.

57

Scheduling Constraints
Cumulatives

cumulatives constraints [Beldiceanu and Carlsson, 2002]

▶ variables (yj , xj , dj , cj , ej) for job j ∈ J
yj ∈ Z machine; dj ∈ Z+ duration; xj ∈ Z start time; cj ∈ Z consumption; ej ∈ Z end time

▶ parameters (r , Lr) for resource r ∈ R, Lr limit.
▶ constraint ≤ or ≥

cumulatives([yj], [xj], [dj], [cj], [ej], [Lr],⋚) :={
([qj], [sj], [pj], [uj], [fj], [Lqj],⋚) |

∀j ∈ J : sj + pj = fj and
∀j ∈ J,∀t ∈ [sj , ej − 1], r̂ = yj :∑

i | si≤t≤si+pi
yi=yj

ci ≤ Lr̂

}

58

examples of cases modelled by cumulatives

from [Beldiceanu and Carlsson, 2002]
59

Others

▶ Sorted constraints (sorted(x , y))

▶ Bin-packing constraints (binpacking(l , b, s))
lj is the load variable of bin j , bi the bin variable of item i , si size of item i

▶ Geometrical packing constraints (nooverlap) diffn((x1,∆x1), . . . , (xm,∆xm)) arranges a
given set of multidimensional boxes in n-space such that they do not overlap
(aka, nooverlap)

▶ Value precedence constraints (precede(x , s, t))

▶ Logical implication: conditional(D, C) between sets of constrains D ⇒ C (ite)

60

More

▶ clique(x |G , k) requires that a given graph contain a clique of size k

▶ cycle(x |y) select edges such that they form exactly y directed cycles in a graph.

▶ cutset(x |G , k) requires that for the set of selected vertices V ′, the set V \ V ′ induces a
subgraph of G that contains no cycles.

61

References

Beldiceanu N. and Carlsson M. (2002). A New Multi-resource cumulatives Constraint with Negative
Heights, pp. 63–79. Springer Berlin Heidelberg, Berlin, Heidelberg.

Hooker J.N. (2011). Hybrid modeling. In Hybrid Optimization, edited by P.M. Pardalos, P. van
Hentenryck, and M. Milano, vol. 45 of Optimization and Its Applications, pp. 11–62. Springer New York.

van Hoeve W. and Katriel I. (2006). Global constraints. In Handbook of Constraint Programming, chap. 6.
Elsevier.

62

	More on Minizinc
	Global Constraints

